用户名: 密码: 验证码:
UV辐照辅助下聚合物固载引发剂的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以P(S-DVB)微球、P(S-DVB)磺酸钠微球和聚丙烯无纺布为基体材料,通过UV辐照接枝反应制备了P(S-DVB)丙烯酸接枝微球,P(S-DVB)磺酸钠丙烯酸接枝微球和丙烯酸接枝聚丙烯无纺布,探讨了浸泡液配方、辐照时间及辐照距离等条件对辐照接枝聚合反应的影响。得出P(S DVB)磺酸钠微球UV辐照接枝反应体系的最佳浸泡液配比为:分散剂和溶剂体积比为1:1,丙烯酸浓度为50%,引发剂A浓度为25 g/L,引发剂B浓度为0.75 g/L,在G灯辐照下,以d_3距离辐照接枝反应t_3,最大接枝率可达68.3%;P(S-DVB)微球UV辐照接枝反应体系的最佳浸泡液配比为:分散剂和溶剂比例为3:2,丙烯酸浓度为50%,引发剂A浓度为25 g/L,引发剂B浓度为0.75g/L,在G灯辐照下,以d_2距离辐照接枝反应t_2,最大接枝率可达52.6%;PP无纺布UV辐照接枝反应体系的最佳浸泡液配比为:分散剂和溶剂比例为1:1,丙烯酸浓度为50%,引发剂A浓度为25 g/L,引发剂B浓度为0.50 g/L,在H-1汞灯辐照下,以四层堆叠的形式,d_2辐照距离接枝反应t_3,最大平均接枝率可达1321%。在双氧水和过酸化促进剂的混合液中,将三类UV辐照接枝产物上所引入的羧基转化为过羧基,使其具有进一步引发聚合反应的活性。比较了过酸化促进剂用量对固载过酸含量的影响,结果表明双氧水和过酸化促进剂体积比为25:18时,所得固载过酸含量最高。对三类固载过酸引发剂引发单体的接枝反应做了研究,比较了丙烯酸、丙烯酰胺及丙烯酸/丙烯酰胺混合单体的接枝聚合反应。
     本文重点研究了PP无纺布固载过酸氧化还原体系引发丙烯酰胺的接枝聚合反应,探讨了反应温度、反应时间、单体浓度、固载过酸含量等因素对接枝聚合反应的影响。对其反应机理进行了深入探讨,得出接枝聚合反应的动力学方程为:R_g=K[M][RCOOOH]~(1/2),接枝聚合反应表观活化能E=8.103KJ/mol,在单体浓度或固载过酸浓度恒定是,接枝聚合反应速率常数分别为K=5.100×10~(-3)L/mol·s及K'=5.125×10~(-3)L/mol·s。
     本文对三种基体材料的接枝产物进行了羧基含量测定、傅立叶变换红外光谱(FTIR)和扫描电镜(SEM)分析,结果表明聚合物固载过酸引发接枝聚合反应成功地在各基体材料表面引入了预定单体的聚合物长链,引起基体材料表面形貌发生了较大改变。
     本文对PP无纺布固载过酸引发的接枝产物在不同温度、盐及pH值的水溶液中的溶胀性能进行了研究,各接枝产物的溶胀比对温度的变化表现出一定的响应性(呈热缩性);其溶胀比随盐及pH值的改变有明显的变化,随盐及pH值的循环改变时,表现出溶胀-收缩-溶胀的规律性变化,各接枝产物尤其是丙烯酸的接枝产物其溶胀比对盐和pH值的响应性尤为明显。
     本文还对三种基体材料的接枝产物对重金属及亚甲基蓝的吸附性能进行了研究,发现丙烯酸单体的接枝产物对Cu~(2+)和Pb~(2+)有较好的吸附性。吸附性最好的PP无纺布固载过酸引发丙烯酸接枝产物对金属离子的最大吸附容量分别达到99.6mg(Cu~(2+))/g、343.8mg(Pb~(2+))/g,而PP无纺布固载过酸引发丙烯酸/丙烯酰胺混合单体接枝产物对亚甲基蓝的吸附效果最佳,最大吸附容量可达1185mg(亚甲基蓝)/g,吸附反应速率遵循Ho准二级吸附速率方程,表观吸附活化能Ea=40.24kJ/mol;其等温吸附符合Langmuir方程,吸附过程为化学吸附的吸热吸附。
In the current paper,polyacrylic acid was grafted onto backbone of several polymer substrate,such as P(S-DVB)microspheres,P(S-DVB)sodium sulfonate mierospheres and polypropylene non-woven fabrics,by the surface grafting polymerization induced by UV radiation.Several effect factors of the radiation grafting were investigated,including formulation of soaking solution,time and distance of the radiation.The optimum condition could be given as follow:①ratio of dispersant and solvent 1/1,concentration of acrylic acid 50%,concentration of initiator A 25 g/L,concentration of initiator B 0.75 g/L, radiated by using 700W metal halide lamp(radiation distance 20cm,and radiation time 1.5h), the maximum grafting rate for the P(S-DVB)microspheres could approach 68.3%;②ratio of dispersant and solvent 3/2,concentration of acrylic acid 50%,concentration of initiator A 25 g/L,concentration of initiator B 0.75 g/L,radiated by using 700W metal halide lamp (radiation distance 15cm,and radiation time 1h),the maximum grafting rate for the sodium sulfonate microspheres could approach 52.6%;③ratio of dispersant and solvent 1/1, concentration of acrylic acid 50%,concentration of initiator A 25 g/L,concentration of initiator B 0.5 g/L,radiated by using 500W mercury lamp(radiation distance 15cm,and radiation time 1.5h),the maximum grafting rate for the polypropylene non-woven fabrics could approach 1321%,the grafted polymers obtained by UV radiation could be changed to polymer supported peroxy acid in