用户名: 密码: 验证码:
混合动力拖拉机动力特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,农用车辆对环境和资源造成的压力逐年增加,开展新型节能拖拉机的研发已成为迫在眉睫的重要课题。而在我国,几乎没有关于混合动力拖拉机方面的研究。因此,深入研究混合动力驱动系统的动力耦合装置、驱动系统设计理论以及混合动力驱动特性和能耗,对混合动力拖拉机的研究与开发具有重要的意义。
     本文基于拖拉机的工作和传动特性要求,结合当前国内外在混合动力驱动系统方面的研究现状,设计并制造了适用于并联式混合动力拖拉机的动力耦合装置,在此基础上,研制了一种单缸柴油机和串励直流电动机为输入动力的混合动力拖拉机驱动系统。所完成的工作和取得的结论归纳如下:
     1、动力耦合装置的设计与仿真。通过分析各类动力耦合装置的原理和特点,结合拖拉机的工作和传动特性要求,从传动比、特征参数和齿数匹配等方面,研制了适用于并联式混合动力拖拉机的行星差动轮系式动力耦合装置。在SimulationX中建立了仿真模型,对发动机单独工作、电动机单独工作和混合动力模式时的工作情况进行了仿真研究。结果表明,在各模式下,太阳轮、外齿圈和行星架三者间的转速和转矩关系与行星差动轮系间转速和转矩关系均一致;在启动和停机瞬间,以及加速或减速过程中,行星差动轮系会产生内部转矩和功率损失;太阳轮和外齿圈的转矩方向与起主要作用的发动机或电动机转速方向一致,而行星架转矩方向相反。
     2、混合动力驱动系统设计计算方法研究。根据混合动力拖拉机的作业特点,设计了一种发动机和电动机为输入动力,动力耦合装置和变速箱协同调速的并联式混合动力拖拉机传动系统,提出了混合动力拖拉机的动力性和经济性评价指标及计算公式,并对其动力传动系统主要参数的设计计算方法进行了探讨,建立了传动系各部件理论模型,提出了发动机和电动机动力匹配原则。以某型号混合动力拖拉机为设计实例,计算分析了不同档位和发动机负荷下的驱动力、爬坡度和发动机与电动机的转速匹配范围、发动机与电动机同向或反向转动时的总传动效率和犁耕作业下的等效能耗等。研究结果表明,驱动力和爬坡度大小与发动机提供的负荷成正比,与变速箱档位的高低成反比,而转速匹配范围随着发动机负荷的增大相应减小,与档位变化无关。发动机和电动机转速相同时,同向转动时的总传动效率大于反向转动时的总传动效率。在发动机与电动机同向转动和反向转动时,总传动效率随着发动机和电动机转速的增大而增大。档位越低,发动机和电动机动力匹配范围越大;且在相同的发动机和电动机转速下,等效能耗越低。在某一档位下,随着发动机和电动机转速的增加,等效能耗逐渐增高。当作业速度相同时,混合动力拖拉机的等效能耗低于同功率燃油拖拉机,其最高节能率可达24%。
     3、混合动力拖拉机动态特性仿真研究。在SimulationX中对混合动力拖拉机各部件分别进行建模和参数设置,开发了混合动力拖拉机仿真系统。并对发动机单独工作、电动机单独工作和混合动力模式工作三种工作模式下,进行空载运输作业和播种作业时的动态特性进行了仿真研究。研究结果表明,档位和外部载荷一定时,混合动力模式下行驶速度范围最大,最大行驶速度最高;发动机单独工作模式次之,电动机单独工作模式行驶速度范围最小,最大行驶速度最低。随着档位的增高,三种模式下的行驶速度均增大。三种模式下,发动机、电动机、动力耦合装置中太阳轮、齿圈和行星架的转矩会随着档位和外部载荷的增大而增大,且在匀速行驶时,转矩恒定,在加速或减速行驶时,转矩会产生波动。驱动轮转矩仅随外部载荷的增大而增大,而与档位无关。当档位和外部载荷不变时,发动机的小时燃油消耗量随着发动机转速的增大而增大;蓄电池输出功率和电动机输入电压随着电动机转速的增大而增大,电动机输入电流几乎保持不变;1h等效能耗随着发动机和电动机转速的增大而增大。随着档位和外部载荷的增大,发动机的小时燃油消耗量、蓄电池输出功率、电动机输入电压和电流,以及1h等效能耗均增大。发动机单独工作模式时,其总传动效率随着档位和外部载荷的增大而增大。电动机单独工作模式时,其总传动效率和电动机效率随着电动机转速、档位和外部载荷的增大而增大。混合动力模式工作时,总传动效率随着发动机转速、电动机转速、档位和外部载荷的增大而增大;电动机效率随着电动机转速、档位和外部载荷的增大而增大。档位一定时,行驶速度范围在电动机单独工作时的范围内,电动机单独工作时的等效能耗最低;而当行驶速度范围在发动机单独工作时的范围内,混合动力模式时的等效能耗较低。当外部载荷不变,档位增大时,各模式下的行驶速度均增大,其相应的等效能耗增大。当档位不变,外部载荷增大时,在相同的行驶速度下,等效能耗增大。混合动力模式时,根据发动机转速和电动机转速的不同,会出现相同行驶速度下,等效能耗的不同。说明在混合动力模式下,混合动力拖拉机进行某项作业时的动力选择范围较大。
     4、混合动力拖拉机试验台构建和测控系统开发。基于模块化思想构建了混合动力拖拉机试验台,在LabVIEW中开发了试验台测控系统,并对试验台所用传感器进行了标定。
     5、混合动力拖拉机动力特性试验研究。试验研究了混合动力拖拉机的行驶速度、发动机和电动机功率配比、驱动轮输出功率、发动机、电动机和驱动轮输出转矩、蓄电池和电动机输出特性以及牵引效率、总传动效率和等效能耗等特性。研究结果表明,当档位不变,发动机和电动机转速相同时,行驶速度随着加载转矩变化几乎保持不变。但随着加载转矩的增大,电动机最高转速和转速匹配范围均减小,相应的行驶速度范围减小。档位一定时,发动机、电动机和驱动轮功率大小与加载转矩成正比,加载转矩越大,发动机和电动机发挥的功率就越大。当档位和加载转矩不变时,发动机功率随发动机转速的变化规律与发动机负荷特性曲线变化相似,随电动机转速增大而略有减小;电动机功率随电动机转速的增大而增大;驱动轮功率随着发动机和电动机转速的增大均增大,且随电动机转速的变化更为敏感。电动机转速较低时,发动机功率大于电动机功率;随着电动机转速的增大,电动机功率会大于发动机功率。随着发动机转速和加载转矩的增大,电动机大于发动机的功率范围逐渐减小。档位一定时,发动机转矩随着电动机转速的增大而略有减小,随发动机转速的增大呈现先增大后减小的趋势;电动机转矩随着电动机转速和发动机转速的增大几乎保持不变。加载转矩一定时,电动机的转矩几乎是发动机转矩的2倍左右,加载转矩越大越明显。加载转矩一定时,蓄电池电压随着电动机电压的减小而增大,蓄电池电流随着电动机电压的增大而增大。电动机电压一定时,蓄电池电压随着加载转矩的增大而减小;加载转矩越大,随着电动机电压的增大,蓄电池压降就越大;而蓄电池电流随着加载转矩的增大而增大,且电动机电压的控制范围随着加载转矩的增大而减小;电动机电流随着加载转矩的增大而增大。当档位不变时,牵引效率、总传动效率和等效能耗随着加载转矩的增大而增大。当档位和加载转矩不变时,牵引效率、总传动效率和等效能耗随着电动机和发动机转速的增大而增大。混合动力拖拉机需要根据牵引效率、总传动效率和等效能耗选择最佳工作点。加载转矩为780N·m时,为模拟播种作业工况,与仿真结果相比较,等效能耗的误差不超过3%,说明仿真结果可靠。
     通过本课题的研究,可以为混合动力拖拉机其他类型耦合器的开发、其他类型电动机和发动机的匹配研究以及控制系统开发提供理论依据和技术支持,对节能减排拖拉机的进一步研发具有重要的理论意义和实用价值。
In recent years, the pressure of agricultural vehicles on the environment and resources is increasing year by year, so carrying out the research and development of new energy-conservation tractors has become the imminent important subject. However, in our country, there are few researches about the hybrid electric tractor. Therefore, carrying on an in-depth study on power coupler, design theory of drive system, hybrid electric drive characteristics and energy consumption of hybrid electric tractor have great significance to the development of hybrid electric tractor.
