用户名: 密码: 验证码:
氨氮对南方鲶(Silurus meridionalis Chen)幼鱼血液生理、生化及非特异性免疫指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了氨氮这一环境因子对南方鲶(Silurus meridionalis Chen)幼鱼的影响。通过急性氨氮毒性实验得出南方鲶幼鱼在24、48、72、96h的半致死浓度(LC_(50))分别为182mg 1~(-1)TAN(2.8mg 1~(-1),NH_3-N),171mg 1~(-1)TAN(2.7mg 1~(-1),NH_3-N),151.4mg 1~(-1)TAN(2.4mg 1~(-1),NH_3-N)和123mg 1~(-1)TAN(1.9mg 1~(-1),NH_3-N),安全浓度为46.6mg 1~(-1)TAN(0.7mg 1~(-1),NH_3-N)。半致死浓度随氨氮暴露时间延长呈下降趋势。
     在慢性毒性实验中,把南方鲶幼鱼随机分成5个氨氮浓度组(150、120、90、60、30mg 1~(-1))和一个对照组。分别在氨氮暴露处理的第4、7、14、21天取样,每个浓度组每次取样4尾,进行红细胞计数(RBC)、白细胞分类计数(DLC)、血红蛋白(Hb)、血糖(GLU)、总蛋白(TP)、白蛋白(ALB)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、抗菌活力、超氧化物歧化酶(SOD)、过氧化物酶(POD)、酚氧化物酶(PO)等指标的测定。利用统计软件SPSS 11.0和Excel 2003对数据进行分析,结果表明:
     在高浓度氨氮暴露下,南方鲶幼鱼的红细胞数量、血红蛋白含量、红细胞压积和血清蛋白含量随着浓度升高和暴露时间延长而出现不同程度的下降。血糖浓度在暴露初期呈现先升高后下降趋势,在第7天,各个浓度组的血糖含量都出现显著升高(P<0.05),至第21天,各个浓度组都出现了下降,高浓度组出现显著下降(P<0.05)。表明实验对象造血机能受损,机体携氧能力下降,造成机体组织缺氧,这可能是氨氮急性中毒引起死亡的主要原因。
     经过21天的氨氮处理,血清谷丙转氨酶、谷草转氨酶、碱性磷酸酶活性呈现不同程度的升高,其中谷丙转氨酶和碱性磷酸酶活性更易受氨氮处理的影响而呈现显著性升高(P<0.05),血清蛋白含量显著下降,表明机体内脏器官出现不同程度的损伤。
     氨氮对非特异性免疫指标超氧化物歧化酶、过氧化物酶、酚氧化物酶、抗菌活力有抑制作用,只有在第4天,30和60mg 1~(-1)浓度组中的超氧化物歧化酶和过氧化物酶出现显著性升高(P<0.05)。随着暴露时间延长,酶的活性受到不同程度抑制,到第21天时,高浓度组(90、120、150mg 1~(-1))呈现显著下降(P<0.05)。氨氮处理也会影响白细胞分类计数。在第7天,低浓度组(30、60、90mg 1~(-1))
This article investigated the effect of the environmental factor, TAN, on juvenile Southern catfish (Silurus meridionalis Chen). The 24-,48-,72-,96-h medial lethal concentrations ( LC50) of ammonia-nitrogen for the juvenile catfish were 182 mg l~(-1) TAN (2.8mg l~(-1) , NH3-N), 171 mg l~(-1) TAN (2.7 mg l~(-1) , NH_3-N), 151.4 mg l~(-1) TAN (2.4 mg l~(-1) , NH_3-N) and 123 mg l~(-1) TAN (1.9 mg l~(-1) , NH_3-N), which were determined by a series of acute toxic trials. The safe concentration of TAN for the juvenile catfish is 46.6 mg l~(-1) TAN (0.7 mg l~(-1) , NH_3-N). It was found that LC_(50) declined with time.In chronic poisoning experiment, the individuals of juvenile southern catfish were randomly divided into five groups subject to different concentrations of TAN, i.e., 150mg l~(-1), 120mg l~(-1), 90mg l~(-1), 60mg l~(-1), 30mg l~(-1) plus a control. Changes of the parameters , namely, red blood cells (RBC), differential leucocyte cells (DLC), haemoglobin (Hb), blood glucose (GLU), total protein (TP), albumin (ALB), alamine aminotransferase (ALT), aspartate aminotransferase (AST),alkaline phosphatase (ALP), antibacterial activity, superoxide dismutase (SOD), peroxidase (POD), phenoloxidase (PO) of the catfish blood, were measured on the 4, 7, 14, 21th day after the juvenile catfish were exposed to 0、 30、 60、 90、 120、 150 mg l~(-1) total ammonia-nitrogen (TAN), respectively. Then the data were analyzed with statistic software SPSS(11.0) and Excel (2003 ) . The results were as follows:When the juvenile southern catfish were exposed to high concentrations of TAN, RBC, HCT and Hb of the catfish declined with increased concentrations and extended exposure span. Blood glucose increased in early stage and then declined as exposure extended;GLU in all groups increased significantly (P<0.05) on Day 7 and declined on Day 21, especially in groups with a high concentration treatment (150mg l~(-1)) (P< 0.05). The results suggested damage of experimental animals' hematopoiesis and a decline of their capability of oxygen transportation, which may be the main reasons of fish death caused by acute TAN toxicity.