mixture of hydrogen peroxide and peroxy acid accelerator,as initiators for the subsequent grafting polymerization.The results showed that the concentration of polymer-supported peroxyacid could approach maximum value when the ratio of hydrogen peroxide and accelerator was 25:18.We also research the grafting polymerization of several monomers,such as acrylic acid(AA),acrylamide(AM)and mixture of AA and AM,initiated by polymer-supported initiators synthesized in preceding step.
     The polymerization of acrylic acid and acrylamide grafted onto polypropylene non-woven fabrics by using the polymer-supported peroxyacid redox system as an initiator were studied emphatically.The influences of reaction time,reaction temperature, concentration of monomer and polymer-supported peroxyacid on graft polymerization were discussed in depth as well.Finally,the polymerization kinetics of acrylamide grafted onto polymer was also discussed,the graft polymerization rate could be expressed as R_g= K[M][RCOOOH]~(1/2)in the early stage of the reaction,the apparent activation energy of graft polymerization is 8.103KJ/mol,the rate costant of graft polymerization is 5.100×10~-~3L/mol·s and 5.125×10~(-3)L/mol·s when the concentration of monomer and polymer supported preoxyacid mantainning a constant,respectively.
     The content of carboxyl group were determined for all the resultant grafted polymer, and some of them were characterized by using FTIR and SEM techniques.The results revealed that the predetermined monomers were grafted onto the corresponding polymer substrate,and causing more changes of surface morphlogy in the substrates.
     Swelling behaviors of resultant grafted polymers were investigated in different aqueous solution by varying its temperature、pH value and type of dissolved salts,the swelling ratios of the grafted polymers changed with solution temperature,followed the laws of pyrocondensation.And all the grafted polymers,especially that of acrylic acid,had obvious response to the changes of pH value and type of salts in solution.
     The adsorption of heavy metalions and methylene blue(MB)by grafted polymer was also studied in this work.Some of resultant graft polymers adsorb heavy metal and methylene quickly,the resultant polymer for the polypropylene non-woven fabrics grafted with acrylic acid on its backbone have the best effect in adsorption of Cu~(2+)and Pb~(2+),the maximum adsorbing capacity is 99.6mg(Cu~(2+))/g and 343.8mg(Pb~(2+))/g,respectively.The polypropylene non-woven fabric grafted with AA/AM mixture have the best adsorbing effect of MB,the maximum adsorbing capacity is 1185mg(MB)/g,the adsorption speed rate followed the laws of the second order kinetics model of Ho,apparent activation energy of adsorption is 40.24KJ/mol,the isothermal adsorption followed the isothermal adsorption equations of langmuir,the adsorption process was an endothermic chemisorption.
引文
[1]K.Doris,H.Hartwig.Polymers for Biomedical Applications:Improvement of the Interface Compatibility[J].Advance in Polymer Science,1999,149(1):1-57.
