用户名: 密码: 验证码:
水性萜烯基EP/PU复合聚合物的制备及其交联反应与特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双组分水性聚氨酯将双组分溶剂型聚氨酯的高性能和水性树脂的低VOC含量相结合,有望取代溶剂型聚氨酯广泛应用于汽车、木器、塑料、工业维护等诸多领域的表面装饰、防护和黏接。我国是松节油的主要生产国,松节油年产量可达8-10万吨,目前主要作为溶剂使用,深加工利用率较低。
     本论文以来源于松节油的萜烯基环氧树脂(TME)为基体树脂,对其进行亲水化、羟基化改性合成水性萜烯基环氧树脂多元醇,再与多异氰酸酯交联,制备双组分水性萜烯基环氧树脂(EP)/聚氨酯(PU)复合聚合物。主要研究了水性萜烯基环氧树脂多元醇的合成工艺、结构表征,多元醇水分散体的稳定性、流变性、粒子形态、粒径分布等;水性萜烯基EP/PU复合体系的交联反应动力学及其反应机理与多元醇化学结构的内在关系;复合体系的流变特性、成膜过程及其复合产物的性能与结构的内在关系。为实现我国天然萜烯可再生资源的高值化高效综合利用及其在环境友好型高分子材料中的应用提供良好的理论基础。
     1.以聚乙二醇(PEG)改性TME制备了非离子型萜烯基环氧树脂多元醇水分散体。通过合成反应影响因素分析,得到制备NTP的最佳合成条件:以相对分子质量为6000的PEG作为亲水改性剂,用量为TME质量的8%,以质子酸硫酸为催化剂,用量为TME质量的1.5%,反应温度为110-120℃,反应时间为1h。NTP为黄色透明固体树脂,羟值100mg/g,羟基含量3.04%;NTP水分散体为乳白液体,固含量40%,黏度150mPa.s,Z均粒子粒径约为200nm。NTP水分散体的黏度随着剪切速率的增大而减小,呈现假塑性流体特性。
     2.以二乙醇胺(DEA)改性TME制备了阳离子型萜烯基环氧树脂多元醇水分散体。通过合成反应影响因素分析,得到制备阳离子型环氧树脂基多元醇的最佳合成条件:DEA用量为TME质量的12%,扩链剂用量为小分子二元醇与TME(与DEA氨基反应后的量)物质的量比为1-1.2∶1,催化剂用量为TME质量的2%,反应温度100℃,反应时间6-7h。阳离子型多元醇为黄色透明固体树脂,羟值230-260mg/g,羟基含量6.97%-7.88%;阳离子型多元醇水分散体为黄色透明液体,固含量30%,黏度1700-3700mPa.s,Z均粒子粒径约为20-40nm。水分散体的黏度随着剪切速率的增大变化不明显,属于牛顿流体。
     3.以对氨基苯甲酸(PABA)改性TME制备了阴离子型萜烯基环氧树脂多元醇(T-PABA)水分散体。通过合成反应影响因素分析,得到制备T-PABA的最佳合成条件:PABA/TME摩尔配比为1.6-1.8∶1,以丁酮为反应溶剂,用量为PABA质量的1.5倍,反应温度为丁酮回流温度80-90℃,反应时间为3h。T-PABA为黄色透明固体树脂,羟值170mg/g,胺值126mg/g,活泼氢含量0.525mol/100g; T-PABA水分散体为黄色透明液体,固含量30%,黏度400mPa.s,Z均粒子粒径约为30nm。T-PABA水分散体的剪切黏度随着剪切速率的增大保持不变,属于牛顿流体。
     4.将萜烯基环氧树脂多元醇水分散体与多异氰酸酯复合组成双组分水性EP/PU复合体系,利用低温冷冻干燥法除去分散介质水,以示差量热扫描仪(DSC)研究水性复合体系在无溶剂存在下的本体反应动力学,分别以Kissinger-Crane方法和Málek方法求取复合体系的交联反应动力学方程。研究发现,以Kissinger-Crane方法得到的n级反应动力学模型来拟合计算值和实验值时,发现计算曲线和实验曲线偏差较大。而以自催化动力学模型来拟合计算值和实验值时,计算曲线与实验曲线吻合较好。在实验考查的升温速率范围内,由Málek方法求得的自催化反应动力学模型能较好的描述水性萜烯基EP/PU复合体系的交联反应过程。
     以介电固化法研究水性萜烯基EP/PU复合体系的等温交联反应过程,并离子黏度曲线验证由非等温DSC法得到的动力学方程。用非等温动力学方程计算得到的交联度与时间曲线对等温介电固化离子黏度曲线进行拟合。结果显示两者的拟合效果较好,曲线随时间的变化趋势基本一致。这也说明了所得的自催化动力学模型能较好的描述水性复合体系的交联反应过程。
     5.水性萜烯基EP/PU复合体系的流变特性与所对应的水性多元醇的流变特性一致。多元醇与多异氰酸酯搅拌混合过程中,多元醇水分散体对多异氰酸酯有乳化作用,两者混合后重新分散形成了新的粒子。成膜过程包括可挥发物溶剂、水的挥发,多元醇和多异氰酸酯粒子的融合,多异氰酸酯和多元醇、水的反应。复合产物表面存在的粒子痕迹从侧面反映了膜结构内部保留粒子痕迹,验证了双组分水性聚氨酯体系粒子堆积成膜机理。
     复合产物性能与多元醇结构密切相关。非离子型复合体系的干燥时间较长;阳离子型多元醇由于叔胺基团的催化作用,其配合体系干燥快;阴离子型多元醇结构中含有仲胺基团,复合体系的干燥时间较短。由于多元醇都含有萜烯脂环结构,复合产物都具有较好的光泽度、冲击强度、附着力、柔韧性、耐污、耐热、抗粘连性能。阴离子型多元醇分子引入了苯环结构,其复合产物的关泽度、硬度最高。由于多元醇分子结构都经过亲水改性,复合产物的耐水性能稍差。随着NCO/OH物质的量比的增加,体系的干燥时间增加延长,复合产物的硬度、耐水、耐热性能增强。
Two-component waterborne polyurethanes (2K-WPUs) which combine high performanceof two-component solvent based polyurethanes and environmental friendliness, safety ofwaterborne systems together, have been grown as hotspots of coating research in both domesticand overseas, and have been increasingly applied in surface finishing, protection and adhesionfor cars, wood, plastic, industrial maintenance, etc. China is the main turpentine producingcountry, and its turpentine annual output is80000-100000tons. Turpentine is widely used assolvent due to the low level of deep processing and utilization.
