用户名: 密码: 验证码:
碳热还原铝土矿浮选尾矿制取一次铝硅合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选矿拜耳法生产氧化铝工艺的开发,对提高我国氧化铝工业的市场竞争力,合理利用中低品位铝土矿资源做出了重大贡献。但是,选矿过程中要产出占原矿25%左右的尾矿,这部分尾矿如不加以利用不仅会浪费资源,而且还会占用土地,污染环境。目前,大约60%的铝是以铝合金的形式进入消费领域的,其中,尤以铝硅合金的消费量为大。以铝土矿浮选尾矿为原料,碳热还原法生产铝硅合金较之传统的兑掺法,可以缓解铝土矿资源的压力,充分利用二次资源,减少设备投资,降低能耗,提高能量利用率,是未来铝工业发展的趋势。
     本文首先对以铝土矿浮选尾矿、烟煤、亚硫酸盐纸浆废液为制团原料的物料配比进行了准确地计算,得出理论物料配比为铝土矿浮选尾矿:氧化铝:烟煤:干粉粘结剂:水=100:25.1:74.0:19.7:7.91。然后,在此基础上,以抗压强度和气孔率作为衡量生团块性能的指标,通过单因素实验和正交实验考察了制团压力、干粉粘结剂配入量、配水量及尾矿粒度对生团块性能的影响。结果表明,对生团块抗压强度和气孔率影响最大的分别是干粉粘结剂含量和尾矿粒度,配水量对二者的影响最小。最佳的工艺条件为:制团压力22.5 MPa,干粉粘结剂含量9%,配水量13%,尾矿粒度0.420~0.178 mm,此时生团块的抗压强度为27.8 MPa,气孔率为18.4%,均优于实际工业指标。
     实验同时研究了焙烧条件对团块性能的影响规律。结果发现,团块的气孔率随着焙烧温度的升高及焙烧时间的延长而逐渐增大,且增大的幅度较大,而抗压强度则不断下降,下降的幅度逐渐变小。在焙烧温度升至500℃之前,团块几乎不导电,此后在700℃焙烧时,其电阻率下降明显,1000℃后电阻率降幅趋缓,并有逐渐增大的趋势。
     在真空碳管炉中以氩气为保护气体进行了碳热还原铝土矿浮选尾矿制取一次铝硅合金的研究。结果表明,当气体压力接近常压,反应温度1900℃,反应时间1h,烟煤配入量为理论量的95 wt.%时,可获得质量较优的一次铝硅合金。所获得的一次铝硅合金由6个相组成,包括Al-Si-Fe相,碳化物相及氧化物相。
     电弧炉冶炼过程中,当输出电流稳定在1100 A时,合适的输出电压为25~30 V。配煤量为理论量的93 wt.%时,所得炉底残渣中Al_2O_3及SiC的含量较小。所获得的一次铝硅合金包括有6个相,主要是一次合金相,其中铝含量为52.5%,硅含量为23.2%,另含有很少量的的金属杂质钛、钙等以及氧化物和碳化物。烟气的主要成分为Al_2O_3、SiO_2。
     对碳热共同还原Al_2O_3、SiO_2制取铝硅合金的热力学行为进行了分析,得出该还原反应需很高的温度,合适的反应温度为2000~2100℃。利用XRD、SEM-EDS等技术分别对真空碳管炉中各不同反应温度及电弧炉内不同反应区带的产物进行了分析,利用TG/DTA技术研究了在动态气氛下的整个碳热还原反应过程。结果表明,碳热共还原Al_2O_3、SiO_2的反应过程与碳热还原铝土矿尾矿的反应过程极为相近,可分为4个阶段:烟煤热解阶段;Al_2O_3、SiO_2的晶型转变阶段;碳化物的生成与分解阶段;生成物的损失阶段。关于碳热共还原Al_2O_3、SiO_2的4种还原机理中,碳化物生成与分解机理能较好地解释反应过程中出现的反应现象,并根据实验现象对这一理论进行了修正,提出了具体的反应方程为:SiO_2+3C=SiC+2CO, 2Al_2O_3 + 9C = Al_4C_3 + 6CO,3SiO_2+2Al_4C_3=8Al+3Si+6CO,3SiC+Al_2O_3=2Al+3Si+3CO。
     利用DTA技术在动态高纯氩气气氛下以不同的升温速率10,15,20和25 K/min对碳热法制取铝硅合金的动力学行为进行了研究。结果表明,不同的升温速率下均存在6个吸热峰,这6个峰所处的温度范围大致在1220~1240 K、1340~1360 K、1680~1730 K、1850~1950 K、1970~2050 K、2100~2160 K。利用Flynn-Wall-Ozawa(FWO)法和Kissinger法计算了碳热还原过程中各个吸热峰的表观活化能,每个吸热峰的平均表观活化能依次为:848.9,945.4,569.7,325.7,431.9和723.1kJ/mol,并进一步应用Kissinger法获得了反应级数(n)、频率因子(A)等重要的动力学参数,结合所得的活化能E值,确定了反应动力学方程为:而后,通过理论分析和实验对其进行了解释和验证。
The development of ore dressing Bayer process contributes to improving the alumina market competitiveness and to using soundly the middle-low grade resources in China. In the process of ore dressing, however, has to produce plenty of floated tailings occupied about 25% of raw ore.It would not only consume resources,but also occupy land and pollute environments if these tailings cannot be used. At present time, the consumption quantity of Al-base alloys accounts for 60% in Al consumption field, and of all the Al-base alloys, the largest consumption quantity is Al-Si alloy. Compared with fusion method, preparation of primary Al-Si alloy by carbothermal reduction owning lots of merits such as lower requirement of materials, better usage of the secondary resources, lower price equipments and higher energy ratio, is the future development trends of aluminum industry.
