用户名: 密码: 验证码:
接触网覆冰机理与在线防冰方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电气化铁路总里程快速增长,客运高速和货运重载铁路大规模建设,一些新的电气化铁路线路很可能要穿越高寒、高湿和高海拔地区等易发生覆冰的区域,接触网覆冰灾害问题已成为各级部门广泛关注的问题,为了既能消除覆冰,同时也能保证行车所必须的电能供给,接触网在线防冰技术将成为未来电气化铁路防融冰的主要方法之一,因此迫切需要开展相关的基础理论研究。
     论文研究了空气含水引起接触网覆冰的关键基础参量,基于流体力学、热力学,建立接触线、承力索、整体吊弦的气流场模型,通过水滴受力分析、动量平衡过程分析,建立气流场中水滴的运动轨迹,据此研究了水滴在接触网各部件表面的碰撞情况,确定局部碰撞率和总体碰撞率,为覆冰发展及覆冰动态热平衡的研究奠定基础。
     研究了接触网覆冰的热平衡过程及增长规律,结合接触网周边及沿面的气流场及水滴碰撞率的研究结果,建立了覆冰热平衡方程,通过分析局部努珊数分布等特征,推导热平衡方程主要技术参数求取方法,确定各种运行工况下的接触网临界防冰电流,通过仿真接触网的干增长覆冰和湿增长覆冰过程中覆冰轮廓,研究覆冰量的变化规律。
     研究了接触网在线防冰方法及其电气参量关联机制,提出了基于配对SVG (Static Var Generator)的无功潮流大电流融冰法,据此构建了基于SVG技术的接触网在线防冰方案,分析直供(包括末端并联运行)和AT(包括末端并联运行)两种供电方式下防冰电流和机车负荷电流的综合分布,推导电流分布与供电臂末端电压的关系式,并基于牵引网网压要求,给出不同工况下允许的防冰电流动态范围。
     基于水滴碰撞率、热平衡方程和导线表面覆冰增长速度、接触网电流分布及电流与电压之间的关系,研究了接触网在线防冰电流的动态决策和防冰系统的控制,提出并验证了“以覆冰强度为控制目标的防冰开关决策方法”和“以接触网温度为控制目标的防冰电流决策方法”,分析实际运行工况下在线防冰过程中的接触网纵向温度、横向温度场,验证基于SVG在线防冰方案的有效性。
In China, the total mileage of electrified railway is growing rapidly, and passenger dedicated lines and heavy haul railways are under large-scale construction. Some newly built electrified railway lines maybe cross the cold, high humidity and high altitude areas where icing disasters occurred more easily. Problems caused by catenary icing have attracted widespread attention at all levels. Both eliminating icing and guaranteeing traction power supply should be achieved, therefore on-line anti-icing technology for catenary will be one of the key technologies to guarantee railway safe operation, on which basic theoretical research need be carried out urgently.
     In this paper, some key basic factors for catenary icing caused by air moisture were studied. Airflow computation modules for contact wire, messenger wire and complete set of droppers were built on the basis of fluid mechanics and thermodynamics. Then water droplet trajectory was calculated by water droplets force analysis and the equation of motion, thereby enabling an evaluation of the local collision efficiency and the overall collision efficiency. These will be used for ice acceleration studies and the dynamic thermodynamic analysis.
     The heat balance process and accretion mechanism of ice coating on catenary were analyzed, and the heat balance equation was built after the velocity distribution of the airflow field around catenary and the collision efficiency of water droplet were obtained. The critical anti-icing current for catenary in various operation modes were calculated by means of deriving heat balance equation and analyzing Nu distribution. Based on simulating the icing process in dry growth and wet growth, the icing amount variation was studied.
     Electrical parameters were calculated in catenary online anti-icing process, in which reactive absorption and sending generated large current. An on-line anti-icing technology used static var generator (SVG) for catenary along railway was proposed. The comprehensive distribution of the anti-icing current and load current were analyzed in direct power supply system (including parallel operating in the end) and AT power supply system (including parallel operating in the end). Based on the voltage limitation of traction power net, the dynamic range of anti-icing currents were calculated under different operating conditions.