     Terpene-maleic ester type epoxy resin (TME) which is an alicyclic epoxy resin withendocyclic structure was synthesized from the raw material turpentine. In this paper,waterborne polyols were synthesized from TME by hydroxylation and hydrophilization. Thenthe TME-based polyols were crosslinked with polyisocyanate to prepare two-componentwaterborne epoxy resin/polyurethane composite systems. The main topics of this thesis are asfollows:(1)the synthesis and characterization of TME-based polyols, and the stability,rheological property and particle size distribution of the polyol dispersions;(2)the kinetics ofcrosslinking reaction between TME-based polyols and polyisocyanate, and the effects of polyolstructures on reaction mechanism;(3)the rheological property and film formation of thewaterborne composite systems, and the effects of polymer structures on properties of thecomposite products. The purpose of this study is to provide favorable theoretical basis forhigher value and more efficient application of the renewable terpene resource on preparationfor environment-friendly polymer materials.
     1. Nonionic TME-based polyol (NTP) dispersion was prepared by modifying TME withpolyethylene glycol. The best synthesis condition of polyols was confirmed by studying aboutreaction influence factors. When reacted at110-120℃for about1h,good quality product canbe obtained by using polyethylene glycol with molecular weight of6000as hydrophilic segment which desirably accounts for8%by weight based on the weight of TME, andsulphuric acid as catalyst which accounts for1.5%by weight based on the weight of TME.NTP is transparent yellow solid with hydroxyl value of100mg/g, hydroxyl group content of3.04%. NTP dispersion is milk-white liquid with solid content of40%, viscosity of150mPa·s,Z-average particle size of200nm. The apparent viscosity of NTP dispersion decreases with theincreasing of shear rate, which indicates NTP dispersion is Pseudoplastic fluid.
     2. Cationic TME-based polyol dispersions were prepared by modifying TME withdiethanolamine. Suitable synthesis condition of polyols was confirmed by studying on factorsof synthesis reaction. Good quality polyols can be obtained by TME reacting withdiethanolamine in the amount of12%of TME by weight and chain extenders whose molarratio to TME (the quantities after reacting with amido of diethanolamine) is1–1.2:1attemperature of100℃for about6–7h in the present of ZnCl2as catalyst with the amount about2%of TME by weight. Cationic TME-based polyols are transparent yellow solids withhydroxyl value of230-260mg/g, hydroxyl group content of6.97-7.88%. Cationic TME-basedpolyol dispersions are transparent yellow liquids with solid content of30%, viscosity of1700-3700mPa·s, Z-average particle size of20-40nm. The apparent viscosity of cationicpolyol dispersions remains constant with the increasing of shear rate, which indicates cationicpolyol dispersions are Newton fluid.
     3. Anionic TME-based polyol (T-PABA) dispersion was prepared by modifying TME withpara-aminobenzoic acid. And suitable synthesis condition of polyol was confirmed by studyingon factors of synthesis reaction. When reacted at80-90℃for about3h,good quality T-PABAcan be obtained by TME reacting with para-aminobenzoic acid whose molar ratio to TME is1.6–1.8∶1,and using butanone as reaction solvent which desirably accounts for150%byweight based on the weight of para-aminobenzoic acid. T-PABA is transparent yellow solidwith hydroxyl value of170mg/g, amine value of126mg/g, and active hydrogen content of0.525mol/100g. T-PABA dispersion is transparent yellow liquid with solid content of30%,viscosity of400mPa·s, Z-average particle size of30nm. The apparent viscosity of T-PABA dispersion remains constant with the increasing of shear rate, which indicates T-PABAdispersion is Newton fluid.
     4. A kinetics analysis method for the bulk crosslinking reaction of waterborne epoxyresin/polyurethane composite systems prepared with TME-based polyol dispersions andhydrophilically modified hexamethylene diisocyanate (HDI) tripolymer was investigated withfreeze-drying and differential scanning calorimetry (DSC). And the data fit was realized withthe nth order kinetics equation and Málek’s mechanism function method, respectively. Theresults showed that the nth order kinetics equations from Kissinger and Crane Equations werenot able to well describe the nonisothermal reaction rates of the waterborne composite systems.While the simulated curves acquired from Málek’s mechanism function method matched wellwith the experimental dots in the investigated heating rate range. These results reflected thatthe autocatalytic model from Málek’s method could be used well for the investigatedcrosslinking systems. The kinetic equations acquired from this model can be used to direct thetechnological parameters optimization of the2K-WPUs crosslinking process.
