用户名: 密码: 验证码:
低介电常数微波陶瓷材料的制备、介电性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低介电常数、高品质因数微波介质陶瓷材料的合成及研究是近年来的研究热点,本文制备了Sm_2SiO_5陶瓷,Sm_4(SiO_4)_3陶瓷,Nd_2SiO_5陶瓷,Al_2O_3-TiO_2陶瓷,MgTiO_3-CaTiO_3陶瓷和(Zn,Mg)TiO_3-TiO_2陶瓷,并用XRD、SEM、EDS和TG-DTA等多种分析测试手段及开腔谐振测试方法,研究了这些低介陶瓷的相组成、致密度和微观结构等对材料介电性能的影响,探索介电性能的演变规律,并将(Zn,Mg)TiO_3-TiO_2复合陶瓷用于制备多层片式陶瓷电容器(MLCC)。
     1.研究以非化学计量比效应合成新型的单相Sm_2SiO_5低介电常数微波陶瓷。当Sm_2O_3/SiO_2摩尔比为1:1.05,在1350℃烧结4h,可得到纯的单斜Sm_2SiO_5相。随着温度的升高,可以得到少量的六方Sm_4(SiO_4)_3相,并且随着温度的升高,Sm_2SiO_5陶瓷样品的相对密度随之增加。Sm_2SiO_5陶瓷在1500℃下烧结后,有优良的介电性能:εr=8.5,Q×f=64878.71GHz和τf=-37.64ppm/℃。Sm_2SiO_5陶瓷材料有着较宽的烧成温度范围和小的负温度系数,因此可以作为优良的介电材料用于毫米波通讯装置中。
     2.研究以非化学计量比效应合成新型的单相Sm_4(SiO_4)_3低介高频微波陶瓷。发现Sm_2O_3-xSiO_2(1.425≤x≤1.6)在1350-1600℃下烧结四个小时,均能得到纯六方Sm_4(SiO_4)_3相。当x=1.5时,样品的介电性能: εr=9.03,Q×f=17470.76GHz (12.40GHz)和τf=-24.4ppm/℃。Sm_4(SiO_4)_3陶瓷材料有着很宽的烧成温度范围和较小的负温度系数。
     3.研究以非化学计量比效应合成新型的单相Nd_2SiO_5低介电常数微波陶瓷。当Nd2O_3/SiO_2摩尔比为1:1.05,在1450℃下烧结时,第二相六方Nd_4Si_3O_(12)相消失,纯单斜Nd_2SiO_5相出现。随着烧温的升高,Nd_2SiO_5陶瓷的相对密度升高。Nd_2SiO_5陶瓷在1500℃下烧结,介电性能: εr=7.94,Q×f=38800GHz, τf=-53ppm/℃。高自谐振频率导致低的介电常数和低的Q×f值。Nd_2SiO_5陶瓷有较宽的烧成温度范围,它们有潜力应用在微波被动元器件中。
     4.使用新颖的水基溶胶凝胶法合成0.9Al_2O_3-0.1TiO_2包覆性纳米颗粒,用二(2-羟基丙酸)二氢氧化二铵合钛(TALH)为钛盐水基前驱体,与传统的钛醇盐sol-gel法相比,不需要乙醇做溶剂体系。本文对其制备条件进行了优化。α-Al_2O_3和金红石相晶粒生长指数(n)各为2.5和4,晶粒生长活化能分别为100kJ/mol和107kJ/mol。沿着晶界扩散后形成的缝合线,纳米层通过高温自组装途径生长,其微波介电性能:εr=10.4, Q×f=18000GHz, τf=-10.8ppm/℃(在1300℃烧结)和εr=13, Q×f=32000GHz, τf=45ppm/℃(又在1100℃下退火10h)。
     5.采用固相法合成MgTiO_3-CaTiO_3复合陶瓷,加入CaTiO_3用来调节MgTiO_3过负的频率温度系数,加入3ZnO-B_2O_3可以促进体系的烧结。
     (a) MgTiO_3-CaTiO_3陶瓷随着CaTiO_3掺入量的增加,体系的介电常数和温度系数随之增加,品质因数随之下降,样品的介电性能与微观结构和晶相转变有着密不可分的联系。0.97MgTiO_3-0.03CaTiO_3在1300℃下具有优良的微波介电性能: εr=18.23, Q×f=76529GHz (7.37GHz)和τf=-34.68ppm/°C。
     (b)适量的ZB掺杂0.97MgTiO_3-0.03CaTiO_3,在降低烧温的同时,并没有明显恶化体系的介电性能。0.97MgTiO_3-0.03CaTiO_3+2wt.%ZB在1225℃下具有优良的微波介电性能: εr=17.96, Q×f=79346GHz (7.47GHz)和τf=-34.93ppm/°C。
     6.采用固相法合成(Zn,Mg)TiO_3-TiO_2复合陶瓷,加入TiO_2用来稳定(Zn, Mg)TiO_3六方相和调节谐振频率温度系数,加入3ZnO-B_2O_3可以促进体系的烧结,体系遵循液相烧结机理,烧结过程中有明显的晶界运动。SEM和EDS显示,在烧结过程中,游离的(Zn, Mg)TiO_3颗粒会在晶界上产生偏析甚至脱溶出来分凝在晶界上。SnO_2因为能阻止晶界扩张而被用做晶粒细化剂。样品的介电性能与微观结构和晶相转变有着密不可分的联系,我们发现(Zn, Mg)TiO_3-0.25TiO_2+1.0wt.%3ZnO-B2O_3+0.1wt.%SnO_2(ZMTZBS,1000°C)呈现优良的介电性能: εr=27.7, Q×f=65494GHz (6.07GHz)和τf=-8.88ppm/°C。
     7.用介电性能优良的ZMTZBS陶瓷粉料成功制造了具有良好电性能的多层片式陶瓷电容器。我们发现:随着电容量增加,电容器的自谐振频率和等效串联电阻相应减少,而品质因数随着频率或电容量增加而减少。
Preparation of microwave ceramic materials with low dielectric constant and highquality factor has become a research focus in recent years. In this paper, Sm_2SiO_5ceramics,Sm_4(SiO_4)_3ceramics, Nd_2SiO_5ceramics, Al_2O_3-TiO_2ceramics, MgTiO_3-CaTiO_3ceramicsand (Zn, Mg)TiO_3-TiO_2ceramics were synthesized. The phase composition, density andcrystal microstructure of ceramic materials with low dielectric constant were analyzed byXRD, SEM, EDS, TG-DTA and so on. Microwave dielectric properties were tested byHakki-Coleman opened resonator method. The relationship between microstructure andmicrowave dielectric properties was also investigated. The evolution of dielectric propertieswas discussed.(Zn,Mg)TiO_3-TiO_2composite ceramics were applied to manufacturemultilayer ceramic capacitors (MLCC).