     The key processes that have influence on ice acceleration rate such as collision efficiency of water droplet, heat balance equation have been analyzed. The relationship of catenary current distribution and voltage of traction power net also has been obtained. These were used for the dynamic control of the catenary anti-icing current and anti-icing system. Two decision-making modes which treat catenary temperature and iced strength as control objective were proposed. The icing amount variation, catenary temperature fields changing with time and distances to substation were calculated when online de-icing system running. Those results and analysis indicate the correctness and feasibility of the on-line anti-icing method using SVG.
引文
[1]李群湛,贺建闽.牵引供电系统分析[M],成都:西南交通大学出版社,2007.
    [2]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J],铁道学报,2010,32(4):119-124.
    [3]李成榕.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22.
    [4]张文亮,于永清,宿志一等.湖南电网2008年冰雪灾害调研分析[J].电网技术.2008,32(8):1-5.
    [5]陆佳政.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19
    [6]王国梁.接触网融冰防冰问题的分析研究[J].铁道工程学报,2009(8):93-95.
    [7]张安洪.雪灾对接触网覆冰及其影响的探讨[J].电气化铁道,2008(3):32-33.
    [8]甄磊.浅析接触网覆冰现象的危害以及应对措施[J].电气化铁道,2011(6):30-32.
    [9]米隆,赖远明.高原冻土铁路路基温度特性的有限元分析,铁道学报,2005,25(2):62-67
    [10]M. Ikeda, K. Yoshida, M. Suzuki. A Flow Control Technique Utilizing Air Blowing to Modify the Aerodynamic Characteristics of Pantograph for High-speed Train [J]. Journal of Mechanical Systems for Transportation and Logistics,2008,1(3):264-271.
    [11]Y.C.Lin, C.L.Lin, C.C.Yang. Robust Active Vibration Control for Rail Vehicle Pantograph [J]. IEEE Transactions on Vehicular Technology,2007,56(4):1994-2004.
    [12]W. Baldauf, W. Behr, C. Heine. Actively Controlled Acoustically Optimized Single Arm Pantograph [J]. Elektrische Bahnen,2002,100(5):182-188.
    [13]J. Deml, W. Baldauf. Test Bench for Examinations of The Pantograph-Catenary Interaction [J]. Elektrische Bahnen,2002,100(5):178-181.
    [14]A. Collina, A. Facchininetti, F. Fossati. Hardware in The Loop Testing for Identification and Control Application on High Speed Pantographs [J]. Shock and Vibration,2004,11(3-4): 445-456.
    [15]A. Collina, S. Melzi, A. Facchinetti. On The Prediction of Wear of Contact Wire in OHE Lines: A Proposed Model. Vehicle System Dynamics,2003,37(5):579-592.
    [16]B. Allotta. Design and Experimental Results of An Active Suspension System for A High-speed Pantograph [J]. IEEE Transaction on Mechatronics,2008,13(5):548-557.
    [17]景德炎,陈学光,肖志强.中国电气化铁道发展的回顾与展望[J].电气化铁道.2005,(S):5-722.
    [18]冯金柱.中国电气化铁道45年的建设历程与今后15年的发展前景[J].电气化铁道.2005,(S):8-14.
    [19]李世斌.世界高速铁路发展的动向.铁道技术监督[J], 2007,35(1):35-37.
    [20]汪波.基于周期运行图的京津城际铁路列车开行方案研究[J],铁道学报,2007,29(2):8-13
    [21]李宏.国外重载铁路综述[J].铁道工程学报.2000,(4):32-34.
    [22]梁成谷.我国铁路重载运输再创世界奇迹——大秦铁路年运量突破4亿吨[J].铁道运输与经济.2011,33(1)
    [23]H. Lee, G. Kim, S. Oh. Fault Analysis of Korean AC Electric Railway System [J]. Electric Power Systems Research,2006,76(5):317-326.
    [24]D. Nakagava. Reevaluation of Japanese High-speed Rail Construction:Recent Situation of The North Cocorridor Shinkansen and Its Way to Completion [J]. Transportpolicy,2007,14(2): 150-164.