    After 21 days of treatment with TAN, the activity of ALT, AST and ALP all increased by different margins, the activity of ALT and ALP increased significantly, which may imply they are more vulnerable to TAN treatment. Those data demonstrated adverse effects of ammonia on serum protein and showed that interior organs of the catfish treated in a series of TAN concentrations may be damaged to some extent.TAN inhibited such non-specific indices as SOD, POD, PO, antibacterial activity. Only on Day 4 that SOD and POD increased significantly in the groups subjected to 30 and 60mg I'1 TAN. Activity of enzymes was inhibited when the exposure time extended and it significantly decreased on Day 21 in high-concentration TAN treatment groups (90, 120, 150mg I'1). TAN treatment also affected DLC. Lymphocyte percentage of southern catfish in low level (30, 60, 90mg 1"') TAN groups increased significantly and then declined on Day 7 whereas those in low level (30, 60, 90mg I"1) TAN decreased significantly (P<0.05) on Day 14 and 21. Neutrophils changed likewise. The indices were closely related with fish's ability of oxidation resistance and immunity and their decline revealed a decrease in injury resistance and damage to immunity of the juvenile catfish after long-term exposure to TAN, as may be themain reason why fish exposed to TAN were more susceptible to other diseases.
引文
1.昌鸣先,陈孝煊,吴志新,胡先勤.虫草多糖对日本沼虾免疫机能的影响.华中农业大学学报,2001,3:275~278.
    2.陈坚.环境生物技术.北京:中国轻工业出版社,1999.
    3.陈炜,雷衍之,蒋双.离子铵和非离子氨对海蜇螅状幼体和碟状幼体的毒性研究.大连水产学院学报,1997,1:8~14.
    4.陈瑞明.铵态氮和亚硝酸盐氮对鳜鱼苗的急性毒性实验.水利渔业,1998,1:17~20.
    5.陈晓耘.南方鲶血液的研究.吉首大学学报,2002,21:63~67.
    6.樊甄.环境因子和外源刺激对栉孔扇贝免疫活性的影响.硕士论文.2005.
    7.黄琪琰,刘丽燕,范丽萍.异育银鲫溶血性腹水病的病理生理研究.水产学报,1992,4:316~321.
    8.蒋艾青,杨四秀,郑陶生,孙普选.池塘鱼类暴发性疾病与主要水化因子关系研究.水利渔业,2005,5:104~105.
    9.刘景田.红细胞免疫学.西安:陕西科学技术出版社,1995,11~100.
    10.茅国有,陈小静.精浆SOD含量测定及临床意义.同位素,1996,7:71~72.
    11.雷质文,黄捷,杨冰,俞开康.感染白斑综合症病毒(WSSV)对虾相关免疫因子的研究,中国水产科学,2001,4:46~51.
    12.卢健民,卢玲,蔺玉华,夏重志,战培荣.低pH水平对鲤鱼生长及血糖浓度影响的研究.水产学杂志,2001,1:51~53.
    13.李跃华,王庆真,王让绪.氨氮对罗氏沼虾幼体的影响.水产养殖,1994,5:18~20.
    14.李国荣,张士璀,李红岩,王昌留.酚氧化酶研究概况Ⅰ----特性、功能、分布和在胚胎发育中的变化.海洋科学,2003,4:4~8.
    15.林照杰.鱼塘的几种药物清塘方法.农业科技与信息,2004,8:41~41.
    16.蓝伟光,陈霓.氮及亚硝酸盐对真鲷仔鱼的急性毒性研究.海洋科学,1991,3:68~69.