     1. Sm_2SiO_5ceramics were synthesized by solid phase method. The pure monoclinicSm_2SiO_5phase could be obtained when Sm_2O_3/SiO_2=1:1.05at1350℃. The hexagonalSm_4(SiO_4)_3second phase occurred as temperature increased. The densification of Sm_2SiO_5ceramics increased with increasing temperature. The Sm_2SiO_5ceramics sintered at1500℃exhibited microwave dielectric properties: a dielectric constant (εr) of8.5, a quality factor Q×fof64878.71GHz and a temperature coefficient of resonant frequency (τf) of-37.64ppm/℃.Sm_2SiO_5ceramics had a wide temperature region and small negative τfvalue. They arepromising candidate materials for millimeter-wave devices.
     2. Sm_4(SiO_4)_3ceramics were synthesized by solid phase method. The pure hexagonalSm_4(SiO_4)_3phase could be obtained when Sm_2O_3/SiO_2=1:1.425-1.6at1350℃-1600℃for4h. when Sm_2O_3/SiO_2=1:1.5at1550℃, Sm_4(SiO_4)_3ceramics exhibited microwave dielectricproperties: a dielectric constant (εr) of9.03, a quality factor Q×f of17470.76GHz (12.40GHz)and a temperature coefficient of resonant frequency (τf) of-24.4ppm/℃. Sm_4(SiO_4)_3ceramics had a wide temperature region and small negative τfvalue.
     3. Nd_2SiO_5ceramics were synthesized by solid phase method. The hexagonal Nd_4Si_3O_(12)second phase disappeared and the pure monoclinic Nd_2SiO_5phase could be obtained when themolar ratio of Nd2O_3/SiO_2was1:1.05at1450℃. The relative density of Nd_2SiO_5ceramicsincreased with increasing temperature. The Nd_2SiO_5ceramics sintered at1500℃exhibitedmicrowave dielectric properties: a dielectric constant (εr) of7.94, a quality factor (Q×f) of38800GHz and a temperature coefficient of resonant frequency (τf) of-53ppm/℃. Highresonant frequency led to a low dielectric constant and low Q×f value. Nd_2SiO_5ceramics had a wide temperature region. They are promising candidate materials for microwave passivecomponents.4. The0.9Al_2O_3-0.1TiO_2nano-particles were synthesized by novel water-based sol-gelmethod. Compared with the traditional sol-gel method using titanium alcohol salt, this methoddid not need ethanol solvent system using TALH as titanium salt water-based precursor body.The preparation condition of0.9Al_2O_3-0.1TiO_2nano-particles was optimized. The graingrowth exponent (n) values were2.5and4for α-Al_2O_3and rutile, respectively. The activationenergies of grain growth were estimated to be100and107kJ/mol for α-Al_2O_3and rutile.Along suture line emerging after grain boundary diffusion, the nano-sheets of Al_2O_3-TiO_2grew through high temperature self-assembly way. The microwave dielectric behaviors of0.9Al_2O_3-0.1TiO_2ceramics were εr=10.4, Q×f=18000GHz, τf=-10.8ppm/℃(as preparedat1300℃), and εr=13, Q×f=32000GHz, τf=45ppm/℃(post-annealed at1100℃for10h).5. MgTiO_3-CaTiO_3composite ceramics have been prepared via the solid-phase synthesismethod. CaTiO_3was employed to tone negative temperature coefficient of resonant frequency(τf) of MgTiO_3,3ZnO-B2O_3was effective to promote sintering.(a) With the content of CaTiO_3increasing, dielectric constant and temperature coefficientof MgTiO_3-CaTiO_3ceramics increased, and quality factor reduced. The dielectric propertiesdepended on microstructure and grain phase transition closely. Microwave dielectricbehaviors of0.97MgTiO_3-0.03CaTiO_3ceramics were: εr=18.23, Q×f=76529GHz (7.37GHz), τf=-34.68ppm/°C (at1300℃).(b) Right amount of ZB doping0.97MgTiO_3-0.03CaTiO_3, led to the decrease in thesintering temperature, and the dielectric properties had no significant deterioration.Microwave dielectric behaviors of0.97MgTiO_3-0.03CaTiO_3+2wt.%ZB ceramics were: εr=17.96, Q×f=79346GHz (7.47GHz), τf=-34.93ppm/°C (at1225℃).6.(Zn, Mg)TiO_3-xTiO_2composite ceramics were prepared via solid-phase synthesismethod. TiO_2was employed to tone temperature coefficient of resonant frequency (τf) andstabilized hexagonal (Zn, Mg)TiO_3phase.3ZnO-B_2O_3was effective to promote sintering. Themovement of grain boundary was obvious because of the liquid phase sintering. SEM andEDS showed that segregation and precipitation of dissociative (Zn, Mg)TiO_3grains occurredat grain boundary during sintering. SnO_2was used as inhibitor to prevent the grain boundaryfrom moving. The dielectric behaviors of specimen strongly depended on structural transitionand microstructure. We found that1.0wt.%3ZnO-B_2O_3doped (Zn, Mg)TiO_3-0.25TiO_2ceramics with0.1wt.%SnO_2additive displayed excellent dielectric properties (at1000°C): εr =27.7, Q×f=65494GHz (at6.07GHz) and τf=-8.88ppm/°C.