    [25]吴积钦.受电弓和接触网系统[M].成都:西南交通大学出版社,2010.
    [26]董昭德.接触网[M].北京:中国铁道出版社,2010.
    [27]B. Allotta, L. Pugi, F. Bartolini. Design and Experimental Results of An Active Suspension System for A High-speed Pantograph [J]. IEEE Transactions on Mechatronics,2008,13(5): 548-557.
    [28]S. Midya, D. Bormann, Z. Mazloom, et al. Conducted and Radiated Emission From Pantograph Arcing in AC Traction System[C]. IEEE Power and Energy Society General Meeting, Calgary, Canada,2009:1-8
    [29]范泽孟.中国气温与降水的时空变化趋势分析[J].地球信息科学学报.2011,23(4):527-533.
    [30]范泽孟.中国气温未来情景的降尺度模拟[J].地理研究.2011,30(11):2043-2051.
    [31]W. H. Zhang, Y. L. Yi, G. M. Mei. Evaluation of The Coupled Dynamical Response of a Pantograph-catenary System Contact Force and Stresses [J]. Vehicle System Dynamics,2006, 44(8):645-658.
    [32]周宁,张卫华.基于直接积分法的弓网耦合系统动态性能仿真分析[J].中国铁道科学,2008,29(6): 71-76.
    [33]周宁,张卫华.受电弓等效模型参数识别及动态性能测试[J].西南交通大学学报,2011,4(3):398.-403.
    [34]梅桂明.受电弓—接触网系统动力学研究[D].成都:西南交通大学博士学位论文,2010.
    [35]周宁,张卫华.基于受电弓弹性体模型的弓网动力学分析[J].铁道学报,2009,31(6):26-32.
    [36]吴积钦,钱清泉.受电弓与接触网系统电接触特性[J].中国铁道科学,2008,29(3):106-109.
    [37]吴积钦,钱清泉.弓网系统电弧侵蚀接触网时的热分析[J].铁道学报,2008,30(3):31-34.
    [38]Y. J. Liu, G. W. Chang, H. M. Huang. Mayr's Equation-based Model for Pantograph Arc of High-speed Railway Traction System [J]. IEEE Transaction on Power Delivery,2010,25(3): 2025-2027.
    [39]王万岗.高速铁路弓网电弧试验系统[J].铁道学报,2012,34(4):23-27.
    [40]B. Wang. Pantograph arc's Energy Characters under Various Load[C].2011 57th IEEE Holm Conference on Electrical Contacts, Minneapolis, Minnesota,2011:244-249.
    [41]T. Z. Li. Pantograph Arcing's Impact on Locomotive Equipment [C].2011 57th IEEE Holm Conference on Electrical Contacts, Minneapolis, Minnesota,2011:249-254.
    [42]李群湛.牵引变电所供电分析及综合补偿技术[M],北京:中国铁道出版社,2006.
    [43]李群湛,贺建闽,电气化铁路电能质量及其控制技术[M],成都:西南交通大学出版社,2012.
    [44]李群湛,连级三,高仕斌.高速铁路电气化工程[M].成都:西南交通大学出版社.2006.
    [45]S. Midya, D. Bormann, R. Thottappillil. DC Component from Pantograph Arcing in AC Traction System-influencing Parameters, Impact, and Mitigation Techniques [J]. IEEE Transactions on Electromagnetic Compatibility,2010,53(1):18-27.
    [46]S. Midya, D. Bormann, A. Larsson. Understanding Pantograph Arcing in Electrified Railways-influence of Various Parameters[C]. IEEE International Symposium on Electromagnetic Compatibility, Detroit, Michigan,2008:1-6.
    [47]S. Midya, D. Bormann, T. Schiitte. Pantograph Arcing in Electrified Railways—Mechanism and Influence of Various Parameters—Part Ⅰ:with DC Traction Power Supply [J]. IEEE Transactions on Power Delivery,2009,24(4):1931-1939.
    [48]S. Midya, D. Bormann, T. Schiitte. Pantograph Arcing in Electrified Railways—Mechanism and Influence of Various Parameters—Part Ⅱ:with AC Traction Power Supply[J]. IEEE Transactions on Power Delivery,2009,24(4):1940-1950.