    17.美国环境保护局编.水质评价标准.北京:水利电力出版社,1991,13~22.
    18.彭福峰.氨水在渔业生产中的应用.农业知识,1997,8:47~48
    19.乔顺风.水体生物急性氨中毒的成因和调控技术.河北渔业,2005a,2:27~29.
    20.乔顺风.水体氨氮转化形式与调控利用的研究.饲料工业,2005b,12:44~46.
    21.沈成钢,杨凤,刘长发,雷衍之,鲍文奎,傅强.氨态氮在低温下对鱼的急性毒性研究.大连水产学院学报,1995,3:58~64.
    22.孙舰军,丁美丽.氨氮对中国对虾抗病力的影响海洋与湖沼,1999,3:267~272.
    23.尾崎久雄.鱼类血液与循环生理.上海:上海科学技术出版社,1982,151~154.
    24.吴中华.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究.华中师范大学学报,1999,1:119~122.
    25.吴若菁,陈宜秋,林霞,黄静娜,连迎.利用泥鳅红细胞核的遗传损伤监测福州市内河水质.应用与环境生物学报,2005,1:59~63.
    26.汪开毓。耿毅.鲤亚急性喹乙醇中毒的血液生化指标研究.水生生物学报,2003,27,1:23~26.
    27.王重刚,郑微云,余群,郁昂,陈荣.苯并(a)芘和芘的混合物暴露对梭鱼肝脏抗 氧酶活性的影响,环境科学学报,2002,4:529~533.
    28.王金叶,李华,巩华,唐超.氨氮、亚硝态氮亚急性毒性对鲤红细胞流动性和过氧化脂质的影响,水产学报,2004,16:135~140.
    29.王鸿泰.池塘中亚硝酸盐对草鱼种的毒害及防治.水产学报,1989,3:207~213.
    30.王文博,汪亚平,胡炜,李爱华,蔡桃珍,朱作言,汪建国.转生长激素基因鲤鱼几项血液指标的检测,高技术通讯,2005,10:89~93.
    31.王玥,胡义波,姜乃澄.氨态氮、亚硝态氮对罗氏沼虾免疫相关酶类的影响.浙江大学学报,2005,6:698~704.
    32.夏钦丽,刘富贵.甲鱼养殖水体中氨氮(NH3-N)的产生、危害及对策.中国水产,2001,7:42~43.
    33.余瑞兰,聂湘平,魏泰莉,郭叶华,赖子尼,冯志荣.分子氨和亚硝酸盐对鱼类的危害及其对策.中国水产科学,1999a,3:73~77.
    34.余瑞兰,聂湘平,石存斌,魏泰莉,冯志荣.分子氨诱发池养鱼类烂鳃病的研究.淡水渔业,1999b,10:11~12.
    35.鄢庆枇,苏永全,王军,周化民,皮灵宝,张朝霞.口服免疫添加剂对养殖大黄鱼免疫机能影响的初步研究,集美大学学报,2001,2:134~137.
    36.邹国林,裘名宜,朱彤.超氧化物歧化酶研究的历史、现状及应用前景.氨基酸杂志,1991,3:28~32.
    37.朱心玲.草鱼出血病和烂鳃病的血液病理研究.鱼病简讯,1982,1:4~6.
    38.朱耘,吴圣杰,华丹.氨对草鱼生长的危害.水产学报,1995,2:177~179.
    39.赵海鹏.长吻鮠血液生理、生化指标和血液流变特性初步研究.硕士论文,2005.
    40.赵玉宝.生态管理与暴发性鱼病.淡水渔业,1994,1:23~25.
    41.周永欣.氨对草鱼的急性和亚急性毒性.水生生物学报,1986,1:32~38.
    42.周玉,郭文场,杨振国.鱼类血液学指标研究的进展.上海水产大学学报,2001,2:163~165.
    43.张东鸣,余涛,周景祥.氨态氮在渔业水产中的作用评述.吉林农业大学学报,1999,3:124~128.
    44.魏然.盐度对牙鲆非特异性免疫功能的影响和文昌鱼抗氧化酶的活性.硕士论文2004.
    45.张文兵,谢小军,付世建,曹振东.南方鲇的营养学研究:饲料的最适蛋白质含量.水生生物学报,2000,6:603~605.
    46.张永嘉,吴泽阳,许其爵,黄卫坚,罗海年,林鼎旋.网箱养殖罗非鱼综合症的血清分析.水利渔业,1994,2:8~9.
