用户名: 密码: 验证码:
多壁碳纳米管对硝基化合物和抗生素的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有较高的比表面积、可控的孔径分布以及可修饰的表面化学等特性,这些性能克服了许多传统吸附剂的缺陷,从而使碳纳米管成为具有广阔应用前景的吸附材料。同时,碳纳米材料对于污染物的高亲和性以及选择性吸附也会在很大程度上影响环境中污染物的迁移归趋。因此,本论文选用多壁碳纳米管作为模型吸附材料,通过批量平衡法研究了间二硝基苯、间硝基甲苯、对硝基酚和硝基苯四种常见硝基化合物以及磺胺噻唑和环丙沙星两种广泛应用的抗生素在多种碳纳米管上的吸附特性。研究结果表明:碳纳米管对硝基化合物和抗生素的吸附在较短时间内即可达到表观平衡,动力学曲线符合准二级动力学方程;碳纳米管对硝基化合物和抗生素具有很强的吸附能力;碳纳米管的比表面积,中孔孔容和表面含氧官能团的种类和含量决定了碳纳米管的吸附能力,含氧官能团对不同有机化合物的吸附作用有所差异;温度、pH值和共存硝基化合物及重金属离子对有机化合物在碳纳米管的吸附行为均有一定的影响。
Carbon nanotubes (CNTs) have unique physicochemical and electrical properties and have widespread applications in field emission, in hydrogen storage, and as chemical sensors. Due to their high surface area and large micropore volume, CNTs are also considered to be extremely good adsorbents to remove many kinds of pollutants form water. The adsorption of hydrophobic organic compounds or heavy metals by carbon nanomaterials may affect the fate, transformation, and transport of pollutants in the environment. Nitroaromatic compounds (NACs) are widely used as pesticides, explosives, and intermediates in the synthesis of dyes and other high-volume chemicals. NACs are highly polar and often act as strong electron acceptors when interacting with adsorbentcontaining structures with high electron polarization or with electron donors such as oxygen-containing groups. Antibiosis is a natural chemical regulation mechanism among organisms, especially microorganisms. Today, a wide range of naturally occurring and of synthetic antibiotics is frequently used for the therapy of infectious disease in human and veterinary medicine.Due to their use pattern, they possess a potential for reaching the soil environment. Highly mobile antibiotics have the potential to leach to the groundwater and be transported with the groundwater, drainage water, and surface runoff to surface waters. There is thus a possible exposure pathway for aquatic organisms.
     There are numerous researches into the sorption of metals or organic contaminants separately in the environment. A single-solute system may not adequately represent the majority of mixed contaminanted systems commonly encountered in the environment, where both heavy metals and organic contaminants may coexist at many contaminated sites. Hence the effects of heavy metals on the adsorption and desorption processes of organic contaminants and conversely of organic contaminants on metal adsorption play an important role in revealing the environmental behaviors of contaminants.This research work focused on the sorption of nitroaromatic compounds and two kinds of antibiotics, sulfathiazole and ciprofloxacin, by multi-walled carbon nanotubes (MWCNTs), to examine the applications of MWCNTs in removing these pollutants from water. The effects of pH, temperature on the sorption were also investigated. Cu was selected to study the influence of heavy metals on the sorption of antibiotics to carbon nanotube.
     The kinetics of NACs sorption onto the as-grown and purified MWCNTs were investigated. The sorption rate of MWCNTs was very fast and the sorption equilibriums were obtained in 200 minutes. The sorption kinetics of NACs were well described by a pseudo-second-order rate model. The molecule size was an important factor that may affect the sorption rate of NACs on MWCNTs. The sorption of NB on MWCNTs was the fastest process compared to the other NACs studied which may be attributed to the smaller molar volume (Vs) and Van der Waals square (SVdw) for NB.The sorption rate of purified MWCNTs was lower than as-grown MWCNTs due to the introduction of oxygen containing groups.
     To study the sorption isotherms of NACs by MWCNTs, different MWCNTs with varying structure and surface chemistry were adopted using a batch equilibration technique. Langmuir, Freundlich and Dual mode model gave good fits to the sorption data of NACs. The sorption amouts of NACs to MWCNTs follow this order: DNB > MNT > PNP > NB, which in agreement with their molecule Van der Waals square (SVdw). The numbers of -NO2 also can affect the sorption affinities between NACs and MWCNTs. The BET surface areas and mesopore volumes of MWCNTs were the main factors that influence the sorption ability of MWCNTs at lower oxygen contents. There were no hysteresis of NACs desorption from MWCNTs.
     Surface oxygen functional groups significantly diminished the adsorption amount of NACs to MWCNTs. The mechanisms on the suppression effects of oxygen groups on the adsorption of organic contaminants were due to:1) oxygen may change the surface hydrophobicity of the MWCNTs, decreasing the hydrophobic effect between NACs and MWCNTs; 2) oxygen may change the electronic density of the graphene layers, depressing the EDA interaction between NACs and MWCNTs; 3) oxygen functional groups preferentially sorbs water molecules that competitively block sorption of NACs or sterically prevent their penetration into micropore space.