    [2]Zdrahala Richard J.,Zdrahala Ivanka J.Biomedical Applications of Polyurethanes:A Review of Past Promises,Present Realities,and a Vibrant Future[J].journal of Biomaterials Applications 1999,14(1):67-90.
    [3]马志领,赵文革.磷酸酯酰氯表面接枝聚乙烯醇的阻燃改性研究[J].高分子材料科学与工程,2002,18(1):44-46.
    [4]B.Gupta,G.G.Scherer.Proton Exchange Membranes by Radiation-induced Graft Copolymerization of Monomersin to Teflon-FEP Film[J].Chimia,1994,48:127-137.
    [5]S.M.Gawish,A.Katouch,A.M.El-Naggar,et al.Gamma preirradiation and grafting of 2N-morpholino ethyl methacrylate onto polypropylene fabric[J].Journal of Applied Polymer science,1995,57(1):45-53.
    [6]B.N.Mishra,D.S.Sood,I.K.Mehta et al.Graftingonto polypropylene Ⅰ.Effect of solvents in gamma radiation induced graft copolymerization of poly(acrylonitrile)[J].Journal of Polymer Science,1985,23(6):1749-1757.
    [7]姚占海,杨慧丽,余俊.聚丙烯胺肟螯合纤维的辐射合成及对金属离子的吸附研究[J].辐射研究与辐射工艺学报,1997,15(3):134-138.
    [8]V.Michel,C.Marzin,G.Tarrago,J.Durand New membranes bearing pyridinic ligands by plasma graft polymerization[J].Journal of Applied Polymer Science,1998,70(2):359-366.
    [9]A.Galia,R.D.Gregorio,G.Spadaro et al.Grafting of Maleic Anhydride onto Isotactic Polypropylene in the Presence of Supercritical Carbon Dioxide as a Solvent and Swelling Fluid[J].Macromolecules,2004, 37(12):4580-4589.
    [10]B.R.Chapman,C.R.Gochanour,and M.E.Paulaitis CO_2-Enhanced Diffusion of Azobenzene in Glassy Polystyrene near the Glass Transition[J]Macromolecules,1996,29(17):5635-5694.
    [11]王晨晖,王安锋,车波等.甲基丙烯酸聚乙二醇单甲醚酯在聚(醚-氨酯)表面的臭氧化接枝[J].高分子学报.1997,1:114-118.
    [12]C.Nojiri,K.Uchida,M.Waki et al.On the relationship brtween blood compatibility and surface physico-chemical properties of nonthrombogenic polymers[J].Asaio journal 1995,41(3):7-12.
    [13]P.Mehisa,B.Dogan.Effect of electrostatic repulsive force on the permeate flux and flux modeling in the microfiltration of negatively charged microspheres[J].Polymer Testing 2001,20(2):209-216
    [14]G.Oster,O.Shibata Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light[J].Journal of Polymer Science,1957,26(113):233-234.
    [15]李善君,纪才圭.高分子光化学原理及应用[M].上海:复旦大学出版社,1993.
    [16]杨万泰,尹梅贞.表面光接枝原理方法及应用前景[J].高分子通报,1999,44(1):60一65.
    [17]Eduard A.Kulik,Maria I Ivanchenko,Koichi Kato.et al.Peroxide Generation and Decompositon on Polymer Surface[J].Journal of Polymer Science,Part A,1995,33:323-330.
    [18]Mathias Ulbricht,Heike Matuschewski,Annett Oechel,et al.Graft Polymerization Surface Modification for the Preparation of Hydrophilic and Low protein adsorbing Ultrafiltration Membranes[J].Journal of Member Science,1996,115:31-47.
    [19]M Thomas,F Ray,G Sarkar.Heterogeneous catalyst obtained by grafti ng matellocene complexes onto mesoporous silica[J].Nature,1995,378:159-165.
    [20]ZaiHui Fu,JunHua Chen,DuLin Yin.Highly effectively Cu-HMS catalyst for hydroxylation of phenol[J].Catal Lett,2000,66(1):105-110.
    [21]G.J.Kim,Shin J.H.The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetricepoxidation [J].Tetrahedron Lett,1999,40:6827-6831.
    [22]伏再辉,陈军华,陈远道等.含过渡金属的HMS的合成和催化性能[J].物理化学学报,2000,16(5):410-415.