     Based on the requirements of the work and transmission characteristics for the hybrid electric drive system, and the nowadays study actualities of hybrid electric drive system home and abroad, designed and manufactured a power coupler for parallel hybrid electric tractor. Then a new type of hybrid electric tractor drive system based on a single-cylinder diesel engine and series DC motor was developed. The finished work and achieved results are generalized as follows:
     1. Design and simulation of the power coupler. Through the analysis of principles and characteristics of various types of power couplers and in combination with the requirements the work and transmission characteristics of tractors, deigned the transmission ratio, characteristic parameters and matching number of gear teeth of the power coupler, then a differential planetary gear transmission power coupler for parallel hybrid electric tractor was developed. On the basis of the establishment of the simulation model of the power coupler in SimulationX, three operation modes that the engine working only, motor working only and hybrid mode working were researched. Results show that, in each mode, the speed and torque relationships of sun gear, ring gear and planet carrier were in consistent with the speed and torque relationships of general differential planetary gear transmission; in the instant of start and stop, and in the process of acceleration and deceleration, the loss of internal torque and power of differential planetary gear transmission were produced; the torque direction of sun gear and ring gear was consistent with the rotation direction of engine or motor when which played a major role, while planet carrier torque was in the opposite direction with the rotation direction of engine or motor when which played a major role.
     2. Researches of the design theory and calculation method of hybrid electric tractor drive system. Based on the working condition of the tractor, a new type of electric tractor drive system was designed, which contained a single-cylinder diesel engine and series DC motor as input power, and the power coupler cooperated with the gearbox to control speed, then suggested the evaluation indicator and calculation model of dynamic and economic performance and the parameter design methods of each component of drive train of hybrid electric tractor, established the theory model of each component of drive train, and proposed the match principle of engine and motor power. Taking a hybrid electric tractor as design object, the driving force, climbing property and speed matching range of engine and motor on different load of engine and different shift, the total transmission efficiency of engine and motor in the same or reverse rotation and equivalent energy were calculation analyzed. Results show that the driving force and climbing property is proportional to the load of engine and is inversely proportional to the shift of gearbox, while speed matching range of engine and motor decreases when the load of engine increases, but has nothing to do with the shift changes. The total transmission efficiency on engine and motor in the same rotation is greater than on engine and motor in the reverse rotation, when engine and motor are the same speed. And the total transmission efficiency increases when the speed of engine or motor increases on engine and motor in the same of inverse rotation. When the level of shifts is lower, the power matching range of engine and motor is greater, and equivalent energy consumption is lower on the same speed of engine and motor. On certain shift, equivalent energy consumption increases when the speed of engine and motor increases. The equivalent energy consumption of hybrid electric tractor is less than the fuel tractor on the same power, and the highest energy conservation is up to24%.