     The effects of pH and temperature on the sorption of NACs were also investigated. The pH values can affect the sorption amounts of PNP due to the changes of surface charge of MWCNTs at different pH, but no effect had been found for DNB. The values of enthalpy and entropy suggested that the sorption of NACs onto MWCNTs was exothermic and spontaneous. The accompany NACs depressed the sorption amount of NACs by MWCNTs and made the isotherms more linearity.The competitive ability of the NACs followed the order: DNB > PNP > MNT > NB, which related to their molecule structure and the linearity of the single solute sorption isothoms.
     MWCNTs10, MWCNTs10-O1 and MWCNTs10-O2, which contained different oxygen functional groups, were used to study the sorption of sulfathiazole (STZ) and ciprofloxacin (CIP) onto MWCNTs. The sorption kinetics of STZ and CIP were well described by a pseudo-second-order rate model. MWCNTs10-O1 have faster sorption rate due to its larger mesopore volume and less micropore volume. Both Langmuir and Freundlich model could well describe the sorption isothems of STZ and CIP onto MWCNTs-O. The oxygen groups depressed the sorption of STZ on MWCNTs-O which was similar to that of NACs sorption and maybe the same mechanism. But the oxygen functional groups of MWCNTs enhanced the sorption amount of CIP onto MWCNTs-O due to the formation of hydrogen bond between MWCNTs-O and CIP which was confirmed by micro Fourier transform infrared spectra. Due to the especial interaction, the desorption of CIP from MWCNTs-O had remarkable hysteresis. The accompany Cu had no remarkable effect on the sorption and desorption of STZ, but diminished the sorption amount of CIP on MWCNTs-O and promoted desorption of CIP from MWCNTs. Analysis of XAS results suggested that Cu complexation via formation of inner-sphere surface complex with oxygen functional groups of MWCNTs-O. Copper ion might compete with CIP for the sorption sites of oxygen groups on MWCNTs.
引文
Accinelli C, Hashim M, Epifani R, et al. Effects of the antimicrobial agent sulfamethazine on metolachlor persistence and sorption in soil[J]. Chemosphere. 2005, 36(9): 1539-1545.
    Agnihotri S, Mota J P B, Rostam-Abadi M, et al. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles[J]. Carbon. 2006, 44(12): 2376-2383.
    Allen-King R M, Grathwohl P, Ball W P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J]. Advances in Water Resources. 2002, 25(8-12): 985-1016.
    Alvarez L, Guillard T, Sauvajol J L, et al. Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and Raman spectroscopy[J]. Applied Physics A: Materials Science & Processing, 2000, 70(2): 169-173.
    Andrews R, Jacques D, Qian D, et al. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures[J]. Carbon, 2001, 39(11): 1681-1687.
    Ankudinov A L, Real-space multiple-scattering approach to XANES[J]. Synchrotron Radiat, 1999, 6: 236-238.
    Arafat H, Franz M, Pinto N. Effect of salt on the mechanism of adsorption of aromatics on activated carbon[J]. Langmuir, 1999, 15(18): 5997-6003.
    Bae J C, Yoon Y J, Lee S J, et al. Field emission properties of carbon nanotubes deposited by electrophoresis[J]. Physica B: Physics of Condensed Matter, 2002, 323(1-4): 168-170.
    Balavoine F, Schultz P, Richard C, et al. Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors[J].Angewandte Chemie, 1999, 38(13-14): 1912-1915.
    Bandow S, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes[J] Applied Physics A: Materials Science & Processing, 1998, 67(1): 23-27.
    Banerjee S and Wong S S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis[J]. J Phys Chem B 2002, 106(47): 12144-12151.
    Banerjee S, Kahn M G C, Wong S S. Rational chemical strategies for carbon nanotube functionalization[J]. Chemistry-A European Journal, 2003, 9(47): 1898-1908.
    Bang J J, Guerrero P A, Lopez D A, et al. Carbon nanotubes and other fullerene nanocrystals in domestic pro-pane and natural gas combustion streams[J]. Journal of Nanoscience and Nanotechnology, 2004, 4: 716-718.
    Barriuso E, Laird D A, Koskinen W C, et al. Atrazine desorption from smectites[J]. Soil Science Society of America Journal, 1994, 58: 1632-1638.
    Becker L, Poreda R J, Hunt A G. Impact event at the Permiane-Triassic boundary: Evidence from extrater-restrial noble gases in fullerenes[J]. Science, 2001, 291: 1530-1533.
    Biro L P, Khanh N Q, Vertesy Z, et al. Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD[J]. Materials Science & Engineering C, 2002, 19(1-2): 9-13.
    Boehm H P. Chemistry of heteroatoms on the surface of carbon (Plenary Lecture) Carbon, 1969, 7(6): 715.
    Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759-769.
    Bonard J M, Stora T, Salvetat J P, et al. Purification and size-selection of carbonnanotubes[J]. Advanced Materials, 1997, 9(10): 827-832.
    Boxall A B A, Blackwell P, Cavallo R, et al. The sorption and transport of a sulfonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2): 19-28.
    Boyd S A, Sheng G, Teppen B J, et al. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays[J]. Environmental Science & Technology, 2001, 35(21): 4227-4234.