    [23]Merrifield R B.Solid Phase Peptide Synthesis.Ⅰ.The Synthesis of a Tetrapeptide[J].J Am Chem Soc,1963,85:2149-2152.
    [24]Canali L.,Deleuze H.,Gibsen C.L.Sherrington D C.Remarkable matrix effect in polymer-supported Jacobsens alkene epoxidation catalysts [J].Chem.Commun,1998,2561-2567.
    [25]Angelino M D,Laibinis P E.Synthesis and characterization of polyme r-supported salen ligand for enantioselective epoxidation[J].J.Poly m.Sci.,1999,37:7581-7586.
    [26]Song C.E.,Roh E.J.,YU B.M.,Chi D Y.Heterogenous asymmetric epoxidation of alkenes catalysed by a polymer-bound(pyrrolidine salen)manganese(Ⅲ)complex[J].J Chem Commun,2000,165-169.
    [27]K Jerabek,K Setink.Polymer-supported Catalysts[J].Reactive Polymer,1988,9(1):132-134.
    [28]Delaney E.J.,Wood L.E.,Klotz I.M.Poly(ethylenimines)with Alte rnative(Alkylamino)pyridines as Nucleophilic Catalysts[J].J Am Chem Soc,1982,104:799-807.
    [29]Gil S.,Gonzalez R.,Mestres R.,et al.Alkene epoxidations Catalysed by Mo(Ⅵ)Supported on merrifields Polymer[J].Reactive and Functional Polymers,1999,42(1):65-72.
    [30]吴鸣虎,杨桂春,陈祖兴.聚合物支载过硼酸盐转化亏为羰基化合物的反应研究[J].离子交换与吸附,2000,16(2):179-181.
    [31]陈家威,吴玉民.大孔型聚合物氧化三甲胺的制备及其氧化卤代烃成醛的研究[J].离子交换与吸附,1991,7(4):254-260.
    [32]熊桂荣,黄锦霞,张万轩.聚苯乙烯二苯基膦铜(Ⅰ)四氢化硼络合物的制备及其对酰氯的还原[J].有机化学,1995,15(3):622-626.
    [33]Vipin A.,Nair,K.Sreekumar.Polymer supported catalysts for epoxidation reactions[J].Current Science,2001,81(2):194-197.
    [34]M S Sheela,K Sreekumar.Epoxidation and oxidation reactions using 1.4-butanediol dimethacrylate crosslinked polystyrene-supported tertiar y butyl hydroperoxide[J].J Chem Sci,2004,116(6):319-324.
    [35]Yi-Qun Li,Mei-Yun Zhou,Xin-Ming Xu.Cellulose supported tetraethylene pentamine as a catalyst for the knoevenagel condensation[J].J Chem Re search(S),2003,134-135.
    [36]王绍文.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [37]陈瑞福.高浓度镀铬废水的处理研究[J].工业水处理,2000,20(11):16-17.
    [38]王爱民,杨立红,张素娟等.电化学方法治理含染料废水的现状与进展[J].工业水处理,2001,21(8):4-7.
    [39]Solozhenko E.G.,Soboleva N.M.,Goncharuk V V.Decolorization of azodye solutions by fenton's oxidation[J].Water Research,1995,29(9):2206-2210.
    [40]Rajeshwar K.,Ibanez J.G.,Swain G.M.Electrochemistry and environment [J].J.Appl.Electrochem,1994,24(3):1077-1091.
    [41]Kanekar P.,Samaik S.An activated sludge process to reduce the pollution load of a dye industry water[J].Environmental pollution,1991,70(1):27-33.
    [42]陈哲,杨旭明,王琪等.SPS/(AM-DMDAAC)分子复合型驱油剂的研究[J].高分子材料科学与工程,1998,(4):128-130.
    [43]景峰,黄荣华.AMPS.DMAEMA两性聚合物溶液性能的研究[J].高分子材料科学与工程,1997,(6):109-113.
    [44]王桂芳,活性炭对水中重金属离子去除效果的研究[J].环境保护科学,2004:26-29
    [45]Nagarethinam Kannan,Mariappan Meenakshi Sundaram.Kinetics and mechanism of removal of methylene blue adsorption on various carbons a comparative study[J].Dyes and Pigments,2001,51:25-40.