     The ratio of raw materials, consists of bauxite floated tailings, alumina, bituminite and sulphite pulp liquor, was calculated exactly in this paper. The results shown that the theoretical ratio were tailings: alumina: bituminite: sulphite pulp liquor: water=100: 25.1:74.0:19.7:7.91.Based on these, the influences of pressing pressure, dry agglomerant content, moisture content and particle size on the properties of green pellets were investigated by single factor and orthogonal experiments using the compressing strength and pore ratio as indexes. The optimum conditions for the properties of green pellets are as follows: the pressing pressure 22.5 MPa, dry agglomerant content 9%, moisture content 13% and particle size 0.420~0.178 mm. Under the optimum conditions, the compressing strength and pore ratio of green pellets are 27.8 MPa and 18.4%, respectively. Both of them are better than industry applied indexes.
     The properities of roasted pellets were also be tested in the study.The results indicated that with the roasting temperature rising and the roasting time prolonging,the pore ratio of pellets increased,and the increasing amplitude was great.Meanwhile,the compressing strength decreased continuously,the decreasing amplitude,however,became small.When the roasting temperature bellowed 500℃,the pellets hardly conducted.Nevertheless, when the roasting temperature rised to 700℃,the resistivity decreased apparently.After 1000℃, the decreasing amplitude of resistivity was small,and the increasing tendency emerged inversely.
     Preparation of primary Al-Si alloy from bauxite floated tailings by carbothermal reduction process was studied in vacuum graphite furnace with argon as the protective atmosphere. It was found that when the atmospheric pressure approach to 0.1 MPa, heating temperature 1900℃wintering time 1 h and bituminite content 95 wt.% of theoretic bituminite content, the composition of the products was preferable.The primary alloy obtained consisted of 6 phases, besides primary Al-Si alloy phases, there were oxides and carbides phases existed.
     In the process of smelting operated in arc furnace, when the output current was 1100 A, the suitable voltage was 25~30 V. Meanwhile, when the bituminite content was 93 wt.% of the theoretic amount, the content of Al_2O_3 and SiC in the slag was relatively small. The alloy obtained composed of 6 phases including mainly primary Al-Si alloy phases, and minute impurities such as Ti,Ca,oxidants and carbides.The Al content was 52.5%, Si content was 23.2% in the obtained alloy.The producted fume was mainly composed of Al_2O_3 and SiO_2.
     The thermodynamic analysis on the carbothermal reduction of Al_2O_3 and SiO_2 was carried out, the results shown that the reduction temperature was high to 2000~2100℃.The composition of products obtained under different temperature in vacuum graphite furnace and different reaction zone in arc furnace was studied by XRD, SEM coupled with EDS methods and the process of carbothermal reduction was tested by TG/DTA technology. It was found that the process of carbothermal reduction of bauxite floated tailings is similar to that of Al_2O_3 and SiO_2, which can be divided into 4 stages: bituminite pyrolysis stage, the crystal phase transformation of Al_2O_3 and SiO_2 stage, the formation and decomposition of carbides stage and products loss stage.Of the 4 mechanisms of carbothermal reduction of Al_2O_3 and SiO_2, the formation and decomposition of carbides theory might be the best one to interpret the reaction phenomena, and this theory was amended according to test phenomena as well,the concrete reaction equations were as follows: SiO_2+3C=SiC+2CO, 2Al_2O_3 + 9C = Al_4C_3 + 6CO,3SiO_2+2Al_4C_3=8Al+3Si+6CO,3SiC+Al_2O_3=2Al+3Si+3CO.
