用户名: 密码: 验证码:
欧洲弓网系统标准体系特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
标准体系作为一种规范性文件,在维护行业最佳秩序方面扮演着重要角色。在高速铁路迅猛发展和大规模建设的今天,中国铁路技术标准体系也正在逐步建设和完善中。但由于中国铁路事业起步较晚、对标准的认识尚未深入等原因,目前中国弓网系统标准体系仍存在较多问题。一直以来中国的受电弓特性都与德国使用的受电弓相似,因此,借鉴欧洲弓网系统标准帮助完善中国弓网系统标准具备可行性。
     欧洲弓网系统标准体系以96/48/EC为依据在TSI的基础上建立,主要由EN50206-1、EN50119、EN50317、EN50318、EN50367构成。该标准体系具有集合性、整体性、相关性、可分解性、环境适应性、目标性等六大特征,而弓网接触力是评估弓网相互作用质量的核心参数。
     本文首先通过研究弓网接触力在标准体系集合性和整体性的体现,论证弓网接触力在弓网系统中的核心地位。其次,研究了标准体系的相关性和可分解性、环境适应性和目标性在受电弓特性与测试、架空接触网设计、动态相互作用的测量与仿真确认、相互作用接口技术规范等方面的标准制定问题。
     就接触线的抬升量而言,单弓列车的受电弓及双弓列车的前弓抬升量最大为100mm,双弓列车的后弓抬升量最大为120mm。为了将接触线与滑板的磨耗降到最低,铜合金接触导线区宜采用碳滑板。接触点处的接触电阻在弓网相对静止时与弓网接触力成反比,同时,列车速度的增大会导致弓网接触力增大。
     弓网接触力在每一个标准中从分类、取值范围、测量、仿真确认等方面做了详细规定,它是串联起欧洲弓网系统标准的内在因素,也充分体现了欧洲弓网系统标准体系的相关性。本文通过研究EN50119内容上的变革,得出以下结论:由于标准体系的可分解性,EN50119:2009在2001版本基础上删除了架空接触网的施工和验收部分,增加了零部件的要求和测试等内容。这些变革都是针对2001年后EN50317、EN50318和EN50367的颁布所做出的调整。
     由于EN50367规定了弓网系统动态相互作用性能的评估标准,欧盟成员国在选择不同的受电弓之后,接触网特性、机车车辆特性取值方面必然存在差异。目标性要求弓网系统在满足安全高效输电这一根本目的的前提下,达到促进泛欧铁路运输互联互通的宏观目的。
     最后,本文通过全面对比中国与欧洲铁路弓网系统标准体系的相关技术,对中国弓网系统标准体系建设提出了几点可行性建议:应进一步加强对弓网关系核心问题的认识力度,针对自身环境特点尽快制定中国弓网系统的动态相互作用测量和仿真标准。同时,加大中国标准的翻译力度是推动中国弓网系统标准“走出去”从而尽快掌握在国际标准制订行业话语权的有效手段。
As a normative documents, the standard system plays an important role in the maintenance of industry. With the rapid development of high speed railway and its construction today, the technology of Chinese railway standard system has been gradually built and improved. However, there are still some problems in Chinese pantograph-catenary system due to the late start of Chinese railway industry and the shallow understanding of the standard. Since the Characteristics of Chinese pantograph have always been similar to the characteristics of German pantograph, it is expected to provide some reference to perfect Chinese pantograph-catenary system by learning from Europe.
     The standard system of the European pantograph-catenary system is established on the basis of96/48/EC and Technical specification for interoperability (hereafter referred to as "TSI"). The standard system consists of EN50206-1, EN50119, EN50317, EN50318, EN50367. The standard system has six characteristics including collectivity, integrity, correlation, decomposability, environmental adaptability and targeted. Contact force is the key parameter of the interaction quality of pantograph-catenary system.
     Firstly, the thesis demonstrates the core status of contact force in the pantograph-catenary system by studying the reflection of the collectivity and integrity in the standard system. Next, the thesis studies the standard establishment issues about the pantograph characteristics and test, overhead contact lines design, measurements and simulation of the dynamic interaction between pantograph and overhead contact line, technical criteria for the interaction between pantograph and overhead contact line of the correlation, decomposability, environmental adaptability and targeted of the standard system.
     In terms of the vertical movement of contact point, the maximum height at the contact point of the train with single pantograph and the front pantograph of the trains with two pantographs is100mm, and the maximum height at the contact point of the latter pantograph of the trains with two pantographs is120mm. In order to reduce the wear of the contact line and the contact strip to the least, the area of copper alloy contact wire should adopt carbon contact strip. Contact resistance at the contact point is inversely proportional to the contact force when the pantograph and contact line is relatively static. The increase of the train speed will lead to the contact force increase.
     The contact force is stipulated about the classification, value range, measurement and simulation, which is the internal factor that connect the standards of the European pantograph-catenary system. It also fully embodies the correlation of the standard system.