    [46]郭继香,袁存光.用蛭石吸附法脱除污水中的重金属[J].石油大学学报.1998.22(2):60-63.
    [47]Augusto da Costa A.C.,Francisca P de Franca.Catdmium uptake by Spirulina maxima:toxicity and mechanism[J].World Journal of Microbiology & Biotechnology,1998,14:579-581.
    [48]Karcher Silke,Screening of commercial sorbents for the removal of reactive dyes[J].Dyes and Pigments,2001,51(2-3):111-125.
    [49]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展[J].化工环保,2004,24(4):262-265.
    [50]马建高.功能高分子材料[M].北京:化学工业出版,2000.
    [51]曾汉民,于卫红.新型阳离子交换纤维对重金属离子吸附行为的研究[J],水处理技术,1987,1(1):1-9.
    [52]陆耘,汤丽抵,曾汉民.强酸型阳离子交换纤维对稀土和过渡金属离子的交换性能研究[J].离子交换与吸附,1993,9(5):433-438.
    [53]原思国,曾汉民.离子交换功能纤维的研究、开发与进展[J].高科技纤维与应用,1999,2(1):1-5.
    [54]Xijun Chang,Xiulan Yang,Xinjie Wei,et al.Efficiency and mechanism of new poly(acryl-phenylamidrazone phenylhydrazide)chelating fiber for adsorbing[J].Analytical Chem.Acta,2001,450:231-238.
    [55]K.Basra,A.Aliane,A.Louise,et al.Electroextraction of Ph2+ ions from diluted solutions by a process combing ion-exchange textiles and membranes[J].Desalination,1998,120(5):175-184.
    [56]王睿,谢雁,潘炯玺.聚合物表面光接枝改性研究进展[J].现代塑料加工应用,2004,12(6):61-64.
    [57]刘祥义,徐小军.氧化还原引发淀粉与丙烯酸接枝共聚研究[J].胶体与聚合物,2005,23(2):14-18.
    [58]邓建元,杨万泰.高分子材料的表面改性技术[J].化工新型材料,1997,5:17-20.
    [59]李建英,孙德功,吉欣.顺丁烯二酸单淀粉酯的干法合成[J].河南科学,1995,13(2):154-157.
    [60]Toru Takagi,Masahiro Aoyama.Synthesis of peracid type resin by the oxidation of carboxylic acid type resin with hydrogen peroxide in sulfuric acid medium[J].Polymer Letters Edition,1974,12:681-685.
    [61]Tirng-lair perng,Jen-ming Yang.New peracid polymeric initiator for radical polymerization[J].Journal of Applied Polymer Science,1991,42:1899-190.
    [62]郭锴,李军,伊敏.聚合物光接枝表面改性研究与应用[J].大学化学,1999,5(03):35-38.
    [63]杨欣华,杨育农,王浩江等.聚丙烯化学改性与表征[J].国外塑料,2006,12(5):58-63.
    [64]袁新兵.聚合物固载引发剂的合成及其应用研究:[硕士学位论文].昆明:昆明理工大学,2007.
    [65]Simona Margutti,Silvia Vicini,Noemi Proietti,etal.Physical-chemical charac terization of acrylate polymers grafted on celluloseEJ].Polymer,2002,43:6183-6184.
    [66]Miyata N,Yokoyama M,Sakata I.Properties of highly water-absorptive hydroxy 1-ethylcellulose graft copolymers:viscochemical and moisture sorption[J].A ppl.Polym.Sci.,1995,55(2):201-208.
    [67]王百军,谢晖.过硫酸铵引发淀粉与丙烯酸丁酯接枝共聚反应动力学[J].精细石油化工进展,2005,6(3):7-9.
    [68]郁春辉,吴明红,张剑秋.HDPE预照辐接枝SSS与AA体系的反应动力学研究[J].辐射研究与辐射工艺学报,2005,23(3):169-172.
    [69]单国荣,曹志海.丙烯酰胺在聚乙二醇中的聚合动力学[J].高分子学报,2003,6(3):784-788.
    [70]Karadag E,Saraydin D.Swelling equilibria and dye adsorption studies of chemically cross-linked superabsorbent acrylamide/maleic acid hydrogels[J].European Polymer Journal,2002,38:3133-3141.