     The kinetics of preparation of Al-Si alloy by carbothermal reduction of Al_2O_3 and SiO_2 was studied by means of differential temperature analysis (DTA) at different temperature rising rates of 10,15,20,25 K/min. It was shown that there were 6 endothermic peaks in each different heating-up velocity,and the temperature ranges of these 6 endothermic peaks were in 1220~1240 K, 1340~1360 K, 1680~1730 K, 1850~1950 K,1970~2050 K, 2100~2160 K,respectively.The apparent activation energy of each endothermic peak was obtained by Flynn-Wall-Ozawa and Kissinger methods as follows: 848.9, 945.4, 569.7, 325.7,431.9 and 723.1 kJ/mol. Reaction orders, frequency factors and kinetic equations were also determined: Furthermore, the feasibility was verified by theory and test.
引文
1.顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2004,14(s1):91-97.
    2.胡岳华,王毓华,王淀佐,等著.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社,2004:264.
    3.王平艳.真空碳热还原氯化法炼铝的研究[D].昆明理工大学,2006:6-10.
    4.管永诗,张云.我国铝土矿资源及氧化铝工业的现状[J].矿产保护与利用,1998,2(6):42-44.
    5.方启学,黄国智,葛长礼,等.我国铝土矿资源特征及其面临的问题与对策[J].轻金属,2000,10:8-10.
    6.张国范.铝土矿浮选脱硅基础理论与工艺研究[D].中南大学,2001:7.
    7.刘祥民.中国铝土矿资源可持续发展战略研究[J].中国金属通报.2005,14:9-11
    8.蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究[D].中南大学,2004:6
    9.刘永红,方启学.铝土矿选矿脱硅技术研究现状述评[J].矿冶,2004,13(4):24-29.
    10.姜涛,李光辉,范晓慧,等.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(Ⅰ)[J].中国有色金属学报,2008,10(4):534-538.
    11.马跃如,罗琳.铝土矿的化学选矿[J].中国锰业,1999,19(2):25-28.
    12.刘今,程汉林,吴若琼.低铝硅比铝土矿预脱硅研究[J].中南工业大学学报,1996,6:666-670.
    13.罗琳,邱冠周.论中国一水硬铝石型铝土矿的几种处理方法[J].轻金属,1996,(2):14-17.
    14.刘永康.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究[D].中南工业大学,1997:20-34.
    15.罗琳,刘永康,何伯泉.一水硬铝石一高岭石型铝土矿焙烧脱硅热力学机理研究[J].有色金属,1999,51(1):25-30.
    16.李光辉.铝硅矿物热行为及铝土矿石热化学活化脱硅[D].中南人学:2002:146-148.
    17.赵世民,王淀佐,胡岳华,等.铝土矿预脱硅研究现状[J].矿业研究与开发,2004,24(5):37-44.
    18.方启学,黄国智,郭建,等.铝土矿选矿脱硅研究现状与展望[J].矿产综合利用,2001,(4):27-30.
    19. Vasan S S, Modak J M, Natarajna K A. Some recent advances in the bio-proeessing of bauxite [J].Inter.J.Min. Poreess.,2001,62:173-186.
    20.A He Д.高硅铝土矿微生物脱硅法[J].轻金属,1992,(3):12-14.
    21.李聆值.采用生物技术提高铝土矿质量[J].中国有色金属学报,1998,18(s2):361-364.
    22.童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997:48-53.
    23.周国华,薛玉兰,蒋玉仁,等.浅淡铝土矿生物选矿[J].矿产综合利用,2000,(6):38-40.
    24. Andreev P L.Biochemical silicon removal from bauxite-like rock[J]. Obogashch. Rud, 1977,22(2):11-1
    25.Gorndeva V I.铝土矿的微生物选矿[J].国外金属矿选矿,1989,(11):9-11
    26.孙德四,陈福山,张强.硅酸盐细菌特性及对硅铝的活化与吸持研究[J].苏州科技学院学报,2005,18(4):28-31.