     The thesis comes to a conclusion by studying the changes of EN50119due to the decomposability. EN50119:2009removed the part of construction and supervise about overhead contact line on the basis of the2001version,which at the same time added the component requirements and testing part. These changes are due to the publishment of EN50317, EN50318and EN50367after2001.
     EN50367provides the evaluation criteria about dynamic interaction performance of the pantograph-catenary system. The EU Member States have different values in catenary and vehicle characteristics because of choosing a different kind of pantograph. The target requires the pantograph-catenary system to meet the fundamental purpose of the safe and efficient transmission. Meanwhile, it also requires the system to assure the macroscopic purpose of the interoperability of the trans-European high-speed railway system.
     Finally, through the comparison between the pantograph-catenary systems in China and Europe, practical suggestions to standard system of the Chinese pantograph-catenary system are given:We should take notice of the core issues in Chinese pantograph-catenary system, and formulate measurement and simulation standard based on environment in China as soon as possible. At the same time, we should endeavor to translate the standard system in China to make it becoming international so that China can have the power to influence the standard-setting in the world.
引文
[1]罗冬树.铁路发展的回顾和21世纪发展的展望[C].科技进步与学科发展——“科学技术面向新世纪”学术年会论文集.1998
    [2]高津利次,甘霖.日本高铁的历史与未来[J].国际城市规划.2011(06):6-15
    [3]蔡忠保.世界各国和地区高速铁路比较[J].国际科技交流.1993(06):31-35
    [4]魏玉光,杨浩.我国构建高速铁路网的可行性及应关注的问题[J].综合运输.2010(11):007
    [5]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介[J].铁道知识.2007(01):254-255
    [6]钱立新.世界高速铁路的发展水平和中国高速铁路的技术进展[J].铁路采购与物流.2009(10):4
    [7][日]真锅克士.弓网系统的技术开发现状及课题[J].铁道总研报告.1995(9):1-6.
    [8]李文豪,罗健,张倩,陈维荣.高速铁路受电弓与接触网关系评价综述[J].电气化铁道,2009(4):40-44
    [9]GBT 20000.1-2002标准化工作指南第1部分标准化和相关活动的通用词汇[S].2002年6月
    [10]田葆栓.国内外铁路技术标准体系的发展与分析(上)[J].铁道技术监督.2012(03):1-6
    [11]田葆栓.国内外铁路技术标准体系的发展与分析(下)[J].铁道技术监督.2012(04):12-14
    [12]朱飞雄,倪光斌.开展中德铁路标准对比分析促进中国铁路标准走向世界[J].铁道经济研究.2010(04):5-9
    [13]TB/T 1456-2004铁路应用机车车辆干线机车车辆受电弓特性和试验[S].2004
    [14]TB 10621-2009高速铁路设计规范(试行)(铁建设[2009]209号),2009
    [15]TB/T 3271-2011轨道交通受流系统受电弓与接触网相互作用准则[S].2011
    [16]TB 10758-2010高速铁路电力牵引供电工程施工质量验收标准[S].2010
    [17]铁建设[2010]214号文件高速铁路工程动态验收指导意见[S].2010
    [18]吴积钦,董昭德,韩峰.典型高速弓网系统特点分析.[C]高速铁路接触网系统新技术研讨会论文集.2010.
    [19]朱梅,齐兵.加入WTO后铁路相关技术政策研究(上)——关于技术法规和标准体系的研究[J].铁道技术监督.2005(10):001
    [20]EN50206-1:Railway applications-Rolling stock-Pantographs:Characteristics and tests-Partl:Pantographs formain line vehicles[S], Brussels:CENELEC,1998.
    [21]EN50119:Railway applications-Fixed installations-Electric traction overhead contact lines[S], Brussels:CENELEC,2001.
    [22]EN50119:Railway applications-Fixed installations-Electric traction overhead contact lines[S], Brussels:CENELEC,2009.
    [23]EN50317:Railway applications-Current collection systems-Requirement for and validation of measurements of thedynamic interaction between pantograph and overhead contact line[S], Brussels:CENELEC,2002.
    [24]EN50318:Railway applications-Current collection systems-Validation of simulation of the dynamic interactionbetween pantograph and overhead contact line[S], Brussels: CENELEC,2002.
    [25]EN50367:Railway applications-Current collection systems-Technical criteria for the interaction between pantograph and overhead line (to achieve free access) [S]. Brussels:CENELEC,2006.
    [26]刘永红,何友全,肖建.高速铁路受电弓概况[J].电力自动化设备.2002(11)
    [27]马果垒,张卫华,梅桂明.高速受电弓整体结构特性分析[J].机械强度.2010(01):158-164
    [28]薛卫星.牵引供电刚性悬挂接触网系统的研究和实践[J].铁道机车车辆.2008(05):63-66
    [29]柴红旗.高速铁路接触网的研究[J].价值工程.2011(19):45-46
    [30]吴积钦.受电弓与接触网系统[M].成都:西南交通大学出版社,2011.