    47. Alabaster JS, Lloyd R. Water quality criteria for freshwater fish. Food arid Agriculture Organization of the United Nations, Butterworths, 1982, 85~102.
    48. Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK. Glutamine synthetase expression in liver, muscle, stomach and intestine of in response to exposure to a high exogenous ammonia concentration. Journal of Experimental Biology, 2002, 205: 2053~2065.
    49. APHA, 1989. Standard Methods for the Examination of Water and Wastewater, 17th edition. American Public Health Association, Washington, DC, pp. 10~203.
    50. Arillo A, Margiocco C, Melodia F, Mensi P, Schemone G. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.). Ecotoxicology and Environmental Safety, 1981, 5: 316~328.
    51. Arillo, A, Margiocco C, Melodia F, Mesi P. Effects of ammonia on liver lysosomal functionality in Salmo gairdneri Rich. The Journal of Experimental Zoology, 1981, 218: 321~326.
    52. Avilez IM, Altran AE, Aguiar LH, Moraes G. Hematological responses of the Neotropical teleost matrinxa(Brycon cephalus) to environmental nitrite. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 2004, 3: 135~139.
    53. Beaumont, MW, Taylor, EW, Butler, PJ. The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water. The Journal of Experimental Zoology, 2000, 203: 2229~2236.
    54. Bomzon A, Ljubuncic P. Oxidative stress and vascular smooth muscle cell function in liver disease. Pharmacology & Therapeutics., 2001, 89: 295~308.
    55. Bouck GR, Schneider PW, Jacobson J, Ball RC. Characterization and subcellular localization of leucine aminonapthylamidase(LAN) in rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada, 1975, 32: 1289~1295.
    56. Bouck GR. Changes in Blood and Muscle Composition of Rock Bass (Ambloplites rupestris) as Physiological Criteria of Stressful Conditions. PhD Dissertation. Michigan state university, East Lansing, USA. 1966.
    57. Boyd. Water Quality in Ponds for Aquaculture. Birmingham: Auburn University Press, 1990.
    58. Brett JR, Zala CA. Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. Journal of the Fisheries Research Board of Canada, 1975, 32: 2479~2486.
    59. Broderius S, Drummond R, Fiandt J, Russom C. Toxicity of ammonia to early life stages of the smallmouth bass at four pH values. Environmental Toxicology and Chemistry 1985, 4: 87~96.
    60. Cameron, JN. Methemoglobin in erythrocytes of rainbow trout. Comparative Biochemistry and Physiology, 1971, 40: 743~749.
    61. Cameron, JN, Heisler, N. Studies of ammonia in the rainbow trout: physico-chemical parameters, acid-base behaviour and respiratory clearance. Journal of Experimental Biology, 1983, 105: 107~125.
    62. Chen J C, Cheng SY, Chen CT. Changes of haemocyanin, protein and free amino acid levels in the haemolymph of Penaeus japonicus exposed to ambient ammonia. Comparative Biochemistry and Physiology Part A: Physiology, 1994, 2: 339~347.
    63. Colt J, Tchobanoglous G. Evaluation of the short-term toxicity of nitrogenous compounds to channel catfish, Ictalurus punctatus. Aquaculture, 1976, 8: 209~224.
    64. Colt J, Tchobanoglous G. Chronic exposure of channel catfish, Ictalurus punctatus to ammonia: Effects on growth and survival. Aquaculture, 1978, 15: 353~372.
    65. Colt JE, Armstong DA. Nitrogen toxicity to crustaceans, fish, and mollusks. American Fisheries Society and northeast society of conservation engineers. 1981, 34~47.
    66. Das PC, Ayyappan S, Jena JK, Das BK. Nitrite toxicity in cirrhinus mrigala (Ham.): acute toxicity and sub-lethal effect on selected haematologieal parameters. Aquaculture, 2004, 235: 633~644.
    67. Das PC, Ayyappan S, Jena JK, Das BK. Acute toxicity of ammonia and its sub-lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquaculture Research, 2004, 2: 134~143.
    68. Donaldson, E. M. The pituitary-interrenal axis as an indicator of stress in fish. In Stress undjsh, ed. A. D. Picketing. Academic Press, London, New York, 1981. pp. 11-41.
    69. Drtge W. Free radicals in the physiological control of cell function. Physiological Reviews, 2002, 1: 47~95.
    70. Duthie GG, Tort L. Effects of dorsal aortic cannulation on the respiration and haematology of Mediterranean living Scyliorhinus canieula. Comparative Biochemistry and Physiology. A, Comparative Physiology, 1985, 81: 879~885.