     In order to validate whether the kinetics models acquired from Málek’s method can directthe isothermal crosslinking process, conversion coefficient curves calculated from obtainedkinetics equations were compared with ion viscosity curves from dielectric analysis. It could beobserved that these two types of curves matched quite well with each other. This resultindicated that the kinetics models gained from the Málek’s mechanism function method couldwell describe the actual crosslinking reaction processes of the studied crosslinking systems.
     5. The rheological properties of the waterborne epoxy resin/polyurethane compositesystems were in conformity with that of the used polyol dispersions. Polyol dispersions couldemulsify the HDI tripolymer and reform new particles when the two components were mixed.The film formation process of2K-WPUs is as the following:(1) solvent, water volatilizing,(2)polyol particles and HDI particles merging together,(3) polyisocyanate reacting with polyoland water. The particle trails on the surface of composite products indicated that there were particle trails in the body of the film. This result confirmed the particles piling film formationmechanism of the2K-WPUs.
     The properties of the composite products are closely related to the chemical structures ofthe TME-based polyols. There is only secondary hydroxyl group whose reactivity is low whenreacting with isocyanate group in NTP structure. Therefore, the drying time of the compositesystem from NTP is long. T-PABA contains secondary amine group having high reactivity withisocyanate group, so the drying time of the composite system from T-PABA is short. CationicTME-based polyols have tertiary amine in structure, which can catalyze the reaction ofhydroxyl group and isocyanate group. The drying time of their composite systems is short too.Due to the presence of endocyclic structure of terpene, the composite products of thecomposite systems have many eximious properties, such as high gloss, good impact strength,adhesion, flexibility, antifouling, heat resistance and blocking resistance. The compositeproduct of T-PABA with benzene ring structure has the highest gloss and pencil hardness. Thewater resistance of the composite products is slightly inferior as a result of the presence ofhydrophilic groups. The drying time, pencil hardness, water-resistant and thermal-resistantproperties of the composite products increase with the molar ratio of NCO group to OH group.
引文
[1] K Marcin; H Berenika; B Mohamed. Preparation and Characterization of an Epoxy Resin Modified by aCombination of MDI-Based Polyurethane and Montmorillonite. Journal of Applied Polymer Science,2011,122(5):3237~3247
    [2] K Marcin; H Berenika; B Mohamed. Effects of Various Polyurethanes on the Mechanical and StructuralProperties of an Epoxy Resin. Journal of Applied Polymer Science,2011,119(5):2925~2932
    [3] H Yeganeh, M M Lakouraj, S Jamshidi. Synthesis and Properties of Biodegradable Elastomeric EpoxyModified Polyurethanes Based on Poly(ε-caprolactone) and Poly(ethylene glycol). European PolymerJournal,2005,41(10):2370~2379
    [4] H Yeganeh, S Jamshidi, P H Talemi. Synthesis, Characterization and Properties of Novel ThermallyStable Poly(utethane-oxazolidone) Elastomers. European Polymer Journal,2006,42(8):1743~1754
    [5] L Chen, S Chen. Latex Interpenetrating Networks Based on Polyurethane, Polyacrylate and Epoxy resin.Progress in Organic Coatings,2004,49(3):252~258
    [6] Q M Jia, M S Zheng, H X Chen. Morphologies and Properties of Polyurethane/Epoxy ResinInterpenetrating Network Nanocomposites Modified with Organoclay. Materials Letters,2006,60(9-10):1306~1309
    [7] X Kong, S M Li, J Q Qu. Self-emulsifying Hydroxy Acrylic Polymer Dispersions for Two ComponentWaterborne Polyurethane Coatings. Journal of Macromolecular Science, Part A-Pure and AppliedChemistry,2010,47(40):368~374
    [8] C Flosbach, K Dreger, F Koehn. Process for the Preparation of the Top Coat Layer of an AutomotiveOEM Multi-layer Coating. US2011305843,2011
    [9] P J A Geurink a, TScherer a, R Buter A Complete New Design for Waterborne2-pack PUR Coatings withRobust Application Properties. Progress in Organic Coatings2006,55(2):119~127
    [10] Z Wicks, D Wicks, J Rosthauser. Two Package Waterborne Urethane Systems. Progress in OrganicCoatings,2002,44(2):161~183
    [11] D Otts, K Pereira, M Urban. Dynamic Colloidal Processes in Waterborne Two-component Polyurethaneand Their Effects on Solution and Film Morphology. Polymer,2005,46(13):4776~4788