     3. Simulation research on dynamic characteristics of hybrid electric tractor. The model establishment and parameters set of each component of hybrid electric have been processed in SimulationX, then developed the simulation system of hybrid electric tractor. Simulation analysis of dynamic characteristics of hybrid electric tractor in three operation modes-engine working only, motor working only and hybrid mode and in two different working conditions including no-load transport and sowing shows that, when the shift and external load is constant, the speed range and the maximum driving speed are the biggest in hybrid mode, second biggest in engine working only mode, the lowest speed range and minimum driving speed in motor working only mode. With the increase of the shift, the driving speed increases in three modes. The torque of engine, motor and some power coupling devices including sun gear, ring gear and planet carrier increases with the increase of the shift and external load. Torque is constant on the constant driving speed condition and will wave on acceleration or deceleration conditions. Driving wheel torque increases only with the external load increases, and has nothing with the shift. When the shift and external load is constant, the fuel consumption per hour of engine increases with the increase of engine speed; the battery output power and motor input voltage increases with the increase of motor speed and the motor input current remains almost unchanged;1h equivalent energy consumption increases with the increase of the engine and motor speed. With the increase of the shift and external load, the fuel consumption per hour of engine, the battery output power, the motor input voltage and current and1h equivalent energy consumption all increase. On the engine working only mode, the total transmission efficiency increases with the increase of the shift and external load. On the motor working only mode, the total transmission efficiency and motor efficiency increase with the increase of the speed of the motor, the shift and external load. On hybrid mode, the total transmission efficiency increases with the increase of the engine speed, motor speed, the shift and external load; and the motor efficiency increases with the increase of motor speed, the shift and external load. On certain shift, when driving speed is in the range of motor working only mode, the equivalent energy consumption of motor working only mode is the minimum; when driving speed is in the range of engine working only mode, the equivalent energy consumption of hybrid mode is lower. When the external load is constant, the driving speed and the corresponding equivalent energy consumption increase with the increase of the shift in all modes. At the constant shift and the same driving speed, the equivalent energy consumption increases with the increase of external load. In various engine speed and motor speed, the equivalent energy consumption will be different in the same driving speed in hybrid mode. That is to say, the hybrid electric tractor has the greater range of power selecting on some working condition in hybrid mode.
     4. Construction of the test platform and development of measuring and controlling system for hybrid electric tractor. Constructed the test platform for hybrid electric tractor, based on the modularization notion, developed measuring and controlling system in LabVIEW, and calibrated all sensors used for test platform.
     5. Experiment on dynamic characteristics of hybrid electric tractor. The experiments include these characteristics-the driving speed of hybrid electric tractor, power match of engine and motor, output power of driving wheel, output torque of engine, motor and driving wheel, the output properties of the battery and the motor, traction efficiency, total transmission efficiency, equivalent energy consumption and so on. Results show that on certain shift and the same speed of engine and motor, the driving speed remains almost unchanged with the change of load torque. But with the increase of the load torque, the highest motor speed and the speed matching range of engine and motor are reduced, so that the corresponding driving speed range is reduced. On certain shift, the power of engine, motor and drive wheel are direct proportion to the load torque, and the efficient power of engine and the motor increase with the increase of the load torque. When the shift and load torque are constant, the trend of the changing of engine power with the speed changing of engine was similar with the load characteristic of engine, and the engine power slightly decreases with the increase of the motor speed; the motor power increases with the increase of the motor rotation speed; the driving wheel power increases with the increase of the speed of motor and engine, and is more sensitive with the changing of motor speed. When the motor speed is lower, the engine power is greater than the motor power; when the motor speed increases, the motor power will be greater than the engine. As the engine speed and load torque increase, the range in which the motor power is greater than the engine power decreases gradually. On certain shift, the engine torque slightly decreases as the motor speed increases, and increases first and then decreases with the increase of engine speed; the motor torque remains almost unchanged as the increase of the speed of motor and engine. When the load torque is constant, the motor torque is almost twice of the engine torque, and the greater the torque loads, the more obvious it is. On constant load torque, the battery voltage decreases with the increase of motor voltage, and the battery current increases with the increase of motor voltage. The battery voltage decreases with the increase of load torque on constant motor voltage; the greater the load torque, the greater the battery voltage drop with the increase of the motor voltage; the battery current increases with the increase of load torque, and the control range of motor voltage decreases with the increase of load torque; the motor current increases with the increase of load torque. When the shift is constant, the traction efficiency, total transmission efficiency and equivalent energy consumption increase with the increase of load torque. When the shift and load torque are constant, the traction efficiency, total transmission efficiency and equivalent energy consumption increase with the increase of the motor and engine speed. Hybrid electric tractor needs to select the best operating point according to the traction efficiency, total transmission efficiency and equivalent energy consumption. When the load torque is780N-m, which simulates the sowing operation condition, the equivalent energy consumption error is less than3%compared with simulation results, that is to say, the simulation results are reliable.
     The research on this project is expected to provide theoretical basis and technical support for the development of other types of coupler, the power match research of other types of engine and motor and development of control system of hybrid electric tractor, and is of important theoretical significance and practical value to promote the development of energy conservation and emission reduction tractor.
引文
1 张立伟,胡广艳,游小杰,等.混合动力电动汽车中电力电子技术应用综述[J].变频器世界,2006,(10):91-95.
    2 电动汽车技术发展趋势及未来发展前景[EB/OL].(2007-08-24)[2008-10-12].http://technic.carsea.com/jsqy/20070824/140818.html.
    3 俞明,罗玉涛,黄榕清.一种混联式电动汽车驱动系统[J].华南理工大学学报(自然科学版),2001,29(8):90-92.
    4 胡欢.插电式混合动力汽车现状[J].城市车辆,2009,(7):43-44.
    5 任海军.美汽车节能减排计划出台 二氧化碳排放量将减三分之一[EB/OL].(2009-05-21)[2009-06-18]. http://www.022net.com/2009/5-21/433921312661361.html
    6 新华网.法国推出电动车及混合动力车发展计划[J],商品与质量,2009,(45):19.
    7 孟为.轻型商用车燃油消耗标示于明年强制实施[EB/OL].(2009-07-10)[2009-07-22].http://auto.sina.com.cn/news/2009-07-10/0921506928.shtml
    8 鲍辰宇,冯旭云.混合动力汽车研究现状和发展趋势[J].中国科技信息,2006,(18):119-121
    9 麻友良,陈全事.混合动力电动汽车的发展[J].公路交通科技,2001,(1):77-80
    10 H Mousazadeh, A Keyhani, A Javadi, et al. Life-cycle assessment of a Solar Assist Plug-in Hybrid electric tractor (SAPHT) in comparison with a conventional tractor[J]. Energy Conversion and Management,2011, (52):1700-1710.