    71. Fridovich I. Superoxide dismutase. Advances in Enzymology and Related Areas of Molecular Biology. 1986, 58: 61~97.
    72. Gaudet M, Racicot JG, Leray C. Enzyme activities of plasma and selected tissues in rainbow trout(Salmo gairdneri Richardson). Journal of Fish Biology, 1975, 4: 505~512.
    73. Gill TS, Pande J, Tewari H. Haemopathological changes associated with experimental adicarb poisoning in fish (Puntius conchonius Ham.). Bulletin of Environmental Contamination and Toxicology, 1991, 47: 628~633.
    74. Giulio RD, Washburn PC, Wenning RJ, Winston GW, Jewell CS. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environmental Toxicology and Chemistry, 1989, 1212: 1103~1123.
    75. Hagopian DS, Riley JG. A closer look at the bacteriology of nitrification. Aquacultural Engineering, 1998, 18: 223~244.
    76. Hargreaves JA. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 1998, 3: 181~212.
    77. Haywood, GP. Ammonia toxicity in teleost fish: a review. Canadian Technical Report of Fisheries and Aquatic Sciences, 1983, 1177: 1~35.
    78. Hilmy AM, el-Domiaty NA, Weshana K. Acute and chronic toxicity of nitrite to Clarias lazera. Comparative Biochemistry and Physiology. Toxicology & pharmacology, 1987, 2: 247~253.
    79. Hrubec TC, Robertson JL, Smith SA. Effects of temperature on hematologic and serum biochemical profiles of hybrid striped bass (Morone chrysops x Morone saxatilis). American Journal of Veterinary Research, 1997a, 2: 126~130.
    80. Hultmark D, Steiner H, Rasmuson T, Boman HG. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophera cecropia. European Journal of Biochemistry, 1980, 1: 7~16.
    81. Ip YK, Chew SF, Leong IA, Jin Y, Lim CB, Wu RS. The sleeper Bostrichthys sinensis (Family Eleotridae) stores glutamine and reduces ammonia production during aerial exposure. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 2001a, 5: 357~367.
    82. Ip, Y.K., Chew, S.F., Randall, D.J. Ammonia toxicity, tolerance, and exercise. In: Wright, P.A., Anderson, P.M. (Eds.), Fish Physiology: Nitrogen Excretion, vol. 20. Academic Press, New York, 2001b, pp. 109~148.
    83. Jeney G, Nemcsok J, Jeney ZS, Olah J. Acute effect of sublethal ammonia concentrations on common carp (Cyprinus carpio L.). Ⅱ. Effect of ammonia on blood plasma transminases (GOT, GPT), GIDH enzyme activity, and ATP value. Aquaculture, 1992, 9: 104~156.
    84. Jensen FB, Andersen NA, Heisler N. Effects of nitrite exposure on blood respiratory properties, acid-base and electrolyte regulation in the carp (Cyprinus carpio). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 1987, 5: 533~541.
    85. Jensen F. Nitrite and red cell function in carp: control factors for nitrite entry, membrane potassium ion permeation,oxygen affinity and methaemoglobin formation. Journal of Experimental Biology, 1990, 152: 149~166.
    86. Johanson-sjobeck ML, Larsson A. Haematological effects of textile mill effluent on freshwater fish Oreochromis mossambicus (Trewaves). Environmental Research, 1978, 17: 191~204
    87. John A. Hargreaves, Semra Kucuk. Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia. Aquaculture, 2001, 195: 163~181.
    88. Keller GA, Warner TG, Steimer KS, Hallewell RA. Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1991, 16: 7381~7385.
    89. Knepp GL, Arkin AF. Ammonia toxicity levels and nitrate tolerance of channel catfish. Progress in Fish Culture, 1973, 35: 221~224.
    90. Knoph MB, Thorud, K. Gill ventilation frequency and mortality of Atlantic salmon (Salmo salar L.) exposed to high ammonia levels in seawater. Water Research, 1996, 30: 837~842.
    91. Knudsen, PK, Jensen, FB. Recovery from nitrite-induced methaemoglobinemia and potassium balance disturbance in carp. Fish physiology and Biochemistry, 1997, 16: 1~10.
    92. Lang T, Peters G, Hoffmann R, Meyer E. Experimental investigations on the toxicity of ammonia: effects on ventilation frequency, growth, epidermal mucous cells, and gill structure of rainbow trout Salmo gairdneri. Diseases of Aquatic Organisms, 1987, 3: 159~165.