    [12] X H Zhou, W P Tu, J Q Hu. Preparation and Characterization of Two-component WaterbornePolyurethane Comprised of Water-soluble Acrylic Resin and HDI Biuret. Chinese Journal of ChemicalEngineering,2006,14(1):99~104
    [13]储富祥.生物质基高分子新材料—能源替代的重要方向.生物质化学工程,2006,40(B12):21~23
    [14] J Karger-Kocsis. Thermoset Polymers Containing Bio-based Renewable Resources. Express polymerletters,2009,3(11),676~676
    [15]吴国民,孔振武,储富祥.氢化萜烯马来酸酐合成环氧树脂的研究.林产化学与工业,2007,27(3):57~62
    [16]吴国民,孔振武,储富祥.氢化萜烯酯型环氧树脂固化反应表征与机械性能研究.林产化学与工业,2007,27(4):21~26
    [17] P B Jacobs, P C Yu. Two-component Waterborne Polyurethane Coatings. Journal of CoatingsTechnology,1993,65(822):45~50
    [18] D A Ley, D E Fiori, R J Quinn. Optimization of Acrylic Polyols for Low VOCTwo-componentWater-reducible Polyurethane Coatings Using Tertiary Isocyanate Crosslinkers. Progress in OrganicCoatings,1999,35(1-4):109~116
    [19] S X Feng, M Dvorchak, K E. Hudson. New High Performance Two-component Wood CoatingsComprised of a Hydroxy Functional Acrylic Emulsion and a Water-dispersible Polysiocyanate. Journalof Coatings Technology,1999,71(899):51~57
    [20] C A Hawkins, A C Sheppard, T G Wood. Recent Advances in Aqueous Two-component Systems forHeavy-duty Metal Protection. Progress in Organic Coatings,1997,32(1-4):253~261
    [21] N H Juergen, K Harry, H Frank. Method and Device for Two-component Lacquer Mixture.KR20050102148,2005
    [22] B Klinksiek, L Obendorf, N Yuva. Homogenising Nozzle and Process for the Production of an AqueousTwo-component Polyurethane Coating Emulsion. US2006283979,2006
    [23]王武生.水性双组分聚氨酯涂料理论与实践.涂料技术与文摘,2008,7:11~22
    [24] C Suzana, L Caslav, S Jakov. Effects of the Acrylic Polyol Structure and the Selectivity of the EmployedCatalyst on the Performance of Two-component Aqueous Polyurethane Coatings. Sensors,2007,7(3):308~318
    [25] J Probst, U Biskup, C Kobusch. Aqueous Two-Component Polyurethane Systems with Increased ImpactResistance and Good Stability Properties, Method for Producing Same and Their Use. KR100611258,2006
    [26] M Martin, P Joachim, O Hartmut. Aqueous two-component polyurethane systems. CA2480062,2011
    [27] J Huybrechts, P Bruylants, A Vaes. Surfactant-free Emulsions for Waterborne,Two-componentpolyurethane Coatings. Progress in Organic Coatings,2000,38(2):67~77
    [28] E Nienhaus, B Mayer, U Mersenburg. Aqueous Two-component Polyurethane Coating Composition,Process for Its Preparation, and Its Use in Processes for the Production of a Multicoat finish.US5670600,1997
    [29] K Allen, J Eastman, K Best. Two Component Waterborne Polyurethane Ccoatings. US2011251332,2011
    [30] S K Das, S Kilic. Aqueous Secondary Amine Functional Acrylic Polymer. US6090881,2000
    [31]任娜娜,胡哲辉,刘志平.新型聚酯多元醇水分散体的制备.涂料工业,2011,41(8):22~26
    [32] I Christoph, K Andreas, P Joachim.2K Polyurethane Coating for Carrier Films. EP2216352,2010
    [33] T Jones, S J Marsh. Gel Resistant Hydrolytically Stable Polyester Resins with High HydroxylFunctionality and Carboxylic Acid Functionality for Isocyanate Cross-linkable, Waterborne coatings.WO9960046,1999
    [34] R Buter, A Steenbergen, T Scherer, et al. Branched Hydroxyl-functional Polyester Resin and Its Use inAqueous Cross-linkable Binder Compositions. US6562899,2003
    [35] H Blum. Binder Composition and Its Use for the Production of Coating or Sealing Compositions.US5344873,1999
    [36] T Junichi. Sheet for building material using aqueous adhesive, and its manufacturing method.JP2009084836,2009
    [37] T J Schwind, H Reiff, A W KubitzaA. Coating Compositions, a Process for Their Production and TheirUse for Coating Water-resistant Substrates. US5459197,1995.
    [38] D E Fiori. Two-component Water Reducible Polyurethane Coatings. Progress in Organic Coatings,1997,32(1-4):65~71
    [39] M Melchiors, M Sonntag, C Kobusch. Recent Developments in Aqueous Two-component Polyurethane(2K-PUR) Coatings. Progress in Organic Coatings,2000,40(1-4):99~109
    [40] H Kunio, N Yasuki, M Hiroyuki. Solventless Adhesive Compositions and Laminate Given by Using theSame. JP2006057089,2006
    [41]周新华.水性双组份丙烯酸聚氨酯的制备与性能研究.华南理工大学博士学位论文,2005,8~9
    [42] Y Morikawa, S Konishi, K Uehara. Self-emulsifiahle Polyisocyanate Mixture and Aqueous Coating orAdhesive Composition Comprising the Mixture. US5652300,1997
    [43]瞿金清,涂伟萍,陈焕钦.双组分水性聚氨酯涂料的合成与表征.高校化学工程学报,2002,2(16):212~216
    [44]闰福安.双组分水性聚氨酯漆的研制.涂料工业,2003,33(5):37~39
    [45] I Christoph, K Andreas, P Joachim.Carrier film with polyurethane coating. EP2216353,2010
    [46] A Mikio, M Takaaki, K Kenji. Undercoating Water-Based Two-pack Polyurethane Coating Compositionand Coated Material Agreeable to Touch Given by Using the Same. JP2004285341,2004
    [47]瞿金清,黎永津,陈焕钦.水性双组分聚氨酯涂料的研究进展.涂料工业,2002,33(11):34~37.