    [49]A. Facchinetti, M. Mauri. Hardware-in-the-loop Overhead Line Emulator for Active Pantograph Testing [J]. IEEE Transactions on Industrial Electronics,2009,56(10):4071-4078.
    [50]O.Bruno, A. Landi, M. Papi, et al. Phototube Sensor for Monitoring The Quality of Current Collection on Overhead Electrified Railways[C]. Proceeding of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2011,215(3):231-241.
    [51]S. G. Jia, P. Liu, F. Z. Ren. Sliding Wear Behavior of Copper Alloy Contact Wire Against Copper—based Strip for High-speed Electrified Railways [J]. Wear,2007,262(7-8):772-777.
    [52]G.X.Chen, F.X.Li, L.Dong. Friction and Wear Behavior of Stainless Steel Rubbing Against Copperimpregnated Metalized Carbon [J]. Tribology International,2009,42(6):934-939.
    [53]L. Dong, G. X. Chen, M. H. Zhu. Wear Mechanism of Aluminum-stainless Steel Composite Conductor Rail Sliding Against Collector Shoe with Electric Current [J]. Wear,2007,263(1-6): 598-603.
    [54]A. Bouchoucha, S. Chekroud, D. Paulmier. Influence of The Electrical Sliding Speed on Friction and Wear processes in An Electrical Contact Copper-stainless Steel [J]. Applied Surface Science, 2004,223(4):330-342.
    [55]郭凤仪,马立同,陈忠华等.不同载流条件下滑动电接触特性[J],电工技术学报,2009,24(12):18-23.
    [56]郭凤仪,任志玲,马同立等.滑动电接触磨损过程变化的实验研究[J].电工技术学报,2010,25(10):24-29.
    [57]T. Ding, G. X. Chen. Effect of Arc Discharge on Friction and Wear Behaviors of Stainless Steel/Copper-impregnated Metalized Carbon Couple under Electric Current [J]. Advanced Materials Research,2010,150-151:1364-1368.
    [58]T. Ding, G. X. Chen. Friction and Wear Behaviors of Pure Carbon Strip Sliding Against Copper Contact Line at High-speed in AC Electric Field [J]. Tribology International,2011,44(4): 437-444.
    [59]T. Ding, G.X.Chen, J. Bu, Effect of Temperature and Arc Discharge on Friction and Wear Behaviors of Carbon Strip/copper Contact Wire in Pantograph-catenary Systems [J]. Wear,2011, 271(9-10):1629-1636.
    [60]丁涛,陈光雄,卜俊.载流摩擦磨损中不同放电现象的机理研究[J].中国铁道科学,2009,30(5):83-87.
    [61]X.L. Jiang, Y.F. Chao, Z.J. Zhang. DC Flashover Performance and Effect of Sheds Configuration on Polluted and Ice-covered Composite Insulators at Low Atmospheric Pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(1):97-105.
    [62]X.Chen. Modeling of Electrical Arc on Polluted Ice Surface [D]. Canada:PH.D Dissertation, 2000.
    [63]X.L. Jiang, J.Zhao. Survey and Analysis of Ice Accidents of Early 2008 in Southern China[C]. IWAIS XIII, Andermatt, September 8 to 11,2009
    [64]M.L.Lu, N.Popplewell, A.H.Shan. Freezing Rain Simulations for Fixed, Unheated Conductor Samples. Journal of Applied Meteorology.2000,39,2385-2486
    [65]Y. Sakamoto. Snow accretion on overhead wires [J]. Phil. Trans. R. Soc.2000,358(1776): 2941-2970
    [66]R. A. Da Silveira, C. R. Maliska, D. A. Estivam, et al. Evaluation of Collection Efficiency Methods for Icing Analysis [C].17 th International Congress of Mechanical Engineering,2003: 10-14
    [67]M. Farzaneh, Atmospheric Icing of Power Networks [M]. Springer,2008.
    [68]F.Morency. Fensap-ice:A Comprehensive 3D Simulation System for In-flight Icing [R]. AIAA-2001-2566,2001.