    11 Wyczalek Floyd A. Market mature 1998 hybrid electric vehicles. IEEE AES System Magzine,1999, (3)-15.
    12启动未来-丰田PRIUS普锐斯三代成长历程[EB/OL]. http://auto.sina.com.cn. (2012-02-20)[2012-02-22]. http://auto.sina.com.cn/news/2012-02-20/1824919696.shtml
    13钟勇.基于CVT的类菱形混合动力电动汽车系统研究与仿真[D].湖南:湖南大学,2005
    14王文东.ZH弱混合动力电动汽车动力总成的研究与仿真[D].吉林:吉林大学,2007
    15赵涛.一种新型混合动力电动汽车的动力系统设计_仿真及电机驱动系统的研究[D].合肥:合肥工业大学,2005
    16陈健.野马混合动力电动汽车能量控制策略的研究与仿真[D].四川:四川大学,2006
    17杨妙梁.本田飞度-Fit混合动力车[J].汽车与配件,2010,(48):36
    18本田公开新一代动力传动系统技术进一步产品的燃效性能[EB/OL].
    19舒真.日产‘Tino HYBRID"新型环保车[J].汽车维修与保养,2000,(6):24
    20彭斐,王怡洁.日产风雅混合动力车[J].汽车与配件,2011,3(35):42-46
    21中国电池工业网站.[2009-05-10].http://www.chnbia.com.
    22凤凰网汽车试驾通用混合动力全系“绿”动未来[EB/OL].(2011-10-27)[2012-2-23].http://car.southcn.com/7/2011-10/27/content_32162756.htm
    23 http://www.cnr.cn.福特Fusion荣膺美国《汽车族》杂志大奖[EB/OL].(2009-11-20)[2012-2-23].http://www.cnr.cn/auto/autogb/kczx/09hydt/200911/t20091120_505644617.html
    24混合动力汽车的未来发展历史及前景[EB/OL].(2009-11-20)[2012-2-23].http://auto.hexun.com/2010-04-29/123578810.html
    25克莱斯勒最新混合动力汽车有望2012年亮相[EB/OL].(201 1-01-21)[2012-2-23].http://miit.ccidnet.com/art/32559/20110121/2301465_1.html
    26王伟.矢量变频技术在混合动力电动汽车上的应用[D].大连:大连理工大学,2007
    27明轩.奥迪Q5混合动力车[J].汽车与配件,2011,(5):46
    28百度百科.保时捷[EB/OL].[2012-03-06]. http://baike.baidu.com/view/5523.htm
    29保时捷将上市“Sayenne S'’的混合动力车[J].当代汽车,2009,(4):9
    30高辉松.电动拖拉机驱动系统研究[D].南京:南京农业大学,2008.
    31国内混合动力汽车技术发展现状[EB/OL].(2010-04-09)[2012-03-07].http://auto.163.com/10/0409/14/63R9MSGQ00084AIR.html
    32奇瑞-新能源汽车产业化先锋[EB/OL].(2009-09-03)[2009-09-03].http://news.mycarl68.com/2009/09/134146_1.html
    33华西都市报.绿色技术推动低碳汽车新生活[EB/OL].(2010-04-23)[2012-2-23].http://www.wccdaily.com.cn/epaper/hxdsb/html/2010-04/23/content_180990.htm
    34蒋婷婷.环保:自主品牌必须跨越的门槛[EB/OL].(2008-04-18)[2008-11-5].http://www.cfi.net.cn/p20080418000785.html
    35汽车之家.吉利将推轻度混合动力车型[EB/OL].(2011-03-01)[)2012-02-23].http://club.autohome.com.cn/bbs/thread-c-799-9674535-1.html?owner=1
    36周庆磊.国内主要汽车企业混合动力战略及产品[EB/OL].(2010-04-10)[2012-03-07].http://auto.163.com/10/0410/21/63UKLC5F00084AIR.html
    37长安杰勋混合动力轿车正式上市[J].汽车与安全,2009,(7):32
    38长安“十二五”中高端升级:推重混创品牌[EB/OL].(2012-03-01)[)2012-03-02].http://auto.sina.com.cn/news/2012-03-01/0535926227.shtml
    39谢光耀.三菱扶桑混合动力卡车今年夏季上市[J].商用汽车新闻,2006,(14):5
    40三菱重工推出其世界首台混合动力叉车[EB/OL].(2010-02-22)[2012-03-07].http://blog.china.alibaba.com/blog/zhoushyomapp/article/bO-il1035640.html
    41沈黎.混合动力挖掘机[J].交通世界(建养机械),2009,8(15):34-37
    42混合动力之星——丰田的燃料电池混合动力叉车[J].叉车技术,2008,(02):30
    43沃尔沃发布混合动力卡车,燃效提高35%[J].中国科技信息,2006,(07):23
    44司马峰山.沃尔沃混合动力卡车——全球垃圾处理领导者[J].城市车辆,2008,(05):35
    45郑满宁.国外产业巨头青睐混合动力卡车[J].商用汽车新闻,2009,(23):10
    46路得.混合动力垃圾收集车亮相纽约cvworld.cn[EB/OL].(2009-06-23)[2009-07-22]. http://www.cvworld.cn/divgjsyc_list.asp?id=627
    47中国挖掘机械网.詹阳动力宝马展推出五款新品[EB/OL].(2008-12-01)[2009-07-22].http://www.cema.org.cn/show/416_2587.html
    48中国工业报.工程机械采用混合动力将成产品发新趋势?[EB/OL].(2009-09-04)[2009-09-04]. http://news.21-sun.com/detail/2009/09/2009090409481399.shtml
    49慧聪工程机械网.江麓精品亮相长株潭装备工业配套合作展[EB/OL].(2009-04-05) [2009-07-22].http://info.cm.hc360.com/2009/04/151359119840.shtml
    50工程机械行业节能混合动力挖掘机等全调查[EB/OL].(2010-12-14)[2012-03-07].http://www.cnerent.com/xinwen/qushi/20101214/109682_3.html
    51混动技术不断完善工程机械发展不断提速[EB/OL].(2011-09-05)[2012-03-07].http://www.bmlink.com/news/message/342676.html
    52柴喜男.节能、低碳、环保混合动力挖掘机成主流[EB/OL].(2011-12-15)[2012-03-08].http://www.inmachine.com/bbs/view.aspx?TopicId=15423
    53 Scientific American [EB/OL]. [2009-05-12]. http://www.sciam.com/.
    54高辉松,朱思洪,吕宝占.电动拖拉机发展及其关键技术[J].拖拉机与农用运输车,2007,34(06):4-7
    55 Bodria L, Fiala M. Design and testing of an electric-powered walking tractor [J].J Agric Engng Res, 1995, (60):57-62
    56美国Gorilla车辆公司[EB/OL].[2009-05-12].http://www.gorillavehicles.com.