    27.孙德四,张强.硅酸盐细菌选育及对铝土矿脱硅效果研究[J].西安科技大学学报,2006,(3):35-40.
    28.孙德四,张强.硅酸盐细菌代谢产物及其对石英的浸溶作用研究[J].矿冶工程,2006,(6):32-35.
    29.钮因健,邱冠周,周吉奎,等.硅酸盐细菌的选育及铝土矿细菌脱硅效果[J].中国有色金属学报,2004,14(2):280-285.
    30.惠明,王慧,田青,等.一株脱硅胶质芽孢杆菌的分离与初步鉴定[J].河南科技学院学报,2007,35(3):15-18.
    31.盛下放,黄为一,殷永娴.硅酸盐菌剂的应用效果及其解钾作用的初步研究[J].南京农业大学学报,2000,23(1):43-46.
    32.连宾.硅酸盐细菌解钾作用机理研究[M].贵阳:贵州科学出版社,1998:77-153.
    33蒋鸿辉,王琨.生物选矿的应用研究现状及发展方向[J].中国矿业,2005,14(9):76-78.
    34.白万全,陈湘清.我国铝土矿铝硅分离的研究与进展[J].铝镁通讯,2004,(4):1-3.
    35.魏新超,韩跃新,印万忠,等.铝土矿选矿脱硅的研究现状及进展[J].黄金学报.2001,(12):269-272.
    36.尤俊华.选矿捕收剂对一水硬铝石型铝土矿溶出过程的影响[D].东北大学,2006:4.
    37. Eygeles M A.Selective flotation of kaolinite-hydrargillite[J].Tsvetnye Met. Jan,1970:84-86. (in Russian)
    38. Kuznetsov, V P. Flotation of Porous hydrargillite-kaolinite bauxite [M] .Leningrad, 1972:143-145.(in Russian)
    39. Ishchenko, V V.Action of sodium hexametaphosphate and sodium oleate upon bauxite minerals[J].Izv VUZ Tsvet Metal.,1972,5:8-12.(in Russian)
    40. Ishchenko,V V. Pysicochemical interaction of bauxite-forming minerals with flotation reagents [J]. NauchTech. Konf.Ureal. PoliteekhInst. 1972. 1973,1: 10-11.(inRussian)
    41. Salatie D. Floatability of boehmite and kaolin with anionic collectors[J]. Trav. Com. Int. Etudebauxite, Alumina Alum., 1979,15: 157-159.
    42.梁爱珍.国外铝土矿选矿研究概况[J].国外金属矿选矿,1983,(1):31-36.
    43. Andreevetal P I,Izv.Vyssh.Uehebn.Zaved.Tsvet.Met. 1975, 2:13-17.(in Russian)
    44.李隆峰.一水硬铝石堆积型铝土矿选矿脱硅除铁研究.中南矿冶学院学报,1980,14:82-87.
    45.凌石生,章晓林,尚旭,等.铝土矿物理选矿脱硅研究概述[J].国外金属矿选矿,2006,(7):9-12.
    46. Anishchenko N M. Interaction of cation reagents in the flotation of ehamosite gibbisite bauxites.Izv VUZ TsvetMetall., 1972,4:12- 16.(in Russian).
    47.崔吉让,方启学,黄国智.一水硬铝石与高岭石的晶体结构和表面性质[J].有色金属,1999,51(4):25-29.
    48.冯其明,陈远道.一水硬铝石(α-AlOOH)及其(010)表面的密度泛函研究[J].中国有色金属学报,2004,(4):670-675.
    49.印万忠,韩跃新,魏新超,等.一水硬铝石和高岭石可浮性的晶体化学分析[J].金属矿山,2001,(6):29-33.
    50.李海普,胡岳华,蒋玉仁,等.变性淀粉在铝硅矿物浮选分离中的作用机理研究[J].中国有色金属学报,2001,(4):697-701.
    51.李海普,蒋玉仁,曹学锋,等.变性淀粉的合成及其性能.矿冶工程[J].2001,(4):29-32.
    52. Wang Yuhua,Hu Yuehua,Chen Xiangqing. Aluminum-silicates flotation with quaternary ammonium salts [J]. Trans. Nonferrous Met. Soc.China. Jun., 2003:715-719.
    53.刘永红.一水硬铝石型铝土矿反浮选脱硅工艺及机理研究[D].北京矿冶研究总院,2003,7.