    Boyd S. Adsorption of substituted phenols by soil[J]. Soil Science, 1982, 134(5): 337-343.
    Braida W J, Pignatello J J, Lu Y, et al. Sorption Hysteresis of Benzene in Charcoal Particles[J]. Environmental Science & Technology, 2003, 37(2): 409-417.
    Buseck P R, Tsipursky S J, Hettich R. Fullerenes from the geological environment[J]. Science, 1992, 257: 215-217
    Calderon Moreno J M, Swamy S S, Fujino T et al. Carbon nanocells and nanotubes grown in hydrothermal fluids[J]. Chemical Physics Letters, 2000, 329(3-4): 317-322.
    Carmo A M, Hundal L S, Thompson M L. Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent Freundlich coefficients[J]. Environmental Science & Technology, 2000, 34(20): 4363-4369.
    Chao D Z, Ding J, Peng X J, et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles[J]. Chemosphere, 2006, 62(5): 861-865.
    Charlet L and Manceau A. Structure, formation and reactivity of hydrous oxide particles: Insights from X-ray adsorption spectroscopy[M]. Lewis Publishers, Boca Raton, FL. 1993, pp 85-99.
    Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes[J]. Physical Review B(Condensed Matter), 1996, 53(16): 11108-11113.
    Chen C L and Wang X. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes[J]. Industrial and Engineering Chemistry Research, 2006, 45(26): 9144-9149.
    Chen G C, Shan X Q, Wang Y S, et al. Effects of Copper, Lead, and Cadmium on the Sorption and Desorption of Atrazine onto and from Carbon Nanotubes[J]. Environmental Science & Technology, 2008, 42(22): 8297-8302.
    Chen W, Duan L, Wang L L, et al. Adsorption of hydroxyl- and Amino- substituted aromatics to carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(18): 6862-6868.
    Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic Chemicals to carbon nanotubes[J]. Environmental Science & Technology, 2007, 41(24): 8295-8300.
    Cheng H M, Yang Q H, Liu C. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39(10): 1447-1454.
    Cheng X K, Kan A T, Tomson M B. Naphthalene adsorption and desorption from aqueous C60 fullerene[J]. Journal of Chemical and engineering Data, 2004, 49(3): 675-683.
    Cheng X K, Kan A T, Tomson M B. Study of C60 transport in porousmedia and the effect of sorbed C60 on naphthalene transport[J]. Journal of Materials Research, 2005, 20(12): 3244-3254.
    Chern J M and Chien Y W. Competitive adsorption of benzoic acid and p-nitrophenol onto activated carbon: isotherm and breakthrough curves[J]. Water Research, 2003, 37(10): 2347-2356.
    Chiou C T, Kile D E, Rutherford D W, et al. Sorption of selected organic compounds from water to a peat soil and its humic acid and humin fractions: potential sources of the sorption non-linearity[J]. Environmental Science & Technology, 2000,34(7): 1254-1258.
    Chiron N, Guilet R, Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models[J]. Water Research, 2003, 37(13): 3079-3086.
    Cho H H, Smith B A, Wnuk J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science & Technology 2008, 42(8): 2899-2905.
    Cho W S, Hamada E, Kondo Y, et al. Synthesis of carbon nanotubes from bulk polymer[J]. Applied Physics Letters, 1996, 69(2): 278-283.
    Coleman K S, Bailey S R, Fogden S, et al. Functionalization of single-walled carbon nanotubes via the bingel reaction[J]. Journal of the American Chemical Society, 2003, 125(29): 8722-8723.
    Colomer J F, Piedigrosso P, Fonseca A, et al. Different purification methods of carbon nanotubes produced by catalytic synthesis[J]. Synthetic Metals, 1999, 103(1-3): 2482-2483.
    Cornelissen G and Gustafsson ?. Sorption of Phenathrene to environmental black carbon in sediment with and without organic mattr and native sorbates[J]. Environmental Science & Technology, 2004, 38(1): 148-155.
    Coughlin R and Ezra F. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon[J]. Environmental Science & Technology, 1968, 2(4): 292-297.
    Daly T K, Buseck P R, Williams P. Fullerenes from a fulgurite[J]. Science, 1993, 259: 1599-1601.
    Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840.
    De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270: 1179-1180.
    Ding G W, Novak J M, Herbert S, et al. Long-term tillage effects on soil metolachlor sorption and desorption behavior[J]. Chemosphere, 2002, 48(9): 897-904.
    Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubes[J]. Synthetic Metals, 1999, 103(1-3): 2484-2485
    Dujardin E, Ebbesen T W, Krishnan A, et al. Purification of single-shell nanotubes[J]. Advanced Materials, 1998, 10(8): 611-613.
    Dyke C A and Tour J M. Solvent-free functionalization of carbon nanotubes[J] Journal of the American Chemical Society, 2003, 125(5): 1156-1157.
    Endo M, Takeuchi K, Kobori K, et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers[J]. Carbon, 1995, 33(7): 873-881.
    EPA. Pharmaceuticals & Personal Care Products in the Environment: An Emerging Concern?.http://www.epa.gov/nerl/research/1999/html/g8-14.html., 1999-12-24 / 2005-3-20.