    93. Laurent, P. Gill structure and function: fish. In: Wood, S.C. (Ed.), Comparative Pulmonary Physiology. Marcel Dekker, Inc, New York, NY, 1989, pp. 69~120.
    94. Lin YC, Chen JC. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 2001, 259: 109~119.
    95. Livingstone DR. Biotechnology and pollution monitoring: Use of molecular biomarkers in the aquatic environment. Journal of Chemical Technology and Bioteehnology, 1993, 57: 195~211.
    96. McCord JM, Fridovich IJ. The Reduction of Cytochrome c by Milk Xanthine Oxidase Journal of Biological Chemistry, 1968, 21: 5753~5760.
    97. Miller DC, Poucher S, Cardin JA, Hansen D. The acute and chronic toxicity of ammonia to marine fish and a mysid. Archives of Environmental Contamination and Toxicology 1990, 1: 40~48.
    98. Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 1999, 3: 211~268.
    99. Mourente G, Tother DR, Diaz E, Grau A, Pastor E. Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture, 1999, 1: 309~324
    100. Newcomb TW. Changes in blood chemistry of juvenile steelhead trout, Salmo gairdnerii, following sub-lethal exposure to nitrogen super saturation. Journal of Fisheries Research Board of Canada, 1974, 31: 1953~1957.
    101. Omoregie E, Ofodike EBC, Keke RI. Tissue chemistry of O. niloticus exposed to sublethal concentrations of Gammalin-20 and Acetellice 25EC. Journal of Aquatic Science, 1990, 5: 33~36.
    102. Perazzolo L, Barracco M. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Developmental and Comparative Immunology, 1997, 21: 385~395.
    103. Peterson MS. Hypoxia-induced physiological changes in two mangrove swamp fishes: sheepshead minnow, Cyprinodon variegates Lacepede and sailfin molly, Poecilia latipinna (Lesueur). Comparative Biochemistry and Physiology. A, Comparative Physiology, 1990, 1: 17~21.
    104. Peyghan R, Takamy GA. Histopathological, serum enzyme, cholesterol and urea changes in experimental acute toxicity of ammonia in common carp Cyprinus carpio and use of natural zeolite for prevention. Aquaculture International, 2002, 4: 317~325.
    105. Rai R. Response of serum protein in a freshwater fish to experimental mercury poisoning. Journal of Environmental Biology, 1987, 9: 225~228.
    106. Randall DJ, Tsui TKN. Ammonia toxicity in fish. Marine pollution bulletin, 2002, 45: 17~23.
    107. Redner BD, Stickney RR. Acclimation to ammonia by Tilapia aurea. Transactions of the American Fisheries Society, 1979, 108: 383~388.
    108. Richard W. Tissue penetration and metabolism of Chloramphenicol. The American journal of medicine, 1987, 82(suppl 4a): 103~107.
    109. R.obinette H R. Effect of Seleted sublethel levels the growth of channel catfish. Progress in Fish Culture, 1976, 38: 26~29.
    110. Roche H, Boge G. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine environmental research, 1996, 41: 27~43.
    111. Roche H, Boge G. In vivo effects of phenolic compounds on blood parameters of a marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology. Toxicology & pharmacology, 2000, 3: 345~353.
    112. Ruffier PJ, Boyle WC, Kleinschmidt J. Short-term acute bioassay to evaluate ammonia toxicity and effluent standards. Journal-Water Pollution Control Federation, 1981, 53: 367~377.
    113. Ruyet JPL, Chartois H., Quemener L. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 1995, 1: 181~194.
    114. Ruyet JPL, Galland R, Le Roux A, Chartois H. Chronic ammonia toxicity in juvenile turbot (Scophthalmus maximus). Aquaculture, 1997a, 2: 155~171.
    115. Ruyet JPL, Delbard C, Chartois H, Le Delliou H. Toxicity of ammonia to turbot juveniles: 1. Effects on survival, growth and food utilisation. Aquatic Living Resources, 1997b, 10: 307~314.
    116. Sakai T, Murata H, Yamauchi K, Sekiya T, Ukawa M. Effects of dietary lipid peroxides contents on in vitro lipid peroxidation, a-tocopherol contents and superoxide dismutase and glutathione peroxidase activities in the liver of yellowtail. Bulletin of The Japanese Society Of Scientific Fisheries, 1992, 58: 1483~1486.