    57 Stanislav F, Dmitry I, Lev M, et al. Complete traction electric equipment sets of electro-mechanical drive trains for tractors. IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia,2010.
    58 Electrically assisted powertrains for agricultural machinery, in particular tractors [J]. VDI-Berichte No.2060,2009:67-72
    59 Hydrogen-powered tractor unveiled at Paris show[EB/OL]. [2011-03-10]. http://www.fuelcellsbulletin.com
    60 Capacity of Texas[EB/OL]. [2011-03-10]. http://capacitytexas.com/Products/Phett.aspx
    61 Vision Motor Crop[EB/OL]. [2012-03-10]. http://www.visionmotorcorp.com/zett.asp#.
    62沈阳农业大学科研推广处.IGD-900型电动旋耕机[J].新农业,2001,(1):10
    63 GB/T19596-2004,电动汽车术语[S].
    64严钦山.混合动力电动汽车总成控制器的研究与开发[D].湖南:湖南大学,2007
    65李欣.并联式混合动力电动汽车系统的模糊控制策略研究[D].西安:西安理工大学,2007.
    66李起忠.并联混合动力电动汽车传动系统的建模与仿真研究[D].西安:西安理工大学,2007.
    67谢进利.PHEV中差动行星轮式动力合成器的虚拟样机仿真与基于ADVISOR的整车性能分析[D].南京:南京农业大学,2009.
    68陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    69胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2002
    1李美军.混合动力电动汽车动力耦合方式的分类与比较[J].公路与汽运,2008,(2):24-27.
    2 Xiong Weiwei, Zhang Yong,Yin Chengliang. Configuration design, energy management and experimental validation of a novel series-parallel hybrid electric transit bus[J]. Journal of Zhejiang University SCIENCE A,2009,10(9): 1269-1276.
    3 V. Galdi, L. Ippolito, A. Piccolo, et, al. A genetic-based methodology for hybrid electric vehicles sizing[J]. Soft Computing,2001,(6): 451-457.
    4 H. Yang, B. Kim, Y. Park, et al. Analysis of planetary gear hybrid powertrain system part 2:output split system[J]. International Journal of Automotive Technology,2009,10(3):381-390.
    5 J. Kim, J. Kang. Y, Kim, et al. Design of power split transmission:design of dual mode power split transmission[J]. International Journal of Automotive Technology,2010,11(4):565-571.
    6 S. B. Han, Y. H. Chang, Y. J. Chung, et al. Fuel economy comparison of conventional drive trains series and parallel hybrid electric step vans[J]. International Journal of Automotive Technology, 2009,10(2):235~240.
    7 钟勇,钟志华,金秋谈,等.一种新型HEV动力耦合器的ADAMS建模与仿真研究[J].汽车工程,2006,28(10):877-880.
    8 赵福水,陶栋材,龙英,等.混合动力汽车动力耦合系统结构与发展分析[J].湖南农机,2007,(9): 12-13.
    9 邹乃威.无级变速混合动力汽车动力耦合及速比控制研究[D].吉林:吉林大学,2009.
    10孙逢春,何洪文.混合动力车辆的归类方法研究[J].北京理工大学学报,2002,22(1):40-44.
    11黄贤广,林逸,何洪文,等.混合动力汽车机电动力耦合系统现状及发展趋势[J].上海汽车,2006,(7):2-5.
    12何耀华,雷芳芳.新型多动力源动力耦合装置传动特性研究[J].机械设计,2009.26(8):50~52.
    13高建平,何洪文,孙逢春混合动力电动汽车机电耦合系统归类分析[J].北京理工大学学报,2008,28(3):197-201.
    14崔星,项昌乐.混合动力系统分流耦合机构工作模式分析[J].农业工程学报.2009,25(11):158~163.
    15邹乃威,刘金刚,周云山,等.混合动力汽车行星机构动力耦合器控制策略仿真[J].农业机械学报,2008,39(3):5-9.
    16秦大同,游国平,胡建军.新型功率分流式混合动力传动系统工作模式分析与参数设计[J].机械工程学报,2009,45(2):184~191.
    17张展,张弘松,张晓维编著.行星差动传动装置[M].北京:机械工业出版社,2009.
    18饶振刚编著.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    19 GB/T 3480-1997中华人民共和国国家标准:渐开线圆柱齿轮承载能力计算方法.中国标准出版社,1997.
    20成大先主编.机械设计手册(单行本):轴及其联接[M].北京:化学工业山版社,2004.
    21成大先主编.机械设计手册(单行本):联接与禁锢[M].北京:化学工业出版社,2004.
    22成大先主编.机械设计手册(单行本):轴承[M].北京:化学工业出版社,2004.
    1 D.Sinoquet, G.Rousseau, Y.Milhau. Design optimization and optimal control for hybrid vehicles[J].Optim Eng,2011,(12):199-213.
    2 王利花.并联混合动力汽车用行星齿轮机构的研究[D].西安:西安理工大学,2008.
    3 白钰枝.并联式混合动力汽车动力合成装置的研究[D].西安:西安理工大学,2007.
    4 雷芳芳.混合动力电动汽车动力合成与切换装置工作特性的研究[D].武汉:武汉理工大学,2009.
    5 邹乃威.无级变速混合动力汽车动力耦合及速比控制的研究[D].吉林:吉林大学,2009.
    6 张松明,吴湘淦.农业机械运用原理[M].北京:中国农业机械出版社,1990.
    7 徐立友,周志立,张明柱,等.拖拉机液压机械无级变速传动系统与发动机的合理匹配[J].农业工程学报,2006,22(9):109-113.
    8 余志生主编.汽车理论[M].北京:机械工业出版社,2000,10.