    Espinasse B, Hotze E M, Wiesner M R. Transport and retention of colloidal aggregates of C60 in porous media: Effects of organic macromolecules, ionic composition, and preparation method[J]. Environmental Science & Technology, 2007, 41(21): 7396-7402.
    Fabrega J R, Fafvert C T, Li H. Modeling short-term soil-water distribution of aromatic amines[J]. Environmental Science & Technology, 1998, 32(18): 2788-2794.
    Flogeac K, Guillon E, Aplincourt M. Surface complexation of copper (II) on soil particles:EPR and XAFS studies[J]. Environmental Science & Technology, 2004, 38(11): 3098-3103.
    Fortner J D, Lyon D Y, Sayes C M, et al. C60 in water: nanocrystal formation and microbial response[J]. Environmental Science & Technology, 2005, 39(11): 4307-4316.
    Franz M, Arafat H A, Pinto N G. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon[J]. Carbon, 2000, 38(13): 1807-1819.
    Frenkel A I, Korshin G V, Ankudinov A L. XANES study of Cu2+-binding sites in aquatic humic substances[J]. Environmental Science & Technology, 2000, 34(11): 2138-2142.
    Gao J and Pedersen J A. Adsorption of sulfonamides antimicrobial agents to clay minerals[J]. Environmental Science & Technology, 2005, 39(24): 9509-9516.
    Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential[J]. Physical Review, 2000, 62(19): 13104-13110.
    Gomez V, Larrechi M S, Callao M P, Kinetic and adsorption study of acid dye removal using activated carbon[J]. Chemosphere, 2007, 69(7): 1151-1158.
    González-Guerrero A B, Mendoza E, Pellicer E, et al. Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid–base titration[J]. Chemical Physics Letters, 2008, 462(4-6): 256-259.
    Gorgulho Honória F, Mesquita J P, Gon?alves F, et al. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption[J]. Carbon, 2008, 46(12): 1544-1555.
    Gotovac S Z, Honda H, Hattori Y, et al. Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of Polycyclic Aromatic Hydrocarbons[J]. Nano Letters, 2007a, 7(3): 583-587.
    Gotovac S Z, Song L, Kanoh H F, et al. Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007b, 300(1-2): 117-121.
    Gotovac S Z, Yang C M, Hattori Y, et al. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters[J].Journal of Colloid and Interface Science. 2007c, 314(1): 18-24.
    Gu C and Karthikeyan K G. Sorption of the Antimicrobial Ciprofloxacin To Aluminum and Iron Hydrous Oxides[J]. Environmental Science & Technology, 2005, 39 (23):9166-9173.
    Guibal E, McCarrick P, Tobin J M. Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions[J]. Separation Science and Technology, 2003, 38(12-13): 3049-3073.
    Haderlein S B and Schwarzenbach R P, Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces[J]. Environmental Science & Technology, 1993, 27(2): 316-326.
    Haderlein S B, Weissmahr K W, Schwarzenbach R P, Specific adsorption of nitroaromatic explosives and pesticides to clay minerals[J]. Environmental Science & Technology, 1996, 30(2): 612-622.
    Hatta N and Murata K. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene[J]. Chemical physics letters, 1994, 217(44): 398-402.
    Heymann D, Wolbach W S, Chibante L P F. Search for extractable fullerenes in clays from the Cretaceous-Tertiary boundary of the Wood side Creek and Flaxbourne River sites, New Zealand[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3531-3534.
    Ho Y S, Absorption of heavy metals from waste streams by peat[M] Birmingham, UK: University of Birmingham, 1995.
    Ho Y S, Wase D A J and Forster C F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat[J]. Environmental Technology, 1996, 17: 71.
    Hsin Y L, Lai J Y, Hwang K C, et al. Rapid surface functionalization of iron-filled multi-walled carbon nanotubes[J]. Carbon, 2006, 44(15): 3328-3335.
    Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration[J]. Chemical Physics Letters, 2001, 345(1-2): 25-28.
    Huang C C , Li H S Chen C H. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of Hazardous Materials, 2008, 159(2-3): 523-527.
    Huang W and Weber W J J. Distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains[J]. Environmental Science & Technology, 1997(9): 2562-2569.
    Hyung H, Fortner J D, Hughes J B et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science & Technology, 2007, 41(1): 179-184.
    Iijima S and Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363: 603-605.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    Ishiguro T, Takatori Y, Akihama K. Microstructure of diesel soot particles probed by electronmicroscopy: First observation of inner core and outer shell[J]. Combustion and Flame, 1997, 108(1-2): 231-234.
    Jeong T, Kim W Y, Hahn Y B. A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas[J]. Chemical physics Letters, 2001, 344(1-2): 18-22.
    Kahle M and Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin[J]. Environmental Science & Technology, 2007, 41(1): 132-138.
    Kan A T, Fu G, Tomson M B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction[J]. Environmental Science & Technology, 1994(5):859-867.
    Kannan K and Sundaram M M. Kinetics and mechanism of removal of Methylene Blue by adsorption on various carbons-a comparative study[J]. Dyes Pigments, 2001, 51(1): 25-40.