    [48] M Colucci. Two-component Water-based Varnishes Containing Acrylic-urethane Polymers. EP0562282,1993
    [49] R G Coogan R, B Vartan-boghossian. Aqueous Dispersions[P]. US4927876,1999.
    [50] H P Xu, F X Qiu, Y Y Wang. Preparation, Mechanical Properties of Waterborne Polyurethane andCrosslinked Polyurethane-acrylate Composite. Journal of Applied Polymer Science,2012,124(2):958~968
    [51] P J Peruzzo, P S Anbinde, O R Pardini Oscar. Influence of Diisocyanate Structure on the Morphologyand Properties of Waterborne Polyurethane-acrylates. Polymer Journal,2012,44(3):232~239
    [52] P J Peruzzo, P S Anbinde, O R Pardini Oscar.Waterborne polyurethane/acrylate: Comparison of hybridand blend systems. Progress in Organic Coatings,2011,72(3):429~437
    [53] H J Adlera, K Jahnya, B Vogt-Birnbrich. Polyurethane macromers-new building blocks for acrylichybrid emulsions with outstanding performance. Progress in Organic Coatings,2001,43(4):251~257
    [54] A Dong, Y An, S Feng. Preparation and Morphology Studies of Core-Shell Type WaterbornePolyacrylate-polyurethane Microspheres. Journal of Colloid and Interface Science,1999,214(1):118~122
    [55] X D Wu, R Richard. Abrasion Resistant Two-component Waterborne Polyurethane Coatings.US2008139775,2008
    [56] U Schnelder, H Blum. Binder Composition and Its Use for the Production of Coating or SealingCompositions. US5336711,1994.
    [57] P P Barbara. Blocked Polyisocyanates Containing Fluorine atoms as Crosslinking Agents forPolyurethane Powder Coatings. Journal of Applied Polymer Science,2012,124(4):3302~3311
    [58] X B Huang, WWei, J Li. Synthesis and Characterization of Novel Polyurethanes Based onFluorine-Containing Polyphosphazene. Journal of Applied Polymer Science,2011,120(2):1145~1151
    [59] A R Shafieizadegan-Esfahani, A A Katbab, A R Pakdaman. Electrically Conductive FoamedPolyurethane/Silicone Rubber/Graphite Nanocomposites as Radio Frequency Wave Absorbing Material:The Role of Foam Structure. Polymer Composites,2012,33(3):397~403
    [60] N H Javaherian, N E Kasaeian. Synthesis of Novel Silicone Containing Vinylic Monomer and Its Usesin the Waterborne Polyurethane-Veova/Vinyl Acetate Hybrid Emulsion Copolymers. Polymer Korea,2011,35(2):409~418
    [61] F A Zhang, C L Yu. Application of a Silicone-modified Acrylic Emulsion in Two-componentWaterborne Polyurethane Coatings. Journal of Coatings Technology and Research,2007,4(3):289~294
    [62] N Meike, T Joerg. Aqueous Two-component Polyurethane Systems Containing Hydroxy-functionalPolydimethylsiloxanes. WO2007025670,2007
    [63] B Kohler, J Probst, M Sonntag. Aqueous two-component polyurethane coating composition withimproved adhesion and corrosion resistance. US2003138642,2003
    [64] X D Wu, R Richard. Two Component Waterborne Polyurethane Coatings for Anti-graffiti Application.WO2009029512,2009
    [65] H Reiff. Polyisocyanate Mixture, a Process for Their Production and Their Use. US5258452,1993
    [66] P Weyland, R Treiber, A Sturm. Mixture Containing Water-emulsifiable Isocyanates. US5587421,1996
    [67] D E Fiori, R J Quinn. Emulsifiable Compositions, Curable Emulsions Thereof and Uses of SuchCurable eEmulsions. US5466745,1995
    [68] F Stephen, B Nottingham. Solvents for Polyurehnane Coatings. EP0978545,2000
    [69] L Kahl, B Klinksiek, D Schleenstlen. Aqueous Two-component Polyurethane Coating Compositions anda Method for their Preparation. US5723518,1998
    [70] C R Hegedus, K A Kloibe. Aqueous Acrylic-polyurethane Hybrid Dispersion and their Use in IndustrialCoating. Journal of Coating Technology,1996,68(860):39~48
    [71] P B Jacobs, T A Potter. Water Dispersible Polyisocyanates. US5200489,1993
    [72] H J Laas, T Hassel, W Kubitza. Water-dispersible Polyisocyanate Mixtures, a Process for theirPreparation and their Use in Two-component Aqueous Compositions. US5252696,1993
    [73] H J Laas, M Brahm, R Halpaap. Water Dispersible Polyisocyanates Mixtures. US5731396,1998
    [74] W Hovestadt, L Schmalstieg, C Wamprecht. Aqueous Two-component Binders and their Use in Coatingand Sealing Compositions. US5854338,1998
    [75] B Huckestein, H Renz, S Kouthrade. Water-emulsifiable Polyisocyanates. US5780542,1998
    [76] H J Laas, R Rettig, R Halpaap. Polyisocyanate Mixture, a Process for their Preparation and Use asCross-linking Agents in Coating Compositions. US5473011,1995
    [77] R Pires., H J Laas. A New Tailor-made Polyisocyanate for Two-pack Waterborne Polyurethane Coating.Surface Coatings International Part B: Coatings Transactions,2002,85(3):185~190
    [78] H J Laas, R Halpaap, C Wamprecht. Water-dispersable Polyether-modified Mixtures of Polyisocyanates.EP0959087,1999.