    [69]M.Farzaneh, K.Savadjiev. Statistical Analysis of Field Data for Precipitation Icing Accretion on Overhead Power Lines[J]. IEEE Transactions on Power Delivery,2005,20(21):1080-1087.
    [70]E.J. Goodwin. Predicting Ice and Snow Loads for Transmission Lines [C]. Proceedings. First IWAIS,1983,267-273.
    [71]Y.H.Cao, Q. Zhang. Numerical Simulation of Rime Ice Accretions on An Aerofoil Using An Eulerian Method[J]. The Aeronautical Journal,2008,12(11):243-249.
    [72]S.Y.Sadov, P.N.Shivakumar, D.Firsov. Mathematical Model of Ice Melting on Transmission Lines [J]. J Math Model Algor,2007,6(1):273-286.
    [73]T.G.Myers, J.P.F.Charpin, S.J.Chaman. A mathematical Model for Atmospheric Ice Accretion and Water Flow on A Cold Surface [J]. International Journal of Heat and Mass Transfer 2004,47(2): 5483-5500.
    [74]陆佳政.500 kV输电塔线覆冰有限元计算[J].高电压技术.2007,33(10):167-169.
    [75]P. Fu. Two-dimensional Modeling of the Ice Accretion Process on Transmission Line Wires and Conductors [J], Cold Regions Science and Technology.2006(46):132-146.
    [76]P. Fu. Simulation of the Ice Aaccretion process on A Transmission Line Cable with Differential Twisting [J]. Canadian Civil Engineering,2007:147-155.
    [77]P. Fu. Modeling and Simulation of The Ice Accretion Process on Fixed or Rotating Cylindrical Bbjects by The Boundary Element Method. University of Quebec:PH.D Dissertation,2004
    [78]T.W.Brakel, J.P.F.Charpin, T.G.Myers [D]. One-dimensional Ice Growth Due to Incoming Super Cooled Droplets Impacting on A Thin Conducting Substrate [J]. International Journal of Heat and Mass Transfer,2007,50:1694-1705
    [79]L.Makkonen, Models for The Growth of Rime, Glaze, Icicles and Wet Snow on Structures [J], Phil. Trans. R. Soc. London.2000.358,2913-2939.
    [80]T.L. Frank. Effects of Ice Accretions on Aircraft Aerodynamics[J]. Progress in Arrospace Sciences,2001,37(8):669-767.
    [81]D. Knezevici, R. J. Kind, and M. M. Oleskiw. Determination of Median Volume Diameter and Liquid Water Content by Multiple Rotating Cylinder[C].43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2005.
    [82]蒋兴良,申强,舒立春等.利用旋转多圆柱导体覆冰质量预测湿增长过程覆冰参数[J]. 高电压技术,2009,35(12):3071-3076.
    [83]孙才新,蒋兴良.导线覆冰及其干湿增长临界条件分析.中国电机工程学报,2003,23(3)
    [84]IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors[S], IEEE Std 738TM-2006,2007
    [85]G.F.Naterer. Coupled Liquid Film and Solidified Layer Growth with Impinging Supercooled Droplets and Joule Heating [J]. International Journal of Heat and Fluid Flow,2003,24(2): 223-235.
    [86]G.Fortin, J.L.Laforte, A.Ilinca. Heat and Mass Transfer during Ice Accretion on Aircraft Wings with An Improved Roughness Model [J]. International Journal of Thermal Sciences,2006,4(5): 595-606.
    [87]S.H.Fan, X.L. Jiang. DC Ice-melting Model for Wet-Growth Icing Conductor and Its Experimental Investigation [J].2010,,53(12):3248-3257.
    [88]徐青松,季洪献,王孟龙.输电线路弧垂的实时监测[J].高电压技术,2007,33(7):206-209.