     7. The above-mentioned material was applied successfully to make multilayer ceramiccapacitors (MLCC), which exhibited excellent electrical properties. The self-resonancefrequency (SRF) and equivalent series resistance (ESR) of capacitor decreased withcapacitance increasing, and the quality factor (Q) of capacitor reduced as frequency orcapacity increased.
引文
[1]李翰如.电介质物理学导论[M].成都科技大学出版社,1990:12-15
    [2] Reaney I. M., Wise P, Ubic R, et al. On the temperature coefficient of resonate frequencyin microwave dielectrics [J]. Philos. Mag. A.,2001,81(2):501-510
    [3] Yoshihiro K. Novel dielectric waveguide components microwave applications of newceramic materials [A]. IEEE[C],1991:726-739
    [4] Moulson A.J., Herbert J.M. Electroceramics materials properties applications.Firstedition[M].London: Chapman&Ha11,1990:233-241
    [5] Neil M, Alford N., Penn S. J. Sintered alumina with low dielectric loss[J]. J. Appl. Phys.,1996,80(10):5896-5898
    [6] Breeze J., Penn S.J., Poole M., Alford N.M. Layered Al2O3-TiO2composite dielectricresonators[J]. Electron. Lett.,2000,36(10):883-884
    [7] Tzou W.C., Chen Y.C., Chang S.L., Yang C.F. Microwave dielectric characteristics ofglass-added (1-x)Al2O3-xTiO2ceramics[J]. J. Appl. Phys.,2002,41:7422-7425
    [8] Tzou W.C., Chang S.L., Yang C.F., Chen Y.C. Sintering and dielectric properties of0.88Al2O3-0.12TiO2microwave ceramics by glass addition [J]. Mater. Res. Bull.,2003,38:981-989
    [9] Somani V., Kalita S.J. Synthesis, densification, and phase evolution studies of Al2O3-Al2TiO5-TiO2nanocomposites and measurement of their electrical properties[J]. J. Am.Ceram.Soc.,2007,90(8):2372-2378
    [10] Ohishi Y., Miyauchi Y., Ohsato H., Kakimoto K.I., Controlled temperature coefficient ofresonant frequency of Al2O3-Al2TiO5-TiO2ceamics[J]. Jpn. J. Appl. Phys.,2004,43(6A):L749-751
    [11] Miyauchi Y., Kagomiya I., Ohishi Y., Ohsato H. The improvement of microwavedielectric properties on Al2O3ceamics[J]. Ferroelectric.,2009,387:46-53
    [12] Miyauchi Y., Kagomiya I., Ohishi Y., Ohsato H. Microstructures and microwavedielectric properties on annealed Al2O3-TiO2composite ceramics[J]. Key EngineeringMaterials,2009,388:251-254
    [13] Hsieh M.L., Chen L.S., Wang S.M., et al. Low-temperature sintering of microwavedielectrics (Zn,Mg)TiO3[J]. Jpn.J.Appl.Phys.,2005,44(7A):5045-5048
    [14] Lee W.H., Su C.Y., Huang C.L., et al. Effect of inner electrode on electrical properties of(Zn,Mg)TiO3-based multilayer ceramic capacitor[J]. Jpn. J. Appl. Phys.,2005,44(12):8519-8524
    [15] Lee W.H., Su C.Y. Characterization of silver interdiffusion into (Zn,Mg)TiO3+x:Bi:Sbmultilayer ceramic capacitor[J]. J.Am.Ceram.Soc.,2007,90(8):2454-2460
    [16] Kim H.T., Kim Y. H. Titanium incorporation in Zn2Ti04spinel ceramics [J]. J. Am.Ceram. Soc.,2001,84(5):1081-1086
    [17] Chang Y. Synthesis and characterization of zinc titanate nano-crystal powders by sol-geltechnique[J]. J.Cryst. Growth,2002:243-319
    [18] Wang S.F. Preparation and characterization of sol-gel derived ZnTiO3nanocrystals[J].Mater. Res. Bull.,2003,38:1283-1296
    [19] Kim H.T. Structure and microwave dielectric properties of (Zn1-xNix)TiO3ceramics[J]. J.Mater. Res.,2003,18(5):1067-1256
    [20] Kim H.T. Structure and microwave dielectric properties of (Zn1-xCox)TiO3ceramics[J].J.Am. Ceram. Soc.,2003,86(11):1874-1986
    [21] Chaouchi A., Aliouat M., Marinel S., D’Astorg S., Bourahl H. Effects of additives on thesintering temperature and dielectric properties of ZnTiO3based ceramic[J]. CeramicsInternational,2007,33:245-248
    [22] Chaouchi A., D’Astorg S., Marinel S., Aliouat M. ZnTiO3ceramic sintered at lowtemperature with glass phase addition for LTCC applications[J]. Materials Chemistryand Physical,2007,103:106-111
    [23] Wood D.C., Lee H.Y., Kim J.J., et al. Microwave dielectric properties of doped-MgTiO3ceramics[J]. IEEE.,1996:863-866
    [24] Ferreira V.M., Azough F., Freer R. The effect of Cr and La on MgTiO3andMgTiO3-CaTiO3microwave dielectric ceramics [J]. J. Mater. Res.,1997,12(12):3293–3299
    [25] Dong M.Z., Yue Z.X., Zhuang Z., et al. Micostructure and microwave dielectricproperties of TiO2-Doped Zn2SiO4ceramics synthesized through the Sol-Gel process [J].J. Am.Ceram.Soc.,2008,91(12):3981-3985
    [26] Ngugen N.H., Lim J.B., Nahm S. Effect of Zn/Si Ratio on the microstructural andmicrowave dielectric properties of Zn2SiO4ceramics [J]. J. Am. Ceram. Soc.,2007,90(10):3127-3130
    [27] Kim J.S., Song M.E., Joung M.R., et al. Effect of B2O3addition on the sinteringtemperature and microwave dielectric properties of Zn2SiO4ceramics[J].J.Europ.Ceram.Soc.,2010,30:375-379
    [28] Kim J.S., Ngugen N.H., Lim J.B., et al. Low-temperature sintering and microwavedielectric properties of the Zn2SiO4ceramics[J]. J. Am.Ceram.Soc.,2007,.90(10):3127-3130
    [29] Song K.X., Chen X.M., Fan X.C. Effect of Mg/Si ratio on microwave dielectriccharacteristics of forsterite ceramics[J]. J. Am. Ceram.Soc.,2007,90(6):1808-1811
    [30] uo Y.P., Ohsato H., Kakimoto K.I. Cheracterization and dielectric behavior of willemiteand TiO2-doped willemite ceramics ant millimeter-wave frequency[J]. J. Europ.Ceram.Soc.,2006,26:1827-1830