    Kara M, Yuzer H, Sabah E, et al. Adsorption of cobalt from aqueous solutions onto sepiolite[J]. Water research, 2003, 37(1): 224-232.
    Karajanagi S S, Yang H, Asuri P et al. Protein-assisted solubilization of single-walled carbon nanotubes[J]. Langmuir, 2006, 22(4): 1392-1395.
    Karanfil T and Kilduff J E. Role of granular activated carbon surface chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants[J]. Environmental Science & Technology, 1999, 33(18): 3217-3224.
    Kemper, N, Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13.
    Kim S D, Kim J W, Im J S, et al. A comparative study on properties of multi-walled carbon nanotubes modified with acids and oxyfluorination[J]. Journal of Fluorine Chemistry, 2007, 128(1): 60-64.
    Kohler A R, Som C, Helland A, et al. Studying the potential release of carbon nanotubes throughout the application life cycle[J]. Journal of Cleaner Production, 2008, 16(8-9): 927-937.
    Laor Y, Farmer W J, Aochi Y, et al. Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid[J]. Water Research, 1998, 32(6): 1923-1931.
    Lecoanet H F and Wiesner M R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media[J]. Environmental Science & Technology, 2004, 38(16): 4377-4382.
    Lecoanet H F, Bottero J Y, Wiesner M R. Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environmental Science & Technology, 2004,38(19): 5164-5169.
    Lee T H, Yao N, Chen T J et al. Fullerene-like carbon particles in petrol soot[J]. Carbon, 2002, 40(12): 2275-2279.
    Lee W H and Reucroft P J. Vapor adsorption on coal- and wood-based chemically activated carbons (I). Surface oxidation states and adsorption of H2O[J]. Carbon, 1999, 37(1): 7-14.
    Li Y, Ding J, Luan Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J]. Carbon, 2003, 41(14): 2787-2792.
    Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon, 2005, 43(8): 1758-1767.
    Limousin G, Gaudet J P, Charlet L, et al. Sorption isotherms: A review on physical bases, modeling and measurement[J]. Applied Geochemistry, 2007, 22(2): 249-275.
    Lin D H and Xing B S. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42(19): 7254-7259.
    Lin K L, Pan J Y, Chen Y W, et al. Study the adsorption of phenol from aqueous solution on hydroxyl apatite nanopowders[J]. Journal of Hazardous Materials, 2009, 161: 231-240.
    Liu J, Dai H, Hafner J H, et al. Fullerene 'crop circles' [J]. Nature, 1997, 385: 780-781.
    Loke M L, Ingerslev F, Halling-S?rensen B et al. Stability of Tylosin A in manure containing test systems determined by high performance liquid chromatography[J]. Chemosphere, 2000, 40(7): 759-765.
    Long R Q and Yang R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. Journal of the American Chemical Society, 2001, 123(9): 2058-2059.
    Lu C and Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes[J]. Chemical engineering science, 2006, 61(4): 1138-1145.
    Lu C and Liu C, Removal of nickel (II) from aqueous solution by carbon nanotubes[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(12): 1932-1940.
    Lu C, Chiu H, Liu C. Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2850-2855.
    Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbin nanotubes[J]. Journal of hazardous materials, 2006, 138(2): 304-310
    Lu C, Chung YL, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Research, 2005, 39(6):1183-1189.
    Lyklema J. Fundamentals of interface and colloid science: Vol 1 fundametals[M]. New York: Academic Press, 1993.
    Mahajan O, Morena-Castilla C, Walker P. Surface-treated activated carbon for removal of phenol from water[J]. Separation Science and Technology, 1980, 15(10): 1733-1752.
    Maldonado S, Stephen M, Keith J S. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping[J]. Carbon, 2006, 44(8): 1429-1437.
    Maqueda C, Undabeytia T, Morillo E. Retention and release of copper on montmorillonite as affected by the presence of a pesticide[J]. Journal of Agricultural and Food Chemistry, 1998, 46(3): 1200-1204.
    Marta C, Francisco O, Juan M L, et al. Behavior of pharmaceuticals, cosmetics andhormones in a sewage treatment plant [J]. Water Research, 2004, 38(12): 2918-2926.
    Maynard A D, Baron P A, Foley M et al. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material[J]. Journal of Toxicology and Environmental Health, 2004, 67: 87-107.
    Mellon M, Benbreok C, Benbmok K L, et al. Estimates of Antimierebial Abuse in Livestock[M]. Washington DC: Union of Concerned Scientists Publications, 2001.
    Mestre A S, Pires J, Nogueira J M F, et al. Activated carbons for the adsorption of ibuprofen[J]. Carbon, 2007, 45(10): 1979-1988.
    Mizoguti E, Nihey F, Yudasaka M, et al. Purification of single-wall carbon nanotubes by using ultrafine gold particles[J]. Chemical Physics Letters, 2000, 321(3-4): 297-301.
    Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon, 2004, 42(1): 83-94.
    Morillo E, Undabeytia T, Maqueda C, et al. The effect of dissolved glyphosate upon the sorption of copper by three selected soils[J]. Chemosphere. 2002, 47(7): 747-752.