    [89]X.B. Huang, J.F. Li. A New On-line Monitoring System of Transmission Line Icing and Snowing [C]. IW AIS XIII, Andermatt, September,2009
    [90]W.Y. Li, C.C. Cheng. Investigation of Strain Transmission of Surface-boned FBGs Used as Strain Sensors [J]. Sensors and Actuators A:Physical,2009,149(2):201-207
    [91]阳林,郝艳捧,架空输电线路在线监测覆冰力学模型[J],中国电机工程学报,2010,(19):100-15
    [92]马国明,李成榕,架空输电线路覆冰监测光线光栅拉力倾角传感器的研制,中国电机工程学报,2010,30(34):132-138
    [93]马国明,李成榕,架空输电线路覆冰监测光线光栅风速传感器的研制,中国电机工程学报,2010,31(13): 128-134
    [94]X.L. Jiang, S.H. Fan. Simulation and Experimental Investigation of DC Ice-Melting Process on an Iced Conductor [J]. IEEE Transactions on Power Delivery,2010,25(2):919-929.
    [95]M. Farzaneh, I. Fofana. Effects of Temperature and Impurities on The DC Conductivity of Snow[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(1):185-193.
    [96]饶宏,李立涅,黎小林.南方电网直流融冰技术研究[J].南方电网技术,2008,2(2):7-12.
    [97]蒋兴良,王大兴,范松海.直流融冰过程中覆冰导线表面最高温度试验研究[J].高电压技术,2009,35(11):2796-2799.
    [98]常浩,石岩,殷威扬.交直流线路融冰技术研究[J].电网技术,2008,32(5):1-6.
    [99]李再华,白晓民,周子冠.电网覆冰防治方法和研究进展[J].电网技术,2008,32(4):7-13.
    [100]蒋兴良.憎水性涂料在输电线路防冰中的应用前景[J].南方电网技术,2008,2(2):13-18.
    [101]顾明,马文勇,全涌.两种典型覆冰导线气动力特性及稳定性分析[J].同济大学学报(自然科学版),2009,37(10):1328-1332.
    [102]K. Savadjiev, M. Farzaneh. Modeling of Icing and Ice Shedding on Overhead Power Lines Based on Statistical Analysis of Meteorological Data [J]. IEEE Transactions on Power Delivery,2004, 19(2):715-721
    [103]I.Imai. Studies on Ice Accretion [J]. Res.Snow Ice,1953,1:35-44
    [104]R.W. Lenhard. An Indirect Method for Estimating The Weight of Glaze on Wires [J]. Bull.Am. Meteor.Soc,1955,36:1-5.
    [105]P.M. Chaine. New Approach to Radial Ice Thickness Concept Applied to Bundle-like Conductors, Industrial Meteorology—Study Ⅳ. Environment Canada, Toronto,1974.
    [106]Anon. Climatological Ice Accretion Modelling. Meteorological and Environmental Planning and Ontario Hydro. Canadian Climate Centre Report No.84-10, Atmospheric Environment Service, Downsview,1984,195
    [107]E.J.Goodwin. Predicting Ice and Snow Loads for Transmission Line Design. Proc.of 1st Int.Workshop, Atmospheric Icing of Structures, CRREL Special Report 83-17.Cold Regions Research and Engineering Laboratory, Hanover, NH,1983:267-273.
    [108]E.P.Lozowski. The Icing of An Unheated, Non-rotating Cylinder:Part Ⅰ:A Simulation Model [J]. J.Climate Appl.Meteor,1983,22:2053-2062.
    [109]L. Makkonen. A Model of Icicle Growth [J]. J.Glaciol.1988,34:64-70.
    [110]汤文斌.模拟大气环境下铁路接触网覆冰融冰实验研究[D],长沙理工大学硕士学位论文.长沙,2009
    [111]P. Zsolt. Assessment of the Current Intensity for Preventing Ice Accretion on Overhead Conductors. IEEE Transaction on Power Delivery,2007,22(1):565-574
    [112]M. Huneault, C. Langheit, J. Caron. Combined Models for Glaze Ice Accretion and De-icing of Current-carrying Electrical Conductors [J]. IEEE Transactions on Power Delivery,2005,20(2): 1611-1616.
    [113]H. Maurice. A Dynamic Programming Methodology to Develop De-Icing Strategies During Ice Storms by Channeling Load Currents in Transmission Networks, IEEE Transactions on power delivery,2005,20(2):1604-1610
    [114]I.P.Mazin, A.V.Korolev, A.Heymsfield. Thermodynamics of Icing Cylinder forMeasurements of Liquid Water Content in Supercooled Clouds [J]. Journal of Atmospheric and Oceanic Technology,2001,18:543-558.