    [31] Song M.E., Kim J.S., Joung M.R., et al. Synthesis and microwave dielectric properties ofMgSiO3ceramics [J]. J. Am. Ceram. Soc.,2008,91(8):2747-2750
    [32] Wang H.P., Zhang Q.L., Yang H., et al. Synthesis and microwave dielectric properties ofCaSiO3nanopowder by the sol–gel process [J]. Ceram. Inter.,2008,34:1405-1408
    [33] Wang H.P., Xu S.Q., Zhang B., et al. Synthesis and microwave dielectric properties ofCaO-MgO-SiO2submicron powders doped with Li2O-Bi2O3by sol-gel method[J]. Mater.Res. Bull.,2009,44:619-622
    [34] Joseph T., Sebastian M.T. Effect of glass addition on the microwave dielectric propertiesof CaMgSi2O6ceramics [J]. J. Appl. Ceram. Tech.,2010,7(S1):E98-E106
    [35] Wang S.F.,Wang Y.R., Hsu Y.F., et al. Densification and microwave dielectric behaviorsof CaO-B2O3-SiO2glass-ceramics prepared from a binary glass composite[J].J.Alloy.Compd.,2010,498:211-216
    [36] Lim S.W., Bang J. Microwave dielectric properties of Mg4Nb2O9ceramics produced byhydrothermal synthesis[J]. J. Electroceram.,2009,23:116-120
    [37] Miyauchi Y., Kagomiya I., Shimizu Y., et al. Influence of TiO2particle sizes on thesintering and annealing of Al2O3-TiO2microwave dielectric ceramics[J]. J.Ceram.Soc.,2007,115(11):797-800
    [38] Ohishi Y., Miyauchi Y., Kakimoto K.I., et al. Microwave dielectric properties of Al2O3-TiO2improved by addition of ZnO[J]. Ferroelectric,2005,327:27-31
    [39] uang C.L., Wang J.J. Microwave dielectric properties of sintered alumina usingnano-scaled powders of α-Alumina and TiO2[J]. J. Am. Ceram. Soc.,2007,90(5):1487-1493
    [40] uang C.L., Wang J.J., Yen F.S., et al. Microwave dielectric properties and sinteringbehavior of nano-scaled (α+θ)-Al2O3ceramics [J]. Mater. Res. Bull.,2008,43:1463-1471
    [41] Kono M., Takagi H., Tatekawa T., et al. High Q dielectric resonator material with lowdielectric constant for millimeter-wave applications [J]. J. Europ. Ceram. Soc.,2006,26:1909-1912
    [42] Kolodiazhnyi T., Annino G., Spreitzer M., et al. Development of Al2O3-TiO2compositeceramics for high-power millimeter-wave applications[J]. Acta Materialia,2009,57:3402-3409
    [43] Dai Y., Guo T., Pei X.M., et al. Effects of MCAS glass additives on dielectric propertiesof Al2O3-TiO2ceramics[J]. Mater. Sci. Eng. A.,2008,475:76-80
    [44] e X., Lei W, Lu W.Z. Microwave dielectric characteristics of Nb2O5-added0.9Al2O3-0.1TiO2ceramics[J]. Ceram. Inter.,2009,35:2131-2134
    [45]启龙,杨辉,王焕平. CuO-TiO2复合纳米粉制备及其原位掺杂Al2O3微波介质陶瓷[J].浙江大学学报(工学版),2006,40(8):1450-1453
    [46] esenhues U, Rentschler T. Crystal growth and defect structure of Al3+-doped rutile[J].J.Solid State Chem.,1999,143:210
    [47] Alford N M, Penn S J. Sintered alumina with low dielectric loss[J]. J. Appl. Phys.,1996,80(10):5895
    [48] Miyauchi Y, Ohishi Y, Miyake S, et al. Improvement of the dielectric properties ofrutile-doped Al2O3ceramics by annealing treatment [J]. J. Eur. Ceram. Soc.,2006,26(10):2093
    [49] Ying Dai, Teng Guo, Xinmei Pei, et al. Effects of MCAS glass additives on dielectricproperties of Al2O3–TiO2ceramics[J]. Materials Science and Engineering,2008,475:76-80
    [50] Kim H.T., Bycjn J.D., Kim Y. H. Microstructure and microwavedielectric properties of modified zinc titanates(I)[J]. Mater. Res. Bull,1998,33(6):963-973
    [51] Kim H.T., Kim S.H., Kim Y.H. Low-temperature sintering and microwave dielectricproperties of zinc metatitanate-rutile mixtures using boron [J]. J. Am. Ceram. Soc.,1999,82(11):3043-3048
    [52] Kim H.T., Nahm S., Byun J.D. Low-fired (Zn, Mg)TiO3microwave dielectrics[J]. J.Am. Ceram. Soc.,1999,82(12):3476-3480
    [53] Zhang Q.L., Yang H., Zou J.L., et al. Sintering and microwave dielectric properties ofLTCC-zinc titanate multilayers [J]. Mater. Lett.,2005,59:880-884
    [54] Li Bo, Yue Z.X., Li L.G., et al. Low-fired microwave dielectrics in ZnO-TiO2ceramicsdoped with CuO and B2O3[J]. J. Mater. Sci.,2002,13(7):415-418
    [55]吴坚强,刘维良,曹文卫,等.钛酸镁粉末与合成工艺的研究[J].中国陶瓷,2001,6(37)
    [56]崔剑飞,陈玮,王乃刚,等.添加La2O3对Mg2TiO4陶瓷的显微结构与微波介电性能的影响[J].硅酸盐学报,2003,1(81):180-184
    [57] Anatolii Belous, Oleg Ovchar, Dmitrii Durylin, et al. Microwave composite dielectricsbased on magnesium titanates[J]. J.Eur.Ceram.Soc.,2007,27:2963-2966
    [58] Kell R.C., Greenham A.C., Olds G.C. High-permittivity temperature-stable ceramicdielectrics with low microwave loss[J]. J.Am.Ceram.Soc.,1973,56:352-354
    [59] Huang C.L., Weng M.H. Improved high Q value of MgTiO3-CaTiO3microwavedielectric ceramics at low sintering temperature[J]. Mater. Res. Bull.,2001,36:2741-2750
    [60] Shin H.K., Shin H, Cho S.Y., et al. Phase evolution and electric properties ofMgTiO3-CaTiO3-based ceramic sintered with lithium borosilicate glass for application tolow temperature co-fired ceramics[J]. J. Am. Ceram. Soc.,2005,88(9):2461-2465
    [61] Chen C.S., Chou C.C., et al. Microwave dielectric properties of glass-MCT lowtemperature co-firable ceramics[J]. J.Eur.Ceram.Soc.,2004,24:1795-1798
    [62] Guo Y.P., Ohsato H., Kakimoto K. Characterzation and dielectric behavior of willemiteand TiO2-doped willemite ceramics at millemeter-wave frequency[J]. J.Eur.Ceram.Soc.,2006,26:1827-1830.