    [79] H J Laas, R Halpaap. Modified Polyisocyanates. US6767958[P],2004
    [80] K Haeberle. Water-emulsifiable Polyisocyanates. US5583176,1996
    [81] J Mosbach, H J Laas H, W Kubitza. Polyisocyanate Mixtures, Process for their Production and their Useas Binders for Coating Composition or as Reactants for Compounds Reactive to Isocyanate Groups orCarboxyl groups. US5098983,1992
    [82] J Schwindt, H Reiff, W Kubitza. Coating Compositions, a Process for Their Production and their Usefor Coating Water-resistant Substrates. US5459197,1995
    [83] R R Roesler, M W Shaffer, Y P Schmalstieg. Water Dispersible Ppolyisocyanates CcontainingAlkoxysilane Groups. US6057415,2000
    [84] A M Kaminski,M W Urban. Interfacial Studies of Crosslinked Urethane: PartII. The Effect of Humidityon Waterborne Polyurethane; a Spectroscopic Study. Journal of Coating Technolgy,1997,69(873):113~121
    [85] C F Tien, J E Dewhurst, A S Drayton-Elder. Property Development During Film Formation of TwoComponent Waterborne Polyurethane Using Dielectric Spectroscopy. Abstracts of Papers of theAmerican Chemical Society,1999,218(2):627~627
    [86] B K Kim. Aqueous Polyurethane Dispersions. Colloid Polymer Science,1996,274(7):599~611
    [87] M H Piao, J Otaigbe, N B Otts. Rheology and Morphology of Two-component WaterbornePolyurethane Dispersion for Film Formation. Abstracts of Papers American Chemical Society,2004,227(2):479~480
    [88]谭芳.双组分水性聚氨酯的制备及其成膜机理研究.武汉理工大学硕士学位论文,2007,6~8
    [89] S Hajime F Hideyuki, ITakahiro. Water-based Interlayer Primer, Inorganic Finishing Urethane-basedWaterproofing Method and Urethane-based Water-proof Laminate. JP2004224825,2004
    [90]张发爱.水性双组分聚氨酯涂料的制备及性能研究.西北师范大学博士学位论文,2004,30~32
    [91] S X. Feng, P Lunney, R. Wargo. Effects of Additives on the Performance of Two-componentWaterborne Polyurethane Coatings. Journal of Coatings Technology,1999,71(897):143~149
    [92] G R Larson, C A Puschak, L S Smith. Waterborne Coating Composition. US5414041,1994
    [93] Michael J. Dvorchak Using “High Performance Two-component Waterborne Polyurethane” Woodcoatings. Journal of Coatings Technology,1997,69(866):47~52
    [94]曹培均,张强.礼品盒用水性双组分聚氨酯木器漆的研制.2011水性聚氨酯行业年会论文集,2011,187~189
    [95] R R Roesler, S A Grace. New Developments in Two-component, Waterborne Polyisocyanate-basedCoatings for Automotive Applications. Polymer Material Science,2000,83:327~5328
    [96] H Friedrich, K Herbert. Method of Producing Multi-layer Coatings. US6025033,2000
    [97] B Michael, M Uwe. Aqueous Two-component Polyurethane Coating Composition, Process for itsPreparation, and its Use in Methods of Producing a Multicoat Paint System. US5876802,1999
    [98] R Heinz-Peter, B Michael. Coating Composition Based on a Hydroxyl Group-containing PolyacrylateResin and its Use in Processes for Producing a Multicoat Finish. US5759631,1998.
    [99] M Uwe, N Egbert. Aqueous Multicomponent Polyurethane Coating Composition, Process for itsPreparation and its use in Methods of Producing a Multicoat Finish. US5834555,1998
    [100]姜英涛.涂料工艺(修订本).北京:化学工业出版社,1992,410~410
    [101]朱楚华,方明,郭亚菊.双组分水性聚氨酯柔感涂料性能的研究.第二届水性塑料涂料及涂装技术研讨会,2008,37~40
    [102]刘军,钟宏,周海斌.浅谈水性聚氨酯汽车内饰涂料.第二届水性塑料涂料及涂装技术研讨会,2008,61~65
    [103] T Tarao, K Horiuchi. Two-component Curing Type Urethane-based Aqueous Golf Ball Paint.US2010167847,2010
    [104] T Tarao, T Manabu. Painted Golf Ball and Method for Producing the Same. US8137753,2012
    [105] T Tarao, K Horiuchi. Curing Type Polyurethane Aqueous Golf Ball Paint and Painted Golf Ball Usingthe Same. JP2011092578,2011
    [106] J Michael, Dvorchak. New-high-performance Two-component Waterborne Polyurethane Coatings forthe Industrial Finishes Market. Proceedings of the Twenty-Sixth International Waterborne, High-Solids,and Powder Coatings Symposium,1999,142~156