    [31]叶斌,汤晋.从公共政策视角浅析欧洲高速铁路整合规划[J].国际城市规划.2010(02):97-100
    [32]侯敬.关于欧盟铁路支持政策的研究[J].铁道工程学报.2008(11):109-116
    [33]AEIF. Technical Specification for interoperability[S].Energy subsystem,2002
    [34]朱飞雄.欧洲铁路接触网受电弓系统兼容标准及其影响[J].铁道标准设计.2005(06)
    [35]方岩,吴积钦,李岚.欧洲高速铁路弓网系统标准体系[J].中国铁路.2010(10):67-70
    [36]Armstrong, D.S.Standards are coming hurrah! Hurrah?[J].IEE Colloquium (Digest). Nov13 1995, P5/1-5/4
    [37]Braunwarth, Albert. Internal and External Standardization by the German Federal Railway in the Field of Electric Railway Equipment[J]. Elektrische Bahnen.1985, P276-280,282-288
    [38]Schneider, Egid, Schwarz, Michael.Trends in the standardisation for railway electrification[J].Elektrische Bahnen June 2012, P264-269
    [39]Hongler, Georg. Strategic aspects of the European standardization[J]. Journal for Railway and Transport.2000, P297-302
    [40]Eisbrecher H D, Gartner E. Standardization in the field of Railway Applications-yesterday and today[J]. ZEVRAIL GLASERS ANNALEN,2002, 126(11),P 508-520
    [41]Gartner, Ekkehard.Standardization in the field of railway applications and their European relevance[J].ZEV Rail Glasers Annalen. January/February 2005, P36-45
    [42]Nagasawa, Hiroki, Noguchi, Shinzo, Usuda, T akayuki. Variances of catenary-pantograph systems in standards of Japan and Europe [J].PACIFIC 2011-International Conference on:Pantograph-Catenary Interaction Framework for Intelligent Control.2011, P 23-25
    [43]Koller, Rudolf.High-speed railway lines in south-eastern Europe [J].Rail International. October 2003. P37-P40
    [44]Macioek, Tadeusz,Rostkowski, Witold.Development of overhead contact lines in Poland[J].Elektrische Bahnen.2006, P 70-74
    [45]Lee, Jin-Hee,Park, Tae-Won; Jung, Sung-Pil. Development of the analysis model for overhead contact line and pantograph by en standard[J].2011 Joint Rail Conference, JRC 2011,2011, P 93-94
    [46]Lesser, Martin,Karlsson, Lennart; Drugge, Lars.Interactive model of a pantograph-catenary system[J].Vehicle System Dynamics,1996, P 397-412
    [47]Kia,Shahin Hedayati, Bartolini,Fabio,Mpanda-Mabwe,Augustin,Ceschi, Roger. Pantograph-Catenary Interaction Model Comparison[J]. IECON Proceedings (Industrial Electronics Conference),2010, P 1584-1589
    [48]Benet, Jesus,Arias, Enrique, Alberto, Angelines,Cebrian, David.An efficient method for study of the pantograph-catenary dynamic interaction[J]. Informacion Tecnologica. 2006, P 269-291
    [49]何邦模.论我国高速铁路的技术体系[J].铁道运输与经济.2008(04):1-3
    [50]孙法林.当前铁道行业标准化工作的思考[J].铁道技术监督.2003(06):2-6
    [51]吴克俭,芦金宁.中国高速铁路技术标准体系[J].中国铁路.2010(07):1-7
    [52]王祖峰,刘永红,李文豪.高速铁路牵引供电系统技术标准体系[J].中国铁路.2011(01):34-39
    [53]朱飞雄.高速铁路受电弓-接触网系统的主要关键技术[J].中国铁路.2010(09):28-32
    [54]魏亚娟.电气化铁路接触网的若干问题的分析探讨[J].上海铁道科技.2009(01):047
    [55]董振锋.德国高速铁路设计选线参数简介及中德线路选线参数比较[J].铁道勘测与设计.2010(03):8-10
    [56]陶立新,朱飞雄.德国高速铁路接触网的施工允许偏差[J].电气化铁道.2000(03):27-29
    [57]朱梅,杨琦,徐力,马莎.国际国外高速铁路技术法规及标准体系分析[J].铁道技术监督.2011(07):1-7
    [58]李会杰,田志军.弓网受流标准制定的几个问题探讨[C].中国电气化铁路两万公里学术会议论文集,2005
    [59]李会杰.中欧标准在铁道电气化领域对比分析[C].高速铁路接触网系统新技术研讨会论文集,2010
    [60]徐安华.我国高速铁路技术标准的几点思考[J].世界标准化与质量管理.2004(08):43-45
    [61][德]Kiebling, Puschmann, Schmieder.电气化铁道接触网[M].中铁电气化局集团有限公司译.北京:中国电力出版社,2004
    [62]钱中良,盛伟,张枝苗,等.碳滑板发展概况及我国的研究进展[J].机车电传动,2003,(增刊):5-6.
    [63]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700