    [63] Nguyen N.H., Lim J.B., Nahm S. Effect of Zn/Si Ratio on the microstructural andmicrowave dielectric properties of Zn2SiO4ceramics [J]. J. Am. Ceram. Soc.,2007,90(10):3127-3130
    [64]徐进,李福龙. A位取代对ZnO-0.5SiO2陶瓷烧结特性和介电性能的影响[J].厦门大学学报(自然科学版),2009,48(1):1-5
    [65] Dong M.Z., Yue Z.X, Zhuang H., et al. Microstructure and microwave dielectricproperties of TiO2-doped Zn2SiO4ceramics synthesized through the sol-gel process[J]. J.Am. Ceram. Soc.,2008,91(12):3981-3985
    [66] Kim J.S., Nguyen N.H., Lim J.B., et al. Low-temperature sintering and microwavedielectric properties of the Zn2SiO4ceramics [J]. J. Am. Ceram. Soc.,2008,91(2):671-674
    [67] Kim J.S., Song M.E., Joung M.R., et al. Low-temperature sintering and microwavedielectric properties of the V2O5-added Zn2SiO4ceramics [J]. J. Am. Ceram. Soc.,2008,91(12):4133-4136
    [68] Hitoshi O., et al. Microwave-millimeterwave dielectric materials [J]. Key. Eng. Mater.,2004,269:195-198
    [69] Tsutomu T., et al. Development of forsterite with high Q and zero temperature coefficientτffor millimeterwave dielectric ceramics [J]. Key Engineering Materials,2004,269:199-202
    [70] Hitoshi O., Tsutomu T., Tomonori S., et al. Forsterite ceramics for millimeterwavedielectrics[J]. J. Electroceram.,2006,17:445-450
    [71] Hitoshi Ohsato, Tsutomu Tsunooka, Tomonori Sugiyama, et al. Forsterite ceramics formillimeterwave dielectrics [J]. J. Electroceram.,2006,17:445-450
    [72] Tsunooka T, Androu M, Higashida Y, et al. Effects of TiO2on sinterability and dielectricproperties of high-Q forsterite ceramics [J]. J.Eur. Ceram. Soc.,2003,23:2573-2578
    [73] Ovchar O.V., V,Yunov O.I., Durilin D.A., et al. Synthesis and microwave dielectricproperties of MgO-TiO2-SiO2ceramics[J]. Inorg. Mater.,2004,40(10):1116-1121
    [74] Song K.X., Chen X.M., Fan X.C. Effects of Mg/Si ratio on microwave dielectriccharacteristics of forsterite ceramics[J]. J. Am. Ceram. Soc.,2007,.90(6):1808-1811
    [75] Song M.E., Kim J.S., Joung M.R., et al. Synthesis and microwave dielectric properties ofMgSiO3ceramics[J]. J. Am. Ceram. Soc.,2008,91(8):2747-2750
    [76]张凌燕.硅灰石针状粉体制备及机械力化学改性研究[D].武汉:武汉理工大学
    [77]蔡伟,江涛,谭小球,等.低温烧结低介硅灰石瓷料的研制[J].电子元件与材料,2002,21(20):20-24
    [78]孙慧萍,张启龙,杨辉,等.烧结助剂对CaO-B2O3-SiO2介电陶瓷结构和性能的影响[J].硅酸盐通报,2004,5:116-118
    [79]王焕平,张启龙,杨辉,等.溶胶凝胶法制备(CaxMg1-x)SiO3陶瓷及其微波介电性能[J].物理化学学报,2007,23(4):609-613
    [80]王焕平,张启龙,杨辉.纳米粉体对低温烧结CMS微波介质陶瓷的改性[J].电子元件与材料,2006,25(9):37-40
    [81] Swartz S.L., Shrout T.R. Mater fabrication of perovskite lead mangsium niobate [J].Mater. Res. Bull.,1982,17(10):1245
    [82] Kan A., Ogawa H., Yokoi A., et al. Crystal structural refinement of corundum-structuredA4M2O9(A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction [J]. J. Eur. Ceram. Soc.,2007,27:2977
    [83]苏未安,刘鹏,边小兵.铌锑酸镁陶瓷的烧结和微波介电性能[J].电子元件与材料,2005,24(8):11-13
    [84]吴怡,苏丽娜,梁海荣,等.氧化铅玻璃掺杂对Mg4Nb2O9微波介质陶瓷的低温烧结行为及介电性能的影响[J].陕西师范大学学报,2011,39(3):41-44
    [85] Yokoi A., Ogawa H., Kan A., et al. Microwave dielectric properties of Mg4Nb209-3.0wt.%LiF ceramics prepared with CaTiO3additions[J]. J. Eur. Ceram. Soc.,2005,(25):2871-2875
    [86]姚国光,刘鹏. V2O5和Li2CO3共掺杂对Mg4Nb2O9陶瓷烧结行为及微波介电性能的影响[J].陕西师范大学学报,2006,34(2):57-59
    [87] Wen-His Lee, Chi-Yi Su, Cheng-Liang Huang, etc., Effect of Inner Electrode onElectrical Properties of (Zn,Mg)TiO3-Based Multilayer Ceramic Capacitor [J].Jpn.J.Appl.Phys.,2005,44(12):8519-8524
    [88] Dathan S.E., Ume I.C. Online-offline laser ultrasonic quality inspectiontool formultilayer ceramic capacitors-partⅡ[J]. IEEE T Adv.Packg,2005,28(2):264-272
    [89] Sarjeant W J, Zirnheld J, Macdougall F W. Capacitors [J]. IEEE T PlasmaSci,1998,26(5):1368-1392
    [90]薛泉林。高压陶瓷电容器及其应用新动向[J].电子元件与材料,2000,19(2):34-37
    [91] Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors:past, present and future perspectives[J].J.Appl.Phys.,2003,42:1-15
    [92] W.H. Lee, C.Y. Su, Characterization of silver interdiffusion into (Zn, Mg)TiO3+x:Bi:SbMultilayer Ceramic Capacitor [J]. Journal of the American Ceramic Society,2007,90(8):2454-2460
    [93] Pithan C.,Hennings D.,Waser R. Progress in the synthesis of nanocrystalline BaTiO3powders for MLCC[J].Int.J.Appl.Ceram.Technol.,2005,2(1):1-14