    [107] D Giles, C Ionescu, M Ingle. New Hydroxyl Functional Acrylic Emulsion Technology for IsocyanateCrosslinking with Applicability in Industrial Maintenance Market. International Coatings Expo andFederation of Societies for Coatings Technology79th Annual Meeting Technical Program,2001,590~600
    [108] G Larson, C A Puschak. Waterborne Coating Composition. US5478601,1995
    [109] S Takimoto, M Nakamae, T Murakami. Adhesive Composition and Adhesive. JP2000109628,2000
    [110] S Watanabe, I Ibuki. Aqueous Adhesive Agent Composition. JP4155612,2008
    [111] P A Voss, T E Rolano. Two Component Water-based Adhesives for Use in Dry-bond Laminating.US5861470,1999
    [112] O Ganster, J Buechner, H W Lucas. Aqueous Crosslinking Polymer Dispersions and their Use for thePreparation of Water-based Adhesives. US6087439,2000
    [113] H Blum, H Clemens, M Ehlers. Aqueous Reactive Putties (II). WO0037519,2000
    [114] T Sakurai, S Asakoa. Novel Easily Water-dispersible Polyisocyanate Composition. JP2000198920,2000
    [115]吴国民,孔振武,黄焕,等.环氧树脂/聚氨酯复合改性水分散体系的研究进展.高分子材料科学与工程,2007,23(3):21~24
    [116]颜财彬,傅和青.水性聚氨酯的改性研究进展.化工进展,2011,30(12):2658~2664
    [117]王焕,徐恒志,许戈文.环氧改性聚酯聚醚型水性聚氨酯的合成及性能研究.涂料工业,2011,41(4):53~58
    [118]杨伟平,黎兵,许戈文.乳酸开环环氧树脂改性水性聚氨酯的合成及性能研究.涂料工业,2011,41(4):22~30
    [119]王焕,王萃萃,许戈文.环氧改性水性聚氨酯的性能研究.胶体与聚合物,2011,29(5):99~101
    [120]戴震,刘浏,许戈文.环氧树脂改性水性聚氨酯合成与表征.聚氨酯,2010,92:56~58
    [121] X J La, X R Li, L Wang. Synthesis and Properties of Waterborne Polyurethane Modified by EpoxyResin. Acta Polymerica Sinica,2009,11:1107~1112
    [122]李伟,夏正斌,宁蕾.高固含量环氧改性磺酸盐型水性聚氨酯的合成与表征.涂料工业,2011,41(9):1~9
    [123]郑淑琴,谢海安,王伟.环氧树脂改性水性聚氨酯的合成研究.弹性体,2009,19(5):41~43
    [124]刘惠茹,林志雄.环氧树脂改性水性聚氨酯胶粘剂的研究.惠州学院学报,2010,30(6):8~12
    [125]刘浏,戴震,许戈文.涂料用环氧改性水性聚氨酯.涂料工业,2010,40(12):28~32
    [126]朱伟,王芳,汤嘉陵.环氧树脂改性聚氨酯水乳液稳定性的研究.涂料工业,2010,40(5):47~49
    [127]李利坤.环氧树脂改性水性聚氨酯的制备及其性能研究.聚氨酯工业,2010,25(1):42~45
    [128]赵文涛,郑水蓉,张聪莉.环氧树脂改性水性聚氨酯乳液的研究.中国胶粘剂,2010,19(2):38~41
    [129]杨伟平,戴震,许戈文.新型环氧树脂改性水性聚氨酯的合成与性能研究.涂料工业,2011,41(11):25~25
    [130] R Parmar, K Patel, J Parmar. High-performance Waterborne Coatings Based on Epoxy-acrylic-graft-Copolymer-modified Polyurethane Dispersions. Polymer International,2005,54:488~494
    [131] H H Fowler, J M Hunte. Aqueous Epoxy-urethane Diapersions. US4399242,1983
    [132] E P Squiller, P H Markusch. Aqueously Dispersed Blends of Epoxy Resins and Blocked UrethanePrepolymers. US5034435,1991
    [133]刘汉杰,王旭东,聂轰,等.水性聚氨酯改性环氧树脂固化剂.涂料工业,2004,34(22):30~31
    [134] G D Ernst, J S Keute. Aqueous Urethane-epoxy Coating Composition. US5227414,1993
    [135]刘云派,社海燕,罗序燕.我国松节油深加工的研究现状及其发展方向.南方冶金学院学报,2002,23(2):73~76
    [136]吴国民.氢化萜烯基环氧树脂及其多元醇衍生物的合成、交联反应与性能研究.中国林业科学研究院硕士学位论文,2007,8~10
    [137]商士斌,谢晖,黄焕.松节油改性聚氨酯涂料的合成研究..林产化学与工业,2001,21(4):16~20
    [138]康小孟,黄莉,谢晖.UV固化松节油聚氨酯丙烯酸酯的合成及涂膜性能研究.涂料工业,2009,39(2):12~14
    [139]黄力堆,陈健,黄茂村,等.新型松节油系列单组分聚氨酯涂料的研究.涂料工业,2001,31(12):7~10
    [140]马德柱,何平笙,徐种德,等.高聚物的结构与性能.北京:科学出版社,1999,190~200
    [141]冀克俭,刘元俊.环氧树脂的NMR表征.复合材料学报,2000,17(1):15~18
    [142]郑其良,钱志伟.斯托克斯(Stokes)定律在混浊型饮料中的应用.饮料工业,1998,1(1):24~26
    [143]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991,80~80
    [144] Z W Wicks, F N Jones, S P Pappas. Organic Coatings Science and Technology. Beijing: ChemicalIndustry Press,2002,42~42
    [145]朱吕民.聚氨酯合成材料.南京:江苏科学技术出版社,2002,44~45
    [146]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002,22~22
    [147]张爱发.水性双组分聚氨酯涂料的合成、成膜及影响因素.现代涂料与涂装,2001,3:36~38
    [148]袁婷婷,沈玲,王汉峰.可聚合乳化剂DNS-6对丙烯酸酯乳液稳定性的影响.黏接.2010.9:63~66
    [149]浦鸿汀,刘泰,杨正龙.聚脲的合成与应用.高分子材料科学与工程,2008,24(7):1~5
    [150] S F Lu, J W Xing, Z H Zhang. Preparation and Characterization of Polyurea/PolyurethaneDouble-Shell Microcapsules Containing Butyl Stearate Through Interfacial Polymerization. Journal ofApplied Polymer Science,2011,121(6):3377~3383