    117. Santhakumar M, Balaji M, Ramudu K. Effect of sublethal concentration of monocrotophos on erythropoietic activity and certain haematological parameters of fish Anabus testudineus (Bloch). Bulletin of Environmental Contamination and Toxicology 1999, 63: 379~384.
    118. Sastry KV, Sharma K. Diazinon induced histopathological and haematological alterations in the freshwater teleost O. punctatus. Ecotoxicology and Environmental Safety, 1981, 5: 329~340.
    119. Scarano G, Saroglia MG. Recovery of fish from functional and hemolytic anemia after brief exposure to a lethal concentration of nitrite. Aquaculture, 1984, 43: 421~426.
    120. Scarano G, Saroglia MG, Gray, RH, Tibali E. Hematological responses of sea bass Dicentrarchus labrax to sublethal nitrite exposures. Transactions of the American Fisheries Society, 1984, 113: 360~364.
    121. Shaperclaus, W., 1979. Fish Diseases, Akademie Verlag, vol. 1. Berlin. p.570
    122. Shechter H, Gruener N, Shuval I. A micromethod for the determination of nitrite in blood. Analytica Chimica Acta, 1972, 60: 93~99.
    123. Shingles A, McKenzie DJ, Taylor EW, Moretti A, Butler PJ, Ceradini S. Effects of sub-lethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus raykiss). The Journal of Experimental Biology, 2001, 204: 2699~2707.
    124. Smart G. The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). Journal offish Biology, 1976, 8: 471~475.
    125. Smart G R. Investigation of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmogaird-neri) exposed to acutely lethal concentrations. Journal ofFish Biology, 1978, 12: 93~104.
    126. Siegel I.The red-cell immune system. Lancet, 1981, 2: 556~559.
    127. Soderberg RN, Meade JW. The effects of ionic strength on unionized ammonia concentration. Progress Fish Culture, 1991, 53: 118~120.
    128. Soderhall K. Prophenoloxidase activating system and melanization-a recognition mechanism of arthropods? A review. Developmental and Comparative Immunology, 1982, 11: 601~611.
    129. Soivio, A. & Nikinmaa, M.. The swelling of erythrocytes in the relation to the oxygen affinity of the blood of the rainbow trout, Salmo gairdneri Richardson. In Stress and Fish, ed. A. D. Picketing. Academic Press, London, 1981, pp. 103~19.
    130. Sritunyalucksana K, Soderhall K. The proPO and clotting system in crustaceans. Aquaculture, 2000, 1: 53~69.
    131. Stiwastava U.M.S. & Srivastava D.K. (1985) Effect of urea stress on fish. In: Current Pollution Researches in India (ed. by R.K. Trivedy & K. Goel), Environmental Publication, Karad,India.
    132. Stormer J, Jensen FB, Rankin JC. Uptake of nitrite, nitrate and bromide in rainbow trout, Onchorhynchus mykiss: effects on ionic balance. Canadian Journal of Fisheries and Aquatic sciences. 1996, 53: 1943~1950.
    133. Sung HH, Kou GH, Song YL. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathology, 1994, 29: 11~17.
    134. Swift DJ. Changes in selected blood component concentrations of rainbow trout, Salmo Gardneri, exposed to hypoxia or sublethal concentration of phenol or ammonia. Journal ofFish Biology, 1981, 19: 45~61.
    135. Tabata K. Toxicity of ammonia to aquatic animals with reference to the effects of pH and carbondioxide. Bull Tokai Reg Fish Res Lab, 1962, 34: 67~74.
    136. Thurston RV, Russo RC. Ammonia toxicity to fishes. Effect of pH on the toxicity of the un-ionized ammonia species. Environmental Science & Technology, 1981, 7: 837~840.
    137. Thurston RV, Chakoumakos C, Russo RC. Effect of fluctuating exposures on the acute toxicity of ammonia to rainbow trout(Salmo gairdneri.)and cutthroat trout (S. clarki). Water Research, 1981, 15: 911~917.
    138. Thurston RV, Philipps GR, Russo RC. Increased toxicity of ammonia to rainbow trout (S. gairdneri) resulting from reduced concentrations of dissolved oxygen. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38: 983~988.
    139. Thurston RV, Russo RC, Luedtke RJ, Smith CE, Meyn EL, Chakoumakos C, Wang KC, Brown CJD. Chronic toxicity of ammonia to rainbow trout. Transactions of the American Fisheries Society, 1984, 113: 56~73.
    140. Tietge JE, Johnson RD, Bergman HL. Morphometric changes in gill secondary lamellae of brook trout (Salvelinus fontinalis) after long-term exposure to acid and aluminum. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45: 1643~1648.