    [94] Dai L.,Lin F.C.,Zhu Z.F., et al.Electrical characteristics of high energy density multilayerceramic capacitor for pulse power application[J].IEEE T Magn,2005,41(1):281-284
    [95] Dang H.Y.,Burtrand I.L.,Processing of barium titanate tapes with different binders forMLCC applications-PartⅡ:Comparison of the properties[J]. J.Eur.Ceram.Soc,2004,24:753-761
    [96] Dathan S.E.,Ume I.C. Online-offline laser ultrasonic quality inspection tool formultilayer ceramic capacitors-PartⅠ[J.] IEEE T Adv.Packg,2004,27(4):647-653
    [97]陈继伟,石秉学. CMOS射频集成电路:成果与展望[M].微电子学,2001,31(5):323-328
    [1] Afsar M.N., et al. Millimeter-wave dielectric measurement of materials [J]. Proc.IEEE,1985,73(1):183-199
    [2] K.Wakino,et al.Dielectric resonator materials and their application[J].MicrowaveJournal,1987,1(6):Ⅰ33-Ⅰ50
    [3]倪尔瑚,刘德清.用复合谐振腔法测试复合半导体材料的介电特性[A].全国微波会议论文集[C].中国合肥,1993:1318-1323
    [4] Yostuo Kobayasht, et al. Resonant modes of a dielectric rod resonator short-circuited atboth ends by parallel conducing plates[J].IEEE Trans.,1980,28(10):1077-1089
    [1] Song M.E., Kim J.S., Joung M.R., et al. Synthesis and microwave dielectric properties ofMgSiO3ceramics[J]. J. Am. Ceram. Soc.,2008,91(8):2747-2750
    [2] Song K.X., Chen X.M., Fan X.C. Effects of Mg/Si ratio on microwave dielectriccharacteristics of forsterite ceramics[J]. J. Am. Ceram. Soc.,2007,90(6):1808-1811
    [3] Sugiyama T., Tsunooka T., Kakimoto K.I., et al. Microwave dielectric properties offorsterite-based solid solutions[J]. J. Eur. Ceram. Soc.,2006,26:2097-2100
    [4] Dong M.Z., Yue Z.X., Zhuang Z., et al. Microstructure and microwave dielectricproperties of TiO2-doped Zn2SiO4ceramics synthesized through the Sol-Gel process[J]. J.Am. Ceram. Soc.,2008,91(12):3981-3985
    [5] Guo Y.P., Ohsate H., Kakimoto K.I. Characterization and dielectric behavior of willemiteand TiO2-doped willemite ceramics at millimeter-wave frequency[J]. J. Eur. Ceram. Soc.,2006,26:375-379
    [6] Kim J.S., Ngugen N.H., Lim J.B., et al. Low-temperature sintering and microwavedielectric properties of V2O5-added Zn2SiO4ceramics [J]. J. Am. Ceram. Soc.,2008,91(12):4133-4136
    [7] Song K.X., Chen X.M., Zheng C.W. Microwave dielectric characteristics of ceramics inMg2SiO4-Zn2SiO4system [J]. Ceram. Inter.,2008,34:917-920
    [8] Wang H.P., Zhang Q.L., Yang H., et al. Synthesis and microwave dielectric properties ofCaSiO3nanopowder by the Sol–Gel Process [J]. Ceram. Inter.,2008,34:1405-1408
    [9] Wang H.P., Xu S.Q., Zhang B., et al. Synthesis and microwave dielectric properties ofCaO-MgO-SiO2submicron powders doped with Li2O-Bi2O3by Sol-Gel method [J].Mater. Res. Bull.,2009,44:619-622
    [10] Kingon A.I., Maria J.P., Streiffer S.K. Alternative dielectrics to silicon dioxide formemory and logic devices [J]. Nature,2000,406:1032-1038
    [11] Renjini S.N., Thomas A., Sebastian M.T. Microwave dielectric properties and lowtemperature sintering of Sm2Si2O7ceramic for substrate application[J]. J. Appl. Ceram.Tec.,2009,6(2):286-294
    [12] Thomas S., Deepu V., Uma S., et al. Preparation, characterization and properties ofSm2Si2O7loaded polymer composites for microelectronic applications[J]. Mater. Sci.Eng. B.,2009,163:67-75
    [13] Nguyen N.H., Lim J.B., Nahm S. Effect of Zn/Si ratio on the microstructureal andmicrowave dielectric properties of Zn2SiO4ceramics [J]. J.Am.Ceram. Soc.,2007,90(10):3127-3130
    [14] Wen C.C., Kuan Y.C., Zainuriah H.Sm2O3gate dielectric on Si substrate[J]. J. Mater. Sci.in Semi. Pro.,2010,13(5-6):303–314
    [1] Song M.E., Kim J.S., Joung M.R., et al. Synthesis and microwave dielectric properties ofMgSiO3ceramics[J]. J. Am. Ceram. Soc.,2008,91(8):2747-2750
    [2] Sasikala T.S., Pavithran C., Sebastian M.T. Effect of lithium magnesium zinc borosilicateglass addition on densification temperature and dielectric properties of Mg2SiO4ceramics[J]. J. Mater. Sci: Mater El.,2010,21(2):141-144
    [3] Song K.X., Chen X.M., Zheng C.W. Microwave dielectric characteristics of ceramics inMg2SiO4–Zn2SiO4system [J]. Ceram. Inter.,2008,34:917-920
    [4] Song K.X., Chen X.M., Fan X.C. Effects of Mg/Si ratio on microwave dielectriccharacteristics of forsterite ceramics[J]. J. Am. Ceram. Soc.,2007,90(6):1808-1811