    54.刘帆.铝土矿选尾矿活化制备低温陶瓷胶凝材料的研究[D].昆明理工大学,2007:4-5.
    55.姜海涛,吴少鹏,况栋梁,等.有机化蒙脱土改性沥青老化性能的研究[J].武汉理工大学学报,2007,29(9):41-43.
    56.张锦瑞,王伟之,李富平,等.金属矿山尾矿综合利用与资源化[M].北京:冶金工业出版社,2002:8-10.
    57.李太吕,潘海娥.铝土矿选矿尾矿资源化利用途径探讨[J].矿产保护与利用,2007,(1):40-43.
    58.冯其明.九十年代铝土矿选矿除杂研究现状与展望[J].轻金属.1998(4):9-13.
    59.席耀忠.水泥研究和开发的新成果、新动向[J].水泥.1993,(10):39-42
    60.王建立,王怀德,黄健.选尾矿生产双快型砂水泥的研究[J].轻金属,2002,(3):7-10.
    61. Bakharev T. Resistance of Geopolymer Materials to Acid Attack [J]. Cement and Concrete Research, 2005,35: 658-670.
    62. Sofi M,Van Deventer J S J,Mendis P A,et al.Engineering Properties of Inorganic Polymer Concretes (IPCs) [J].Cement and Concrete Research, 2007, 37:251-257.
    63.叶家元,王渊,张文生,等.铝土矿选尾矿制备土聚水泥的反应机理[J].武汉理工大学学报,2009,31(4):136-138.
    64. Cannillo Valeria,Pierli Fiorenza,Sampath Sanjay,et al.Thermal and physical characterization of apatite/wollataonite bioactive glass-ceramics[J].Journal of the European Ceramic Society,2009, 29:611-619.
    65. Bertan F M, Montedo R K, Montedo C R, et al. Extruded ZrSiO_4 particulate- reinforced LZSA glass-ceramics matrix composite[J].Journal of materials processing technology, 2009,209:1134-1142.
    66. Rawlings R D, Wu J P, Boccaccini A R. Glass-ceramics:their production from wastes-a review[J].Mater.Sci.2006,41,733-761.
    67. Vasilopoulous K C,Tulyaganov D U,Agathopoulos S,et,al.Bulk nucleated fine grained mono-mineral glass-ceramics from low-silica fly ash[J].Ceramics Inter atimal 2009,35 (2) :555-558.
    68. Yang Huizhi, Chen Changping, Sun Hongwei,et,al.Influence of heat- treatment schedule on crystallization and microstructure of bauxite tailing glass-ceramics coated on tiles[J].Journal of materials processing technology,2008,197:206-211.
    69.杨会智,陈昌平,孙洪巍,等.铝土矿尾矿微晶玻璃研制[J],矿业研究与开发,2007,21(6):48-49.
    70.李鸿年.多孔砖的开发应用与展望[J].中国建材,1996,(5):16-17.
    71.张富贵,张晓光.装配式轻型砖的研制[J].中国建材,1996(1):36-37.
    72.谢氓.铝土矿选矿试验研究[J].有色金属(选矿部分),1995,(6):12-16.
    73.朱友益.山西阳泉铝土矿浮选分级及尾矿提纯试验研究[J].金属矿山,1994,(10):40-43.
    74. Piga L.Thermogravimetry of kaolinite-alumite ore[J].Thermochim Acta, 1995,265: 177-187.
    75. Kakali G, Perraki T, Tsirilis S. Thermal treatment of kaolin-effect of mineralogy on the activity[J].Applied Science,2001,20:73-80.
    76.雷绍明,崔国治.鄂西含碳硬质高岭土提纯试验研究[J].武汉工业大学学报,1994,16(2):84-87.
    77.周国华,薛玉兰,何伯泉.铝土矿选矿除铁研究进展概况[J].矿产保护与利用,1999,(4):44-47.
    78.袁明亮,赵国魂,胡岳华.铝土矿浮选尾矿中铁的溶解行为[J].过程工程学报,2004,4(1):12-15.
    79.袁明亮,汪艳梅,胡岳华.铝土矿尾矿除钛和铁及其采用表面改性[J],中国有色金属学报,2007,17(12):2059-2063.
    80.欧阳坚,李睿华,徐玉琴,等.阳泉铝土矿高铝浮选尾矿的疏水聚团浮选[J].金属矿山,1996,(5):16-18.