    Morillo E, Undabeytia T, Maqueda C. Adsorption of glyphosate on the clay mineral montmorillonite: effect of Cu in solution and adsorbed on the mineral[J]. Environmental Science & Technology, 1997, 31(12): 3588-3592.
    Mour?o P A M, Carrott P J M, Ribeiro Carrott M M L. Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork[J]. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 120-127.
    Muller E and Gubbins K. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surface[J]. Carbon, 1998, 36(10): 1433-1438.
    Murr L E, Soto K F et al. A TEM study of soot, carbon nano-tubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources[J]. Materials Characterization, 2005, 55(1): 50-65.
    Niwas R, Gupta U, Khan A A, et al. The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study[J]. Colloids and Surfaces A: Physicochemical and Engineering, 2000, 164(2-3): 115-119.
    Nowack B and Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1): 5-22.
    Oepen B V, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline[J]. Chemosphere, 1991, 106(22): 285-304.
    Ozcan A S. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite[J]. Journal of hazardous materials, 2005, 125(1-3): 252-259.
    Pan Z W, Xie S S, Chang B H, et al. Direct growth of aligned open carbon nanotubes by chemical vapor deposition[J]. Chemical Physics Letters, 1999, 299(1): 97-102.
    Park Y S, Choi Y C, Kim K S, et al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing[J]. Carbon, 2001, 39(5): 655-661.
    Peng X J, Li Y H, Luan Z K, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes[J]. Chemical Physics Letters, 2003, 376(1-2): 154-158.
    Pignatello J J and Xing B. Mechanism of slow sorption of organic chemicals to natural particles[J]. Environmental Science & Technology, 1995, 30(1): 1-11.
    Radovic L R, Moreno-Castilla C, Rivera-Utrilla J. Carbon materials as adsorbents in aqueous solutions[J]. Chemistry and physics of carbon, 2000, 27: 227-405.
    Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review[J]. Separation and Purification Technology, 2007, 58(1): 224-231.
    Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998, 36(3): 159-175.
    Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids: Principles[M], San Diego: Methodology and Applications Academic Press, 1999.
    Sander M and Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter[J]. Environmental Science & Technology, 2005b, 39(19): 7476-7484.
    Sander M and Pignatello J J. Characterization of Charcoal Adsorption Sites for Aromatic Compounds: Insights Drawn from Single-Solute and Bi-Solute Competitive Experiments[J]. Environmental Science & Technology, 2005a, 39(6): 1606-1615.
    Sekar C and Subramanian C. Purification and characterization of buckminsterfullerene, nanotubes and their by-products[J]. Vacuum, 1997, 47(11): 1289-1292.
    Sen R, Govindaraj A, Rao C N R. Carbon nanotubes by the metallocene route[J]. Chemical Physics Letters, 1997, 267(3-4): 276-280.
    Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration[J]. Chemical physics letters, 1998, 282: 429-434.
    Shen J F, Hu Y Z, Qin C, et al. Layer-by-Layer Self-Assembly of Multiwalled Carbon Nanotube Polyelectrolytes Prepared by in Situ Radical Polymerization[J]. Langmuir, 2008, 24(8): 3993-3997.
    Snyder S A, Westerhofft P, Yoon Y, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry[J].Environment Engineering Science, 2003, 20(5): 449-469.
    Spurlock F C and Biggar J E. Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution[J]. Environmental Science & Technology, 1994, 28(6): 996-1002.
    Takuya C, Toshinari A, Toshiki S. Fullerenes found in the Permo-Triassicmass extinction period[J]. Geo-physical Research Letters, 1999, 26(6): 767-770.
    Tan P, Zhang S L, Yue K T, et al. Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods[J]. Journal of Raman Spectroscopy, 1997, 28(5): 369-372.
    Ternes T A, Meisenheimer M, Mcdowell D. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology, 2002, 36(17): 3855-3863.
    Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273: 483-487.
    Thiele S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594.
    Thurman E M and Lindsey M E. Transport of antibiotics in soil and their potential for groundwater contamination[R]. Presented at 3rd SETAC World Congress, Brighton, UK, 22–25 May 2000.
    Tohji K, Goto T, Takahashi H, et al. Purifying single-walled nanotubes[J]. Nature, 1996, 383: 679.
    Tomasco P J. Manufactured nanomaterials: Avoiding TSCA and OSHA violations for potentially hazardous substances[J]. Boston College Environmental Affairs Law Review, 2006, 33: 205-220.
    Trivedi P and Vasudevan D. Spectroscopic Investigation of Ciprofloxacin Speciationat the Goethite-Water Interface[J]. Environmental Science & Technology, 2007, 41(9): 3153-3158.
    Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 2002, 372:159-162.
    Tsang S C, Harris P J F, Green M L H, et al. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide[J]. Nature, 1993, 362: 520-522.
    Undabeytia T, Nir S, Polubesova T, et al. Adsorption-desorption of chlordimeform on montmorillonite: effect of clay aggregation and competitive adsorption with cadmium[J]. Environmental Science & Technology, 1999, 33(6): 864-869.