    141. Tsui TKN, Randall DJ, Chew SF, Jin Y, Wilson JM, Ip YK. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. The Journal of Experimental Biology, 2002, 205: 651~659.
    142. Tucker CS, Francis-Floyd R., Beleau MH. Nitrite-induced anemia in channel catfish, Ictalurus punetatus rafinesque. Bulletin of Environmental Contamination and Toxicology, 1989, 43: 295~301.
    143. USEPA (United States Environmental Protection Agency). Ambient water quality criteria for ammonia—1984. National Technical Information Service, Springfield, VA. 1984.
    144. USEPA. Ambient water quality criteria for ammonia (saltwater). National Technical Information Service, Springfield, VA.1989.
    145. Vedel NE, Korsgaard B, Jensen, FB. Isolated and combined exposure to ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): effects on electrolyte status, blood respiratory properties and brain glutamine/glutamate concentrations. Aquatic Toxicology, 1998, 41: 325~342.
    146. Vedel NE, Korsgaard B, Jensen FB. Isolated and combined exposure to ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): effects on electrolyte status, blood respiratory properties and brain glutamine/glutamate concentrations. Aquatic Toxicology, 1998, 41: 325~342.Vosyliene MZ, Kazlauskiene N. Comparative studies of sublethal effects of ammonia on rainbow trout (Oncorhynchus mykiss) at difference stages of its development. Acta Zoologica Lituanica, 2004, 14: 13~18.
    147. Verma SR, Bansal SK, Gupta AK, Delela RC. Pesticides induced haematological alterations in a freshwater fish H. fossilis. Bulletin of Environmental Contamination and Toxicology 1979, 22: 461~474.
    148. Vermeer GK. Effects of air exposure on dessication rate, hemolymph chemistry and escape behaviour of the spiny lobster, Panulirus argus. Fish Bulletin US, 1987, 85: 45~51.
    149. Wajsbrot N, Gasith A, Diamant A, Popper, DM. Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture, 1991, 92: 277~288.
    150. Wendelaar Bonga SE. The stress response in fish. Physiology Review, 1997, 77: 591~625.
    151. Wicks B J, Tang Q, Joensen R, Randall DJ. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquatic Toxicology, 2002, 59: 55~69.
    152. Wicks B J, Randall DJ. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 2002a, 59: 71~82.
    153. Wicks BJ, Randall DJ. The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation of ammonia. Comparative Biochemistry and Physiology. Part A, Physiology, 2002b, 132: 275~285.
    154. WilkieM P. Ammonia Excretion and Urea Handling by Fish Gills: Present Understanding and Future Research Challenges. Journal of Experimental Zoology, 2002, 293: 284~301
    155. Wilma MF, Klazina SB. Localization of Superoxide Dismutase Activity in Rat Tissues. Free Radical Biology& Medicine, 1997, 22: 241~248
    156. Wilson RW, Taylor EW. Transbranchial ammonia gradients and acid-base responses to high external ammonia concentration in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities. Journal of Experiment Biology, 1992, 166: 95~112.
    157. Wilson JM, Iwata K, Iwama GK. Inhibition of ammonia excretion and production in rainbow trout during severe alkaline exposure. Comparative Biochemistry and Physiology. Part A, Physiology, 1998, 121: 99~109.
    158. Woo NYS, Chiu SF. Metabolic and osmoregulatory responses of the sea bass Lates calcarifer to nitrite exposure. Environmental Toxicology and Water Quality, 1997, 3: 257~264.
    159. Woodward DF, Riley RG, Smith CE. Accumulation, sublethal effects, and safe concentration of a refined oil as evaluated with cutthroat trout. Archives of Environmental Contamination and Toxicology, 1983, 12: 455~464.
    160. Wood CM, Walsh PJ, Chew SF, Ip YK. Ammonia tolerance in the slender lungfish (Protoperus dollor): the importance of environmental acidification. Canadian Journal of Zoology, 2005, 4: 507~517.
    161. Song YL, Yu CI, Lien TW, Huang CC, Lin MN. Haemolymph parameters of Pacific white shrimp(Litopenaeus vannamei) infected with Taura syndrome. Fish & Shellfish Immunology, 2003, 14: 317~331.
    162. Zou GL, Chen DM, Cheng L. Studies on the linearization method for the quantitation of activity of superoxide dismutase. Journal of Wuhan University (Natural Science Edition), 1996, 6: 779~782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700