    9 周一鸣主编.汽车拖拉机学-汽车拖拉机理论[M].北京:中国农业大学出版社,2000,7.
    10华中农业大学主编.拖拉机汽车学(第四册)-拖拉机汽车理论(第二版)[M].北京:农业出版社,1991,5.
    11黑龙江省农业机械化学校主编.拖拉机汽车[M].北京:农业出版社,1993.。5.
    12机械工业洛阳拖拉机研究所主编.拖拉机设计手册(上册)[M].北京:机械工业出版社,1994,8.
    13高辉松,王珊珊,朱思洪.电动机拖拉机驱动力与传动效率特性试验[J].农业机械学报,2008,39(10):40-43.
    14高辉松,朱思洪.电动拖拉机传动系设计理论与方法研究[J].南京农业大学学报,2009,32(1):140-145.
    15 R. Ionescu, S. Nastasoiu. An evaluation criterion for tractive and economic performance in the engine-transmission system of the farming tractor [J]. Bulletin of Transilvania University of Brasov, 2008,1(50):31-34.
    16高辉松.电动拖拉机驱动系统研究[D].南京:南京农业大学,2008.
    17 D Chol, H Kim. Evaluation of fuel economy for a parallel hybrid electric vehicle[J]. KSME International Journal,2002,16(10):1287-1295.
    18叶心,秦大同,胡明辉,等.ISG型中度混合动力汽车能量管理策略研究[J].系统仿真学报,2011,23(4):832-837.
    19秦大同,叶心,胡明辉,等.ISG型中度混合动力汽车驱动工况控制策略优化[J].机械工程学报,2010,46(12):86-92.
    20杜骞.重型混合动力电动汽车能耗测试及评价方法研究[D].武汉:武汉理工大学,2008.
    21陈龙.混合动力电动汽车动力性与经济性分析[D].武汉:武汉理工大学,2008.
    22肖平.混合动力电动汽车整车匹配与电机控制系统研究[D].安徽:安徽农业大学,2007.
    23万佳.混合动力电动汽车总成参数匹配与控制策略研究[D].南昌:南昌大学,2008.
    24陈小国.混合动力车辆多领域统一建模与仿真[D].上海:华中科技大学,2007.
    25李小华,罗福强,汤东.多项式插值法绘制发动机万有特性曲线[J].农业工程学报,2004,20(5):138-140.
    26周广猛,郝志刚,刘瑞林,等.基于MATLAB的发动机万有特性曲线绘制方法[J].内燃机与动力装置,2009,(2):34-36.
    27易雪梅,吴伶.用MATLAB语言绘制发动机万有特性的两种方法[J].北京汽车,2005,(5):33-35.
    28关志伟,杨玲,施继红,等.基于MATLAB语言的发动机万有特性研究[J].吉林农业大学学报,2003,25(3):339-342.
    29赵亚男,赵福堂,刘碧荣.汽车发动机特性仿真研究[J].北京交通大学学报,2008,32(1):97-100.
    30汤蕴璆,罗应力,梁艳萍编著.电机学[M].北京:机械工业出版社,2008,5.
    31王正茂,阎治安,崔新艺,等编著.电机学[M].西安:西安交通大学出版社,2000,9.
    32徐德淦编著.电机学[M].北京:机械工业出版社,2004.
    33陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005,(3):1-5.
    34 V H Johnson. Battery performance models in ADVISOR[J]. Journal of Power Sources,2002, (110):321-329.
    35 Massimo Ceraolo, Giovanni Pede. Techniques for Estimation the Residual Range of an Electric Vehicle[J]. IEEE Transactions on vehicular technology,2001,50(1):109-115.
    36 Bumby J R, Clarke P H, Forster I, et al. Computer Modeling of the Automotive Energy Requirements for Internal Combustion Engine and Battery Electric-Powered Vehicle[C]. IEE Proceedings,1985,132(5):265-279.
    37 Salameh Z M, Casacca M A, Lynch W A. A Mathematical Model for Lead-Acid Batteries[J]. IEEE Transactions on Energy Conversions,1992,7(1):93-97.
    38 Eckhard Karden, Peter Mauracher, Friedhelm Schope. Electrochemical Modeling of lead/acid batteries under operating conditions of electric vehicles[J]. Journal of Power Sources,1997, (64):175-180.
    39张秀然,张希志,蔡振江主编.电工技术[M].北京:中国水利出版社,2001,7.
    40饶振刚编著.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    41何洪文,余晓江,孙逢春.电动车辆设计中的匹配理论研究[J].北京理工大学学报,2002,22(6):705-707.
    42王庆年,何洪文,李幼德,等.并联混合动力汽传动系参数匹配[J].吉林工业大学自然科学学报,2000,30(1):72-75.
    43何洪文,孙逢春,李幼德.混合动力轻型客车动力传动系的设计研究[J].车辆与动力技术,2001,(84):18-23.
    44万耀青,杨磊,马彪.车辆动力传动系的耦合与匹配研究[J].机械设计,2006,23(4):3-6.
    45 Mehrdad Ehsani, Khwaja Rahman M. Propulsion system design of electric and hybrid vehicles[J]. IEEE Transactions on Industrial Electronics,1997,44(1):19-27.
    46王文东.ZH弱混合动力电动汽车动力总成的研究与仿真[D].吉林:吉林大学,2007.
    47彭涛,陈全世,田光宇,等.并联混合动力电动汽车动力系统的参数匹配[J].机械工程学报,2003,39(2):69-73.
    48武小兰,王军平,曹秉刚,等.充电式混合动力电动汽车动力系统的参数匹配[J].汽车工程,2008,30(12):1095-1098.
    49卢山,高峰,史广奎.并联型混合动力汽车的仿真研究[J].机电工程技术,2005,34(5):59-61.
    50 B M Baumann, G Washington, B C Glenn, et, al. Mechatronic design and control of hybrid electric vehicles[J]. IEEE/ASME Transactions on mechatronics,2000,5(1):58-71.
    51孙逢春,何洪文.混合动力车辆的归类方法研究[J].北京理工大学学报,2002,22(1):40-44.