    Utsunomiya S, Jensen K A, Keeler G J. Uraniniteand fullerene in atmospheric particulates[J]. Environmental Science & Technology, 2002, 36(23): 4943-4947.
    Velasco S C, Martinez-Hernandez A L, Consultchi A. Naturally produced carbon nanotubes[J]. Chemical Physics Letters, 2003, 373(3-4): 272-276.
    Villacańas F, Pereira M F R,órf?o J J M, et al. Adsorption of simple aromatic compounds on activated carbons [J] Journal of Colloid and Interface Science, 293(1): 128-136.
    Walters R G and Luthy R G. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon[J]. Environmental Science & Technology, 1984, 18(6): 395-403.
    Wang X, Chen G, Hu W, et al. Sorption of 243Am(III) to multiwall carbon nanotubes[J]. Environmental Science & Technology, 2005, 39(8): 2856-2860.
    Wang X, Sato T, Xing B. Competitive Sorption of Pyrene on Wood Chars[J]. Environmental Science & Technology, 2006, 40(10): 3267-3272.
    Wang Z W, Shirley M D, Meikle S T, et al.. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1): 73-79.
    Weber J W J and Huang W L. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationship under nonequilibrium conditions[J]. Environmental Science & Technology, 1996, 30(3): 881-888.
    Weber J W J, Leboeuf E J, Young T M, et al. Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences[J]. Water research, 2001, 35(4): 853-868.
    Wei J, Jiang B, Zhang X, et al. Raman study on double-walled carbon nanotubes[J], Chemical Physics Letters, 2003, 376(5-6): 753-757.
    Weissmahr K W, Haderlein S B, Schwarzenbach R P et al., In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals[J]. Environmental Science & Technology, 1997, 31(1): 240-247
    Wetzstein H G, Schmeer N and Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites[J]. Applied and Environmental Microbiology, 1997, 63(11): 4272-4281.
    Wetzstein H G, Stadler M, Tichy H V, et al. Degradation of Ciprofloxacin by Basidiomycetes and Identification of Metabolites Generated by the Brown Rot Fungus Gloeophyllum striatum[J]. Applied and Environmental Microbiology, 1999, 65(4): 1556-1563.
    Wiesner M R, Lowry G V, Alvarez P et al. Assessing the risks of manufactured nanomaterials[J]. Environmental Science & Technology, 2006, 40(14): 4336-4345.
    Wong S S, Joselevich E, Woolley A T, et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy[J]. Nature, 1998, 394: 52-55.
    Woolley A T, Cheung C L, Hafner J H et al. Structural biology with carbon nanotubeAFM probes[J]. Chemistry and Biology, 2000, 7(11): R193-R204.
    Wu C H. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics[J]. Journal of hazardous materials, 2007, 144(1-2): 93-100.
    Wu W, Zhang S, Li Y, et al. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer[J]. Macromolecules, 2003, 36(17): 6286-6288.
    Xia G and Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent[J]. Environmental Science & Technology, 1999, 33(2): 262-269.
    Xia G and Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil[J]. Environmental Science & Technology, 2001, 35(1): 84-94.
    Xing B and Pignatello J J. Competitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter[J]. Environmental Science & Technology 1998, 32(5): 614-619.
    Xing B and Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl choride) and soil organic matter[J]. Environmental Science & Technology, 1997, 31(3): 792-799.
    Xing B, Pignatello J J, Gigliotty B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environmental Science & Technology, 1996, 30(8): 2432-2440.
    Xing Y, Li L, Chusuei C C, et al. Sonochemical oxidation of multiwalled carbon nanotubes[J]. Langmuir, 2005, 21(9): 4185-4190.
    Xu Z H, Huang M X, Gu Q B, et al. Competitive sorption behavior of copper (II) and herbicide propisochlor on humic acids[J]. Journal of Colloid and Interface Science, 2005, 287(2): 422-427.
    Yamamoto K, Akita S, Nakayama Y. Orientation of carbon nanotubes using electrophoresis[J]. Japanese Journal of Applied Physics Letters, 1996, 35(7B): L917-L918.
    Yan X M, Shi B Y, Lu J J, et al. Adsorption and desorption of atrazine on carbon nanotubes[J]. Journal of Colloid and Interface Science, 2008, 321(1): 30-38.
    Yang K and Xing B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J]. Environmental Pollution, 2007, 145(2): 529-537.
    Yang K, Wang X L, Zhu L Z, et al. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes[J]. Environmental Science & Technology, 2006b, 40(18): 5804-5810.
    Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental Science & Technology, 2006a, 40(6): 1855–1861.
    Ying Y M, Saini R K, Liang F, et al. Functionalization of carbon nanotubes by free radicals[J]. Organic. Letters, 2003, 5(9): 1471-1473.
    Yudasaka M, Fan J, Miyawaki J, et al. Studies on the adsorption of organic materials inside thick carbon nanotubes[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8909-8913.
    Zhou Z, Ci L, Chen X, et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system[J]. Carbon, 2003, 41(2): 337-342.
    Zhu D and Pignatello J J. Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model[J]. Environmental Science & Technology, 2005, 39(7): 2033-2041.