    [71]Kerec Mojca,Bogataj Marijia,Veranic Peter.Permeability of pig urinary bladder wall:the effect of chitosan and the role of calcium[J].European Journal of Phanmaceutical Sciences,2005,25(1):113-131.
    [72]Chen L,Honma Y,Mizutani T,etal.Effects of polyelectrolyte complexation on the USCT of zwitterionic polymer[J].Polymer,2000,41:141-147.
    [73]Chen L,Kim B S.Enviornmental responses of polythiophene hydrogels[J].Macromolecules,2000,33:1232-1236.
    [74]彭书传,王诗生,陈天虎等.坡缕石对水中亚甲基蓝的吸附动力学[J].硅酸盐学报,2006,34(6):733-738.
    [75]Bhattacharyya K.G.,Sarma A.Adsorption characteristics of the dye,brilliant green,on Neem leaf poeder[J].Dyes Pigm,2003,57(3):211-222.
    [76]Kim B S,Chen L,Gong J P,etal.Titration behavior and spectral of water-soluble polythiophene carboxylic acids[J].Macromolecules,1999,32:3964-3969.
    [77]孙仕萍,伊露.过氧化氢-亮黄-氨水体系催化光度法测定痕量铜[J].华北煤炭医学院学报,2003,3(5):295-296.
    [78]余继刚,邓春发,黄耀军等.生活饮用水中微量铜的阴离子胶束介质-分光光度测定法[J].职业与健康,2006,22(5):343-345.
    [79]李方文,李彩亭,张德见.络合滴定法测定水中铅离子的浓度[J].工业水处理,2002,22(10):38-39.
    [80]于震宗 黄天佑.膨润土吸蓝量测试方法回顾[J].造型材料,2005,1(1):23-25.
    [81]李润卿,范国梁,渠荣遴.有机结构波谱分析[M].天津大学出版社,2005.
    [82]Ju H.K.,Kim S.Y.,Lee Y.M.pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide)[J].Polymer,2001,42:6851-6857.
    [83]G.R.Mahdavinia,A.Pourjavadi.Modified chitosan from poly(acrylic/acrylamide)grafted chitosan with salt and pH-respon- siveness properties[J].European Polymer Journal,2004,40:1399-1407.
    [84]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,4(1):36-39.
    [85]Dong Seog Kim.The removal by crab shell of mixed heavy metalions in aqueous solution[J].Bioresource Technology,2003,87:355-357.
    [86]Dobue Y.,Janneleau P.,Labonle R.,et al.Domestic waste water Treatment by peatlands in anorthern climate:a water quality study[J].Wat Resource,1996,22(2):297-303.
    [87]陈志勇,李德周,李宁等.多细胞藻海带对Cu~(2+)、Ni~(2+)的吸附性能研究[J].信阳师范学院学报(自然科学版),2003,16(4):413-415.
    [88]Li-Ming Zhang,Dan-Qing Chen.An investigation of adsorption of lead (Ⅱ)and copper(Ⅱ)ions by water-insoluble starch graft copolymers [J].Elsevier Science,2002,2:231-236.
    [89]程云,周启星,马启英等.染料废水处理技术的研究和进展[J].环境污染治理技术与设备,2003,4(6):56-60.
    [90]Bhattacharyya K.G.,Sarma A.Adsorption characteristics of the dye,brilliant green,on Neem leaf poeder[J].Dyes Pigm,2003,57(3):211-222.
    [91]Bhattacharyya K.G.,Sarma A.Kinetics and thermodynamics of methylene blue adsorption on Neem(Azadirachta Indica)leaf powder[J].Dye Pigm,2005,65(1):51-59.
    [92]Ho Y.S.,Mckay G.The sorption of lead(Ⅱ)[J].Water Res,1998,33(2):578-584.
    [93]Lagergern S.About the theory of sp-called adsorption of soluable substances[J].Kungliga Svenska Vetenskapsakademiens Handlingar Band,1898,24(4):1-39.
    [94]Ho Y.S.Adsorption of heavy metals from waste streams by peat[D].UK Birmingham:University of Birmingham,1995.
    [95]Hendrik N.,Murielle R.,Pierre L.et al.Removal of PCBs from wastewater using fly ash[J]. Chemosphere, 2003, 53(6):655-665.
    
    [96] Ozcan A. S., Erdem B., Ozcan A. Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite[J]. Colloid Interface Science, 2004, 280(1):44-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700