    81.赵国魂.复杂铝硅酸盐矿物的提纯及应用[D].长沙:中南大学,2004.
    82.李军亮,周吉奎,曹慧君,等.生物浸出脱除铝土矿选矿尾矿中铁矿物的实验研究[J].矿业研究与开发,2006,26(2):55-58.
    83. Garcia-Guineaa J, Rubiob J,Correcherc J V. Luminescence of α-Al_2O_3 and α- AlOOH natural mixtures[J].Radiation measurements,2001,33: 653-658.
    84.王建立,王怀德,黄健.铝土矿选尾矿制备复合吸水材料的研究[J].轻金属,2004,(3):9.
    85.胡小冬.铝土矿选矿尾矿制备聚合物填料的研究[D].中南大学,2008:12-16
    86. Potgieter-Vermaaka S S,Potgieter J H,Kruger R A,et,al. A characterization of the surfuce properties of an ultra fine fly ash (UFFA) used in the polymer industry [J].Fuel, 2005, 84:2295-2300.
    87. Ekosse G. Provenanee of the kgwakgwe kaolin deposit in southeast embotsw-ana and its Possible utilization[J]. Applied Clay Sciene,2001,20(3):137-152.
    88.卢清华,胡岳华.铝土矿浮选尾矿负载纳米氧化钛白度研究[J].功能材料,2009,40(5):858-860.
    89. Wang Yuhua, Lan Ye, Hu Yuehua. Adsorption mechanisms of Cr (Ⅵ) on the modified bauxite tailings [J].Minerals Engineering,2008, 04(03): 1-5.
    90.兰叶,王毓华,胡业民.铝土矿浮选尾矿的FeCl_3改性及对铬(Ⅵ)吸附的机理研究[J].湖南科技大学学报,2007,22(1):102-106.
    91.兰叶,王毓华,李艳.改性铝土矿浮选尾矿处理含Cr(Ⅵ)废水的试验研究[J].矿业工程,2006,26(6):43-46.
    92.卢清华,胡岳华.铝土矿浮选尾矿阻燃功能化研究[J].金属矿山,2009,(2):174-177.
    93.张万福.利用俄罗斯技术建设我国的电热铝硅合金工厂[J].中国有色学报,1998,(8):424-427.
    94.《实用工业硅技术》编写组.实用工业硅技术.北京:化学工业出版社,2006:5.
    95.杨冠群,杨升.电解法直接生产铝硅钛多元合金可行性分析[J].铸造,1997,(1):44-46
    96.杨升,杨冠群,顾松青.电解法生产铝基合金[J].特种铸造及有色合金,2001,(2):102-104.
    97.吕政堂.俄罗斯用块状炉料和团块炉料生产工业硅、用矿石直接生产粗铝硅合金[J].轻金属,2004,(3):63-64.
    98.何允平,王恩惠编著.电热铝硅合金生产技术[M].北京:科学出版社,1994:22-34.
    99.陈洁,熊文强,李仕莲.利用粉煤灰制取铝硅铁合金的新工艺[J].粉煤灰综合利用,1996,(3):37-40.
    100.蒋汉祥,孙善长,张立锋.粉煤灰、铝土矿电热法生产铝硅铁合金的试验[J].铁合金,2003,(3):23-27.
    101.郭清富.以硅铝合金为还原剂将使我国的热法炼镁技术有突破性进展[J].轻金属,2005,(3):44-47.
    102.姚广春,张晓明,郭清富,等.铝硅合金热法炼镁的理论分析[J].轻金属,1998,(3):42-44.
    103.张晓明,姚广春,郭清富,等.铝硅合金热法炼镁的研究[J].轻金属,1998,(5):42-44.
    104.吴贤熙.铝硅铁合金热法炼镁的研究[J].有色金属,2000,52(2):72-74.
    105. Crepeau P N. Effect of iron in Al-Si casting alloys: A critical review[J]. AFS transactions, 1995,103: 361-365.
    106. Dinnis C M, Taylor J A, Dahle A K. Iron-related porosity in Al-Si-(Cu) foundry alloys [J]. Materials Science and Engineering, 2006, 415: 271-282.
    107.尤晶,王耀武,冯乃祥,等.由电热法一次铝硅合金制取铸造铝硅合金的研究[J].轻金属,2008,(1):55-60.
    108. You Jing,Wang Yaowu, Feng Naixiang, et,al. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy[J].Transactions of Nonferrous Metals Society of China,2008,18:116-120.