    Zhu D, Kwon S, Pignatello J J. Adsorption of Single-Ring Organic Compounds to Wood Charcoals Prepared under Different Thermochemical Conditions[J]. Environmental Science & Technology, 2005, 39 (11): 3990-3998.
    Zhu H W, Li X S, Jiang B, et al., Formation of carbon nanotubes in water by the electric-arc technique[J]. Chemical Physics Letters, 2002, 366(5-6): 664-669
    陈光才.铜、铅和镉对阿特拉津等有机物在多壁碳纳米管上吸附与解吸的影响及作用机理[D].北京:中国科学院研究生院, 2008.
    成会明.纳米碳管——制备,结构,物性及应用[M].北京:化学工业出版社, 2002.
    慈立杰,魏秉庆.碳纳米管的制备[J].新型炭材料, 1998, 2: 65-70.
    侯永平,王浩静.化学滴定法分析PAN基HM炭纤维表面酸性官能团[J].炭素. 2007, 130(2): 24-26.
    孔浩.碳纳米管的原位ATRP可控功能化[D].上海:上海交通大学, 2004.
    李伟,成荣明,徐学诚,等.羟基自由基对多壁碳纳米管表面和结构的影响[J]. 无机化学学报, 2005, 21(2): 186-191.
    林敬东,杨东夫,蔡云.多壁碳纳米管的纯化[J].厦门大学学报:自然科学版, 2001, 40(4): 889-892.
    刘皓.活性碳材料的制备与应用[D].北京:北京化工大学, 2008.
    刘志生,尹军,张立国,等.炭化稻壳吸附去除水中硝基苯的试验[J].环境化学. 2008, 27(2): 190-192.
    宋晓岚,王海波,吴雪兰,等.纳米颗粒分散技术的研究与发展[J].化工进展, 2005, 24(1): 47-52.
    隋红建.土壤离子吸持机理模型及其应用[J].土壤学进展. 1995, 23(1): 27-31.
    王道宏.色素炭黑的表征技术与接枝高分子技术的研究[D].天津:天津大学, 2002.
    王健雄,陈小华,彭景翠,等.碳纳米管的非破坏性纯化研究[J].新型炭材料, 2001, 16(3):37-41.
    王璟琳,刘国宏,张新荣.纳米材料吸附剂的研究进展[J].分析化学, 2005, 33(12): 1787-1793.
    王丽敏,刘振鸿,王建刚,等.硝基苯在两种不同吸附树脂上的吸附动力学研究[J].吉林化工学院学报, 2006, 23(1): 22-25.
    王敏炜,彭年才,李凤仪.硝酸氧化法对碳纳米管进行纯化及开管研究[J].江西科学, 2002, 20(4): 203-206.
    王晓峰,王大志,梁吉. 20伏高电压型碳纳米管超级电容器的研制[J].电子学报, 2003, 31(8): 1182-1185.
    韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社, 2006.
    吴伟民,吴平霄,党志,等. TDTMA+-柱撑蒙脱石吸附硝基苯的实验研究[J].矿物岩石, 2008, 28(2): 17-21.
    徐仲艳,王晓蓉.改性土壤对模拟含硝基苯废水的吸附[J].环境化学, 2002 21(3): 235-239.
    杨占红,李晶.碳纳米管的纯化——化学氧化法[J].高等学校化学学报, 2001, 22: 446-449.
    尤启冬.药物化学[M].北京:人民卫生出版社, 2004.
    张劲强,董元华,安琼,等.兽药抗生素在土壤环境中的行为[J].土壤, 2005. 37(4): 353-361.
    张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境, 2000, 9(2): 143-145.
    姚娇艳.碳纳米管的表面改性及在吸波领域的应用研究[D].西安:西安电子科技大学, 2008.
    朱双美.碳纳米管的修饰和吸附性能研究[D].郑州:郑州大学, 2007.
    娄保锋,朱利中,杨坤.苯及其取代物与对硝基苯胺在沉积物上的竞争吸附[J].中国环境科学, 2004, 24(3): 327-333.
    贾志杰,马仁志.裂解温度、裂解时间和原料气流量对CVD法生产碳纳米管的影响[J].新型炭材料, 1998, 6(2): 16-20.
    杨占红,李新海.碳纳米管的提纯——重铬酸钾氧化法[J].化学世界, 1999, 12: 627-630.
    王生辉,张晓健,李勇,等.硝基苯污染源水的粉末活性炭处理技术研究[J].中国给水排水, 2007, 23(1):1-5.
    陈杖榴.兽用化学药物研发动向[J].中国兽药杂志, 2005, 39 (7): 1-6.
    林中祥.硝基芳烃生产废水治理中存在的问题[J].环境导报, 2001, 1: 26-28.
    吕咏梅.氟喹诺酮类药物市场分析与发展前景[J].化工文摘. 2004, 5: 23-23.
    梁诚.含氟中间体及其精细化学品现状与发展[J].中国石油和化工经济分析, 2003, 14: 40-45.
    张梅,陈焕春,杨绪杰,等.纳米材料的研究现状及展望[J].导弹与航天运载技术, 2000, 03: 11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700