    [115]M.C.Kim, C.K.Choi. Analysis of the onset of buoyancy-driven convection in a water layer formed by ice melting from below[J]. International Journal of Heat and Mass Transfer,2008,51(21-22): 5097-5101.
    [116]蒋兴良,范松海,胡建林.输电线路直流短路融冰的临界电流分析[J].中国电机工程学报,2010,30(1):111-116.
    [117]吴端华,何东.输电线路直流融冰的临界电流和融冰时间分析[J].电力系统及其自动化学报.2010,22(5):85-91.
    [118]范松海.输电线路短路电流融冰过程与模型研究[D].重庆大学,2010.
    [119]SergeJourden.魁北克水电公司高压电网Levis变电站的融冰装置[J].南方电网技术.2009,3(1):1-6.
    [120]谢彬,洪文国,熊志荣.500 kV复兴变电站固定式直流融冰兼SVC试点工程的设计[J].电网技术,2009,33(18):182-185.
    [121]孙栩,王明新.交流输电线路大容量固定式直流融冰装置的设计方案[J].电力自动化设备,2010,30(12):102-105.
    [122]姚致清,刘涛.直流融冰技术的研究及应用[J].电力系统保护与控制.2010,38(21):57-62.
    [123]许树楷,杨煜.南方电网直流融冰方案仿真研究[J].南方电网技术.2008,2(2):31-36.
    [124]宫衍圣,李会杰,刘和云等.一种电气化铁路接触网的融冰方法及其融冰系统[P].中华人民共和国知识产权局.2009.专利号:200910023412.6
    [125]李晋,李会杰,王祖峰等.一种电气化铁路接触网的直流融冰系统[P].中华人民共和国知识产权局.2009.专利号:200920033998.X.
    [126]李群湛,易东,舒泽亮等.一种电气化铁道接触网工频在线防冰融冰方法[P].中华人民共和国知识产权局,2011,专利号:201110141921.6.
    [127]李群湛,易东,舒泽亮等.一种电力输电线路工频在线防冰融冰方法[P].中华人民共和国知识产权局,2011,专利号:201110129747.3.
    [128]郭蕾,李群湛,解绍锋等.交-直-交高速动车组机车的谐波模型及仿真分析.系统仿真学报.2012,24(5):943-946.
    [129]L. Guo, Q.Z. Li. Harmonics Analysis for High-speed Electric Traction System [C]. APPEEC 2009. Wuhan, March,2009.
    [130]林建忠,阮晓东,陈邦国.流体力学[M].北京:清华大学出版社,2005
    [131]G.I.Taylor. Notes on Possible Equipment and Technique for Experiments on Icing on Aircraft [R]. British Aeronautical Research Council,R&G,No.2024,Jan.1940.
    [132]I. Langmuir. A Mathematical Investigation of Water Droplet Trajectories [R]. Army Air Force Technical Report No.5418,1946
    [133]J.R. Welty. Fundamentals of Momentum, Heat, and Mass Transfer.4 ed. New York:John Wiley and Sons Inc.,2001.
    [134]V.T.Morgan. The Overall Convective Heat Transfer from Smooth Circular Cylinders[J]. Advances in Heat Transfer.1975,11(2):120-127.
    [135]姜世中,气象学与气候学[M],北京:科学出版社,2010.
    [136]电气化铁道用铜及铜合金接触线[S],中华人民共和国铁道行业标准,TB/T2809-2005,2005.
    [137]Z.L.Shu, S.F. Xie, Q.Z. Li. Single-Phase Back-To-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System [J]. IEEE Transactions on Power Electronics,2011,26(2):334-343.
    [138]邱大强,李群湛,周福林.基于背靠背SVG电铁电能质量综合治理研究[J].电力自动化设备,2010,30(6):36-39.
    [139]周福林,李群湛,解绍锋等. 无锁相环单相无功谐波电流实时检测方法[J].电工技术学报,2010,25(1): 178-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700