    109. Osorio Wislei R, Goulart Pedro R, Garcia Amauri. Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al-Si alloys [J].Materials Letters, 2008, 62:365-369.
    111. Zeren Muzaffer, Karakulak Erdem. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys [J].Journal of alloys and compounds,2008,450:255-269.
    112. Feng H K, Yu S R, Li Y L, et,al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J].Journal of materials processing technology, 2008,208:330-335.
    113.姚广春.电热法制取铝硅合金[M].沈阳:东北大学出版社,1998:276-284.
    114. Rosalbino F, Angelini E, Maccio D,et,al. Influence of rare earths addition on the corrosion behaviour of Zn-5%Al(Galfan)alloy in neutral aerated sodium sulphate solution [J]. Eletrochimica Acta, 2007, 52:7107-7114.
    115.柳连舜.电热法制取铝硅合金-发展铝工业的捷径[J].轻金属,1995,6:40-45.
    116.杨重愚主编.轻金属冶金学[M].北京:冶金工业出版社,1991.211.
    117.邱竹贤主编.有色金属冶金学[M].北京:冶金工业出版社,1988:86-87.
    118.张万福.铝硅合金生产的能耗分析[J].有色金属(冶炼部分),1999,(6):27-29.
    119. Murry J P. Aluminum production using high-temperature solar process heat[J]. Solar Energy,1999,66(2):133-142.
    120. Murry J P.Solar production of aluminum by direct reduction: preliminary results for two processes [J]. Journal of Solar Energy Engineering, 2001,123:125-132.
    121.吴国元.低价硫化铝法自氧化铝炼铝及其应用的研究[D].昆明理工大学,1999:6.
    122.何海海.铝市:振荡筑底为主[J].中国有色金属,2009,(8):70-71.
    123.冯其明,卢毅屏,欧乐明,等.铝土矿的选矿实践[J].金属矿山,2008,(10):1-4.
    124.东北工学院轻金属教研组.轻金属冶金学[M].北京:冶金工业出版社,1960.391-392.
    125.张烽,李蒙姬.含铝50%的硅铝合金生产技术[J].铁合金,2003,(4):17-21.
    126. Guo Youjiu, Nie Jingjiang, Xu Yongdong, et,al.Microstructure and mechanical properties of three-dimensional needle C/SiC composite [J].Journal of the Chinese ceramic society, 2008, 36(2): 145-149.
    127. Berchmans John L, Angappana S, Visuvasama A, et,al.Preparation and characterization of LaAlO_3[J]. Materials Chemistry and Physics 2008,(109): 113-118.
    128.李方文,吴建锋,徐晓虹,等.成型压力对基体体积密度、吸水率和显气孔率影响的探讨[J].2007,43(4):25-26.
    129.邢鹏飞,任存治,涂赣峰,等.碳热法生产稀土硅化物合金的物料性质(Ⅱ)-气孔率与抗压强度[J].中国有色金属学报,2000,10(1):123-126.
    130.肖琪,舒刚.再论原料粒度与粒度组成在成球中的作用[J].烧结球团,1983,(3):39-42.
    131.向峰,高德云,张玉林,等.锰粉矿冷压球团研究[J].中国锰业,2007,25(3):24-26.
    132.亢立明,刘曙光,吕庆.工艺参数对冀东磁铁精矿生球性能的影响[J].材料与冶金学报,2007,6(4):252-258.
    133.王筱留主编.钢铁冶金学[M].北京:冶金工业出版社,1990:53-54.
    134.陈文敏,张自勋.煤化学基础[M].北京:煤炭工业出版社,1993:45.
    135.张羡夫,刘景生.粉煤灰真空电热还原的理论和实验研究[J].河北理工学院学报,1996,(4):31-38.
    136.张羡夫.电热还原高铝粉煤灰制取Al-Si-Fe合金的试验研究[J].铁合金,2005,(5):11-15.
    137.姚广春,孙挺,张晓明,等.电热还原高岭土制取铝硅合金的研究[J].有色金属,1997,49(4):45-48.
    138.姚广春,张晓明,孙挺,等.电热还原蓝晶石制取铝硅合金的研究[J].有色金属,1998,50(1):51-54.
    139.马黎,吴贤熙,张军伟,等.赤泥与低晶位铝土矿制取Al-Si合金的研究[J].应用化工,2009,38(1):41-43.