    52李振磊.混合动力电动汽车的动力系统设计与仿真[D].湖南:湖南大学,2007.
    53王书林,赵茜,吴刚等编著.电力牵引控制系统[M].北京:中国电力出版社,2005.
    54蔡方耀编著.电动机应用计算指南[M].北京:中国计划出版社,1998.
    55周龙宝主编.内燃机学[M].北京:机械工业出版社,1999,6.
    1 陈晓东,何仁,杨正林.混合动力电动汽车性能仿真软件研究与开发[J].交通运输工程学报,2002,2(1):114-117.
    2 严冬.混合动力电动车参数匹配及电机控制系统仿真研究[J].武汉:武汉理工大学,2007.
    3 Wipke K B, Cuddy M R, Burch S D. ADVISOR 2.1:A User-friendly Advanced Powertrain Simulation Using a Combine Backward/Forward Approach[J]. IEEE Transaction on Vehicular Technology,1999,48(6):1751-1761.
    4 T.Markel, A.Brooker, T.Hendricks, et al. ADVISOR:a systems analysis tool for advanced vehicle modeling[J]. Journal of Power Sources,2002, (110):255-266.
    5 张翔,赵韩,钱立军,等PSAT软件的前向仿真方法.计算机仿真,2002,,22(5):219-222.
    6 张翔,赵韩,钱立军,等.电动汽车仿真软件PSAT,上海汽车,2003:27-30.
    7 陈清泉,孙逢春,祝嘉光编著.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    8 杨为琛,孙逢春.混合电动汽车的技术现状[J].车辆与动力技术,2001,(84):41-46.
    9 Butler K L, Ehsani M, Kamath P. A Matlab Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design[J]. IEEE Transaction on Vehicular Technology, 1999,48(6):1770-177.
    10王庆年,刘志茹,王伟华,等.混合动力汽车正向建模与仿真[J].汽车工程,2005,27(4):392-394.
    11吴剑,张承慧,崔纳新,等CRUISE软件及其在电动汽车仿真中的应用.电动试验武汉会议doc论文,.005:344~349.
    12张翔,钱立军,张炳力,等.电动汽车仿真软件进展[J].系统仿真学报,2004,11(8):1621-1623.
    13刘艳芳编著SimulationX精解与实例[M].北京:机械工业出版社,2010,9.
    14陈小国.混合动力车辆多领域统一建模与仿真[D].武汉:华中科技大学,2007.
    15陈洪燕,刘钦渠.基于Modelica语言的传统汽车建模与仿真[J].客车技术与研究,2011,(3):12-15.
    16 Wenyong Li, A Abel, K Todtermuschke. Hybrid vehicle power transmission modeling and simulation with Simulation X[J]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,1710-1717.
    1 GB/T 18385-2005中华人民共和国国家标准:电动汽车动力性能试验方法[S].中国标准出版社,2005-07-13.
    2 GB/T 18386-2005中华人民共和国国家标准:电动汽车能量消耗率和续驶里程试验方法[S].中国标准出版社,2005-07-13.
    3 GB/T 18488.1-2001中华人民共和国国家标准:电动汽车用电机及其控制器技术条件[S].中国标准出版社,2001-11-02.
    4 GB/T 18488.2-2001中华人民共和国国家标准:电动汽车用电机及其控制器试验方法[S].中国标准出版社,2001-11-02.
    5 GB/T 19752-2005中华人民共和国国家标准:混合动力电动汽车动力性能试验方法[S].中国标准出版社,2005-05-23.
    6 GB/T 19753-2005中华人民共和国国家标准:轻型混合动力电动汽车能量消耗量试验方法[S].中国标准出版社,2005-05-23.
    7 GB/T 19754-2005中华人民共和国国家标准:重型混合动力电动汽车能量消耗量试验方法[S].中国标准出版社,2005-05-23.
    8 廖权来,罗玉涛.电动汽车试验研究[J].机械工程学报,1997,33(5):71-76.
    9 陈全世,仇斌,谢起成,等.燃料电池电动汽车[M].北京:清华大学出版社,2005.05.
    10黄坤雄,谢飞,王璟琳.电动汽车整车运行性能检测试验技术研究[J].汽车研究与开发,2004,(9):17-19.
    11黄妙华,金国栋,邓亚东,等.混合动力电动汽车性能试验与仿真[J].汽车技术,2004,(9):20-23.
    12张卫钢,蹇小平,耿莉敏,等.基于燃油汽车改制的电动汽车试验[J].长安大学学报(自然科学版),2006,26(5):74-78.
    13高辉松.电动拖拉机驱动系统研究[D].南京:南京农业大学,2008.
    14付松青,彭磊,秦孔建,等.混合动力电动汽车测试方法[J].汽车工程师,2010,(10):49-52.
    15张京明,王守军.PHEV再生制动试验台建模与仿真[J].机械设计与制造,2010,(4):58-60.
    16赵峰,张文明,罗禹贡,等.北方地区冬季工况下混合动力轿车油耗试验研究[J].汽车技术,2010,(10):46-49.
    17李战龙.混合动力汽车试验台架的研究与开发[D].吉林大学,2004.
    18王伟华,金启前,曾小华,等.混合动力汽车动力总成试验台研究[J].中国公路学报,2005,18(2):103-106.
    19谢起成,王冬,田光宇.混合动力电动汽车(HEV)动力系统试验台的模块化设计研究[J].交通运输工程学报,2001,1(2):32-36.
    20钱向明,徐澍敏.基于虚拟仪器的混合动力汽车试验台架研究[J].拖拉机与农用运输车,2009,36(4):18-20.
    21李国洪,刘鲁源,王晓明,等.混合动力系统的台架试验研究[J].汽车技术,2005,(11):22-24.
    22张炳力,徐小东.混合动力汽车动力系统测试平台的研究[J].农业装备与车辆工程,2008,(11):24-27.
    23淄博科创电子有限公司.CTM-2002MB汽车拖拉机综合测试仪使用说明书[M].
    24淄博科创电子有限公司.JWY-1型微机多功能油耗仪使用说明书[M].
    25付百学,岳伟东,胡胜海.汽车油耗智能检测技术研究[J].黑龙江工程学院学报(自然科学版),2006,20(3):44-46.