    [5] Dong M.Z., Yue Z.X., Zhuang Z., et al. Microstructure and microwave dielectricproperties of TiO2-doped Zn2SiO4ceramics synthesized through the Sol-Gel process[J]. J.Am. Ceram. Soc.,2008,91(12):3981-3985
    [6] Guo Y.P., Ohsate H., Kakimoto K.I. Characterization and dielectric behavior of willemiteand TiO2-doped willemite ceramics at millimeter-wave frequency[J]. J. Eur. Ceram. Soc.,2006,26:375-379
    [7] Nguyen N.H., Lim J.B., Nahm S. Effect of Zn/Si ratio on the microstructureal andmicrowave dielectric properties of Zn2SiO4ceramics[J]. J. Am. Ceram. Soc.,2007,90(10):3127-3130
    [8] Wang H.P., Zhang Q.L., Yang H., et al. Synthesis and microwave dielectric properties ofCaSiO3nanopowder by the Sol–Gel process[J]. Ceram. Inter.,34,2008:1405-1408
    [9] Joseph T., Sebastian M.T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni)[J]. J. Am. Ceram. Soc.,2010,93(1):147-154
    [10] George S., Anjana P.S., Nair V.N., et al. Low-temperature sintering and microwavedielectric properties of Li2MgSiO4ceramics[J]. J. Am. Ceram. Soc.,2009,92(6):1244-1249
    [11] Renjini S.N., Thomas A., Sebastian M.T. Microwave dielectric properties and lowtemperature sintering of Sm2Si2O7ceramic for substrate application[J]. J. Appl. Ceram.Tec.,2009,6(2):286-294
    [12] Wu S.P., Jiang C., Mei Y.X., Tu W. P. Synthesis and microwave dielectric properties ofSm2SiO5ceramics[J]. J. Am. Ceram.Soc.,2012,95(1):37-40
    [13] Kolodiazhnyi T., Annino G., Shimada T. Intrinsic limit of dielectric loss in severalBa(B1/3′B2/3″)O3ceramics revealed by the whispering-gallery mode technique[J]. Appl.Phys. Lett.,2005,87
    [14] Petzelt J., Setter N. Far infrared spectroscopy and origin of microwave losses in low-lossceramics[J]. Ferroelectrics,1993,150:89
    [15] Kim W.S., Yoon K.H., Kim E.S. Far-infrared reflectivity spectra of CaTiO3-Li1/2Sm1/2TiO3mcrowave dielectrics[J]. Mater. Res. Bull.,1999,34:2309
    [16] Zheng X.H.(Ca, Nd)TiO3/(Li, Nd)TiO3and BapLn6-PTi8-PM2+PO30(Ln=Nd, Sm; M=Ta,Nb) dielectric ceramics [D]. Zhejiang University,2004
    [1] Jiang C., Wu S.P., Tu W.P. Synthesis of (Zn, Mg)TiO3-TiO2composite ceramics formultilayer ceramic capacitors[J]. Mater. Chem. Phys.,2010,124:347-352
    [2] Breeze J., Penn S.J., Poole M., et al. Layered Al2O3-TiO2composite dielectricresonators[J]. Electron. Lett.,2000,36:883-884
    [3] Tzou W.C., Chen Y.C., Chang S.L., et al. Microwave dielectric characteristics ofglass-added (1-x)Al2O3-xTiO2ceramics[J]. Jpn. J. Appl. Phys.,2002,41:7422-7425
    [4] Tzou W.C., Chang S.L., Yang C.F., et al. Sintering and dielectric properties of0.88Al2O3-0.12TiO2microwave ceramics by glass addition[J]. Mater. Res. Bull.,2003,38:981-989
    [5] Ohishi Y., Miyauchi Y., Ohsato H., et al. Controlled temperature\coefficient of resonantfrequency of Al2O3-Al2TiO5-TiO2ceamics[J]. Jpn. J. Appl. Phys.,2004,43:L749-751
    [6] Huang C.L., Wang J.J. Microwave dielectric properties of sintered alumina usingnano-scaled powders of α-alumina and TiO2[J]. J. Am. Ceram. Soc.,2007,90:1487-1493
    [7] Wu S.P., Zhao Q.Y., Zheng L.Q., et al. Behaviors of ZnO-doped silver thick film andsilver grain growth mechanism[J]. Solid State Sci.,2011,13:548-552
    [8] Hummel R.E., Geier H.J. Activation energy for electrotransport in thin silver and goldfilms[J]. Thin Solid Films,1975,25:335-342
    [9] Somani V., Kalita S.J. Synthesis, densification, and phase evolution studies ofAl2O3-Al2TiO5-TiO2nanocomposites and measurement of their electrical properties[J]. J.Am. Ceram. Soc.,2007,90:2372-2378
    [10]肖汉宁,高朋召.高性能结构陶瓷及其应用[M].北京:化学工业出版社,2006:44
    [1] Huang C.L., Weng M.H. Improved high q value of MgTiO3-CaTiO3microwave dielectricceramics at low sintering temperature[J]. Materials Research Bulletin,2001,36(15):2741-2750
    [2] Ferreira V. M., Azough F., Freer R., et al. The effect of Cr and La on MgTiO3andMgTiO3–CaTiO3microwave dielectric ceramics[J]. Journal of Materials Research,1997,12:3293-3299
    [3] Huang C.L., Pan C.L., Shium S.J. Liquid phase sintering of MgTiO3–CaTiO3microwavedielectric ceramics[J]. Materials Chemistry and Physics,2003,78(1):111-115
    [4] Huang C.L., Hou J. L., Pan C.L., et al. Effect of ZnO additive on sintering behavior andmicrowave dielectric properties of0.95MgTiO3–0.05CaTiO3ceramics[J]. Journal ofAlloys and Compounds,2008,450(1–2):359-363