    140.姚广春,张晓明,孙挺,等.电热法制取硅铝合金中制团对还原反应的影响[J].有色金属,1998,(1):26-28.
    141. Lu Huimin, Chen Mingfa,Liu Qiang,et al.Producing Aluminum-Silicon alloys by carbothermal reduction of Andalusite[C].Light metals 2006,the 135th TMS annual meeting,San Antonio, Texas:5 11-514.
    142.胡涛,薛济来,朱骏,等.电热碳还原红柱石矿团制备Al-Si合金工艺基础的实验研究[C].有色金属工业科技创新--中国有色金属学会第七届学术年会论文集,2008:233-237
    143. #12
    144.А.И.费尔散,拉勃勃尔特.电冶铝[M].王延明译.北京:高等教育出版社.1957:700-705.
    145.格奥尔格·叶格尔.有色金属电热熔炼[M].刘富如译.北京:中国工业出版社.1964:224-226.
    146.狄鸿利.炭还原法熔炼铝硅合金[J].轻金属.1982,(11):38-41.
    147. Stevenson D T.Feasibility of an aluminum-silicon blast-arc process [C].Lights Metals. MCGeer J P, Warrendale,P A:TMS, 1984:1571-1579.
    148. Bruno M J. Overview of ALCOA direct reduction process technology[C].Light Metals. MCGeer J P, Warrendale, PA: TMS, 1984:1613-1631.
    149.梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.450-470.
    150.戚大光,任锁堂.炭热还原铝土矿的研究[J].化工冶金,1989,10(4):1-9.
    151.吴国元.低价硫化铝法自氧化铝炼铝及其应用的研究[D].昆明理工大学,1999:6
    152.黄金,张仁元,伍彬.多晶Na_2SO_4/SiO_2复合相变储能材料晶型转变及热膨胀特性分析[J].材料工程,2006,(12):16-20.
    153. He Zengxian,Huang Dan,Chen Weiping.Study on the fabrication of Al_2O_3/SiC composites by in-situ carbothermal reduction of Kaolin [J]. Science Technology and Engineering,2008,8 (11) :2870-2873.
    154.李祖树,徐楚韶,陈洁.铝硅铁合金的热力学研究[J].铁合金,1995,(4):14-17.
    155.阮艳莉,唐致远.LiFePO_4的合成及其热分析动力学[J].物理化学学报,2008,24(5):873-879.
    156.李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001:68
    157.李春宏,仇卫华,康晓丽,等.固相反应合成Ba_(1.0)Co_(0.7)Fe_(0.2)Nb_(0.1)O_3的动力学[J].物理化学学报,2008,24(5):767-771.
    158.李智敏,仇卫华,胡环宇,等.锂离子电池正极材料锰酸锂的优化合成[J].无机材料学报,2004,19(2):333-348.
    159.赵铭姝,汀飞,宋晓平.锂离子电池正极材料锰钴酸锂的表征与分解动力学[J].中国有色金属学报,2005,15,9:1396-1402.
    160. Ebrahimi-Kahrizsangi R, Amini-Kahrizsangi E. Zirconia carbothermal reduction: Nonisothermal kinetics [J]. Int. Journal of Refractory Metals & Hard Materials 2009,27: 7 637-641.
    161. Ozawa T A. New method of analyzing thermogravimetric data[J]. Bulletin of Chemistry Society of Japan, 1965,38 (11) :1881-1883.
    162. Flynn J H ,Wall L A. A quick direct method for the determination of activation energy from thermogravimetric data[J].J. Polym Sci.Part B , Polymer Lettlers, 1966, 4 (5) :323-328.
    163.祝远姣,陈小鹏,王琳琳,等.脱氢枞酸在空气中的热分解动力学[J].化工学报,2008,59(10):2526-2530.
    164. Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemstry, 1957, 29(11): 1702-1704.
    165. Gao Chuanhui,Li Xianguo,Feng Lijuan,et al.Preparation and thermal decomposition of 5Mg(OH)_2·MgSO_4·2H_2O nanowhiskers[J]. Chemical Engineering Journal, 2009,150: 551-554.
    166. Satava V, Setak J. Computer calculation of the mechanism and associated kinetic data using a nonisothermal integral Method[J]. J. Therm. Anal.,1975 ,8 (3) : 477-489.
    167.吴玉程,宋振亚,杨晔,等.氧化铝α相变及其相变控制的研究[J].稀有金属,2004,28,6:1044-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700