    26唐岚.汽车测试技术[M].北京:机械工业出版社,2006.
    27张西振,吴良胜.发动机原理与汽车理论[M].北京:人民交通出版社,2008.
    28董辉.汽车用传感器[M].北京:北京理工大学出版社,2009.
    29张光荣.磁粉离合器和制动器的结构、性能及选用[J].机电工程技术,2004,33(10):77-79.
    30湘仪动力测试仪器有限公司.JC型转矩转速传感器使用说明书[M].
    31闻岩,亓家祥,杨盛福等.JC-2转矩转速传感器二次仪表的研制[J].实验技术与管理,1999,16(6):46-48.
    32梁毓明,陈德海.JCZ型转矩转速传感器输出信号的相位差检测方法[J].南方冶金学院学报,2005,26(4):14.
    33魏彦.发动机测功系统转速检测研究[J].中国测试技术,2005,(6):84-86.
    34齐长远,康雪艳,王爱明.一种非接触高精度的转速测量方法[J].微型计算机与应用,2000,(12):21-23.
    35汤德源.传感器的静态标定及程序[J].仪表技术与传感器,1989,(5):26-28.
    36 National Instruments Corporation. M Series Help[M].2004,8.
    1 秦树人.机械工程测试原理与技术[M].重庆大学出版社,2002.
    2 李明辉,刘连生,曲培树.基于虚拟仪器的自动测试系统研究[J].电子测试,2008,(3):37-42.
    3 于家明,何礼高.基于虚拟仪器的电机转矩转速测试系统[J].电机与控制应用,2008,35(1):36-40.
    4 王磊,陶梅编著.精通LabVEW8.0[M].北京:电子工业出版社,2007,1.
    5赵冬梅.基于LabVIEW的电机实验系统的研究[J].北京:中国农业大学,2005.
    6 杨乐平,李海涛,肖凯等.虚拟仪器技术概述[M].北京:电子工业出版社,2003.
    7 张易知,肖啸,张喜斌等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2002.
    8 秦树人.虚拟仪器[M].北京:中国计量出版社,2004.
    9 崔红梅.面向测试系统的虚拟仪器设计与应用研究[D].内蒙古:内蒙古农业大学,2007.
    10宋波,陈一民.关于虚拟仪器开发工具的比较与选取[J].国外电子测量技术,2006,25(8):1-5.
    11孙仁敬.基于LabVIEW的多传感器信息采集平台[D].北京交通大学,2006.
    12王海宝,吴光杰,谭泽富等.LabVIEW虚拟仪器程序设计与应用[M].成都:西南交通大学出版社,2005.
    13刘君华,贾惠芹,丁晖等.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2001.
    14刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.
    15石博强,赵德永,李畅等.LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2002.
    16汪敏生等.LabVIEW基础教程[M].北京:电子工业出版社,2002.
    17 Robert H. Bishop编著.乔瑞萍,林欣译.LabVIEW6i实用教程[M].北京:电子工业出版社,2003,1.
    18侯国屏,王砷,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M]一北京:清华大学出版社,2005.
    19李念强,魏长智,潘建军,等编著.数据采集技术与系统设计[M].北京:机械工业出版社,2009,2.
    20陈辣.数据采集方法[M].北京:中国审计出版社,2001.
    21张小虹编著.信号与系统[M].西安:西安电子科技大学出版社,2004,1.
    22陈后金,胡健,薛健编著.信号与系统(第二版)[M].北京:清华大学出版社,北京交通大学出版社,2005,7.
    23肖忠祥.数据采集原理[M].西安:西北工业大学出版社,2001,2.
    24王世一编著.数字信号处理[M].北京:北京理工大学出版社,2009,6.
    25郭虹,艾延延,盛元生.数据采集与处理[M].北京:航空工业出版社,1999.
    26马金龙,胡建萍,王宛苹,等编著.信号与系统(第二版)[M].北京:科学出版社,2010,4.
    27 Paulo S. R. Diniz, Eduardo A. B. da Sliva, Sergio L. Netto编著.门爱东,杨波,全子一编译.数字信号处理-系统分析与设计[M].北京:电子工业出版社,2004.7.
    28赵光宙,舒勤编著.信号分析与处理[M].北京:机械工业出版社,2001,8.
    29高辉松.电动拖拉机驱动系统研究[D].南京:南京农业大学,2008.
    30 Robert H. Bishop编著.乔瑞萍,林欣译LabVIEW7实用教程[M].北京:电子工业出版社,2005,8.
    31雷振山编著LabVIEW7 Express实用技术教程[M].北京:中国铁道出版社,2004,3.
    32周振安,范良龙,王秀英等.数据采集系统的设计与实践[M].北京:地震出版社,2005.
    33任海东,尹文庆,胡飞.基于LabVIEW的三种相位差测量法的对比分析[J].科学技术与工程,2010,10(1):263-268.
    34林顺应,卫翀华.基于LabVIEW的虚拟频谱分析法测量相位差的实现[J].北京石油化工学院,2006,14(3):13-15.
    35曾璐,杨蓓.基于LabVIEW的虚拟相关法测量相位差仿真仪设计[J].仪器仪表与分析检测,2004,,(4):18-20.
    36严颂庄.基于LabVIEW的频率测量虚拟仪器系统的研究与应用[D].湖南:湖南大学,2003.
    37刘倩,王玉柱,沈晓东等.基于LabVIEW的虚拟相位差计的研制[J].微计算机信息,2005,21(4):168-169.
    1 GB/T 19752-2005中华人民共和国国家标准:混合动力电动汽车动力性能试验方法[S].中国标准出版社,2005-05-23.
    2 GB/T 19753-2005中华人民共和国国家标准:轻型混合动力电动汽车能量消耗量试验方法[S].中国标准出版社,2005-05-23.
    3 GB/T 19754-2005中华人民共和国国家标准:重型混合动力电动汽车能量消耗量试验方法[S].中国标准出版社,2005-05-23.
    4 JB/T 9720-2001中华人民共和国机械行业标准:工程机械变速器性能试验方法[S].中国标准出版社,2001-04-03.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700