    [151] Y A Bahei-El-Din, G J Dvorak. Behavior of Sandwich Plates Reinforced with Polyurethane/polyureaInterlayers Under Blast Loads. Journal of Sandwich Structures&Materials.2007,9(3):261~281
    [152] W Z Zhu, X Y Liu. Study on Curing Kinetics of Cast Polyurethane Elastomers by Durometer.Polyurethane Industry,1996,3:27~31
    [153] J W Baker, J Gaunt. The Mechanism of the Reaction of Aryl Isocyanates with Alcohols and Amines.Journal of the Chemical Society,1949,9~31
    [154]任娜娜,余喜红,宇妍.催化剂对水性双组分聚氨酯涂料的成膜及性能的影响.涂料工业,2010,40(3):27~31
    [155] D Rou, C N Cacaval, F Musta. Cure Kinetics of Epoxy Resins Studied by Nonisothermal DSC Data.Thermochim. Acta,2002,383(1-2):119~127
    [156] J Malek. A Computer Program for Kinetic Analysis of Non-isothermal Thermoanalytical Data.Thermochim. Acta.1989,138(2):337~346
    [157] Y Fu, W H Zhou. Cure Kinetics Behavior of a Functionalized Graphitic Nanofibermodified EpoxyResin. Thermochim. Acta,2011,516(1-2):58~63
    [158] Y He. DSC and DEA Studies of Underfill Curing Kinetics, Thermochim. Acta,2001,367(8):101~106
    [159] A Yousefi, P G Lafleur, R Gauvin. Kinetic Studies of Thermoset Cure Reactions: A Review. PolymerComposites,1997,18(2):157~168
    [160] L Xu, J H Fu, J R Schlup. In Situ Near-infrared Spectroscopic Investigation of Epoxy Resin-aromaticAmine Cure Mechanisms. Journal of the American Chemical Society,1994,116(7):2821~2826
    [161] N Sbirrazzuoli, S Vyazovkin. Learning about Epoxy Cure Mechanisms from Isoconversional Analysisof DSC data. Thermochim. Acta2002,388(1-2):289~298
    [162] H E Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry,1957,29(11):1702~1706
    [163] J Malek. The Kinetic Analysis of Non-isothermal Data, Thermochim. Acta,1992,200(1):257~269
    [164] S. Montserrat, J. Malek. A Kinetic Analysis of the Curing Reaction of an Epoxy Resin, Thermochim.Acta,1993,228(1):47~60
    [165] G I Senum, R T Yang. Rational Approximations of the Integral of the Arrhenius Function. Journal ofThermal Analysis and Calorimetry,1977,11(3):445~447
    [166] S Vyazovkin, N Sbirrazzuoli. Isoconversional Kinetic Analysis of Thermally Stimulated Processes inPolymers. Macromolecular Rapid Communications,2006,27(18):1515~1532
    [167]傅献彩,沈文霞,姚天扬,等.物理化学.第五版.北京,高等教育出版社,2006,238~238
    [168] J Sestak, G Berggren. Study of the Kinetics of the Mechanism of Solid-state Reactions at IncreasingTemperatures. Thermochim. Acta,1971,3(1):1~12
    [169] S J Park. Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties ofDGEBA/Poly(ethylene terephthalate) Blends. Macromolecular Research,2009,17(8):585~590
    [170] M Sernek, F A Kamke. Application of Dielectric Analysis for Monitoring the Cure Process of PhenolFormaldehyde Adhesive. International Journal of Adhesion&Adhesives,2007,27(7):562~67
    [171] J Steinhaus, M Frentzen, M Rosentritt. Dielectric Analysis of Short-term and Long-term Curing ofNovel Photo-curing Dental Filling Materials. Macromolecular Symposia,2010,296(1):622~625
    [172] J H Chen, M Hojjati. Microdielectric Analysis and Curing Kinetics of an Epoxy Resin System.Polymer Engineering&Science,200747(2):150~158
    [173] K Xu, S X Zhou, L M Wu. On-line and In-real-time Monitoring of UV Photopolymerization ofNanocomposites with Microdielectrometry. Progress in Organic Coatings,2009,65(2)237~245
    [174]李金旗.交通工具用水性双组分聚氨酯涂料的最新研究进展.上海涂料,2011,48(12):20~22
    [175]李莉,黎兵,纪学顺.纳米ATO改性水性聚氨酯涂料研究.中国涂料,2008,23(9):28~31
    [176] G M Wu, Z W Kong, H Huang. Synthesis, Characterization, and Properties of Polyols fromHydrogenated Terpinene–maleic Ester Type Epoxy Resin. Journal of Applied Polymer Science,2009,113(5):2894~2901

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700