    [5] Wood D.C., Lee H.Y., Kim J.J., et al. Microwave dielectric properties of doped-MgTiO3ceramics[J]. IEEE.,1996:863–866
    [6] Ferreira V.M., Azough F., Freer R. The effect of Cr and La on MgTiO3andMgTiO3-CaTiO3microwave dielectric ceramics [J]. J. Mater. Res.,1997,12(12):3293–3299
    [7] Wakino K. Recent development of dielectric resonator materials and filters in Japan [J].Ferroelectrics.,1989,91(1):69-86
    [8] Kell R.C., Greenham A.C., Olds G.C. High-Permittivity Temperature-Stable CeramicDielectrics with Low Microwave Loss [J]. J.Am.Ceram.Soc.,1973,56(7):352-354
    [1] Jiao L., Wu S.P., Ding X.H., et al. ZnTiO3-based ceramics sintered at low temperaturewith boron addition for MLCC applications[J]. J. Mater. Sci: Mater. Electron.,2009,20:1186
    [2] Chang Y.S., Chang Y.H., Chen I.G., et al. Synthesis and characterization of zinc titanatedoped with magnesium[J]. J. Solid State Commun.,2003,128:203
    [3] Kim H.T., Byun J.D., Kim Y. Microstructure and microwave dielectric properties ofmodified zinc titanates(Ⅱ)[J]. Mater. Res. Bull.,1998,33(6):975-986
    [4] Hsieh M.L., Chen L.S., Wang S.M., et al. Low-temperature sintering of microwavedielectrics (Zn,Mg)TiO3[J]. Jpn. J. Appl. Phys.,2005,44(7A):5045
    [5] Zhang Q.L., Yang H., Zou J.L., et al. Sintering and microwave dielectric properties ofLTCC-zinc titanate multilayers[J]. J. Mater. Lett.,2005,59:880
    [6] Kim H.T., Nahm S., Byun J.D. Low-fired (Zn,Mg)TiO3microwave dielectrics[J]. J. Am.Ceram. Soc.,1999,82(12):3476
    [7] Haga K., Ishii T., Mashiyama J.I., et al. Dielectric properties of two-phase mixtureceramics composed of rutile and its compounds[J]. Jpn. J. Appl. Phys.,1992,31(9B):3156
    [8] Chaouchi A., Marinel S., Aliouat M., et al. Low temperature sintering of ZnTiO3/TiO2based dielectric with controlled temperature coefficient[J]. J. Euro.Ceram. Soc.,2007,27:2561
    [9] Chai Y.L., Chang Y.S., Hsiao Y.J., et al. Effects of borosilicate glass addition on thestruture and dielectric properties of ZnTiO3ceramics[J]. J. Mater. Res. Bull.,2008,43(2):257
    [10] Li B., Yue Z., Li L. Low-fired microwave dielectrics in ZnO-TiO2ceramics doped withCuO and B2O3[J]. J. Mater.Sci.,2002,13:415
    [11] Xu J.Q., Jia X.H., Lou X.D., et al. One-step hydrothermal synthesis and gas sensingproperty of ZnSnO3microparticles[J]. Solid-State Electronics.,2006,50:504
    [12] Olsson E., Dunlop G., Osterlund R. Development of Functional Microstructure duringSintering of a ZnO Varistor Material[J]. J.Am.Ceram.Soc.,1993,76(1):65-71
    [1] Dang H.Y.,Burtrand I.L.,Processing of barium titanate tapes with different binders forMLCC applications-PartⅡ:Comparison of the properties[J]. J.Eur.Ceram.Soc.,2004,24:753-761
    [2] Pithan C.,Hennings D.,Waser R. Progress in the synthesis of nanocrystalline BaTiO3powders for MLCC[J].Int.J.Appl.Ceram.Technol.,2005,2(1):1-14
    [3]薛泉林。高压陶瓷电容器及其应用新动向[J].电子元件与材料,2000,19(2):34-37
    [4] Dai L.,Lin F.C.,Zhu Z.F., et al.Electrical characteristics of high energy density multilayerceramic capacitor for pulse power application[J].IEEE T Magn,2005,41(1):281-284
    [5] Dathan S.E.,Ume I.C. Online-offline laser ultrasonic quality inspection tool for multilayerceramic capacitors-PartⅠ[J.] IEEE T Adv.Packg,2004,27(4):647-653
    [6] Dathan S.E., Ume I.C. Online-offline laser ultrasonic quality inspectiontool for multilayerceramic capacitors-partⅡ[J]. IEEE T Adv.Packg,2005,28(2):264-272
    [7] Sarjeant W J, Zirnheld J, Macdougall F W. Capacitors[J]. IEEE T Plasma Sci,1998,26(5):1368-1392
    [8] Kishi H, Mizuno Y,Chazono H. Base-metal electrode-multilayer ceramic capacitors:past,present and future perspectives[J].J.Appl.Phys,2003,42:1-15
    [9] Wen-His Lee, Chi-Yi Su, Cheng-Liang Huang, etc., Effect of Inner Electrode on ElectricalProperties of (Zn,Mg)TiO3-Based Multilayer Ceramic Capacitor [J]. Jpn.J.Appl.Phys.,2005,44(12):8519~8524
    [10] W.H. Lee, C.Y. Su, Characterization of silver interdiffusion into (Zn,Mg)TiO3+x:Bi:SbMultilayer Ceramic Capacitor [J]. Journal of the American Ceramic Society,2007,90(8):2454-2460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700