用户名: 密码: 验证码:
磷酸氢锡材料的制备及去除高盐废水中重金属离子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染事故频发,使其成为全社会持续高度关注的环境热点问题之一。吸附法具有投资少、操作简单、选择性好、不产生二次污染等优点,是中低浓度重金属废水处理的常用方法。但在高盐废水中,吸附过程往往受到共存干扰离子的影响,传统吸附剂的吸附容量较低。针对这一矛盾,本论文开展磷酸氢锡系列无机新型高效吸附材料的开发和应用研究。关于磷酸氢锡吸附特性及机理研究,目前开展的很少。关于磷酸氢锡的固定化理论及应用等方面的研究也未见报道。
     本论文以模拟水热合成法和液相沉淀法分别合成得到晶体磷酸氢锡、无定形磷酸氢锡,采用平衡吸附法分别研究了单离子、双离子和三离子体系中对水溶液中Pb(II)、Cu(II)和Zn(II)的吸附性能,考察了高盐介质对吸附性能的影响,综合运用XRD、SEM、TEM、FT-IR、TG、比表面积和孔隙率测定、电位滴定等技术手段研究了两种材料的结构和表面化学特征,揭示了磷酸氢锡材料吸附重金属离子的机理。另分别采用三种主要成分均为SiO_2的材料负载无定形磷酸氢锡,考察了这些固定化材料在模拟海水中的吸附性能。取得了以下主要结果:
     晶体磷酸氢锡和无定形磷酸氢锡对三种离子的选择性吸附顺序为Pb(II)>Cu(II)>Zn(II),这主要与金属离子的水化热有关。通过FT-IR、XRD、电位滴定分析,结合热力学参数计算,揭示了吸附机理为化学吸附,主要是磷酸氢锡中的H+与重金属离子进行离子交换。由于无定形磷酸氢锡的比表面积大,是晶体磷酸氢锡的5.13倍,而且氢原子不受相邻层间原子之间的作用力、自由度较大,因而无定形磷酸氢锡的吸附性能显著优于晶体磷酸氢锡。
     硅藻土中无定形磷酸氢锡的负载量为170mg/g,负载后的总孔容与比表面积均大大下降。吸附Pb(II)、Cu(II)和Zn(II)的等温吸附数据符合Freundlich模型,吸附Pb(II)时孔内扩散是速控步骤,吸附Cu(II)和Zn(II)时由液膜扩散和孔内扩散共同控制。在接近海水浓度的0.6mol/L NaCl溶液中,Pb(II)、Cu(II)和Zn(II)的吸附量分别达到13.9mg/g、3.95mg/g和3.74mg/g(初始浓度50mg/L,50mL),且吸附后的材料可以用0.5mol/L的HCl溶液再生,表明该材料具有去除高盐介质中重金属离子的潜能。
     粗孔微球硅胶中无定形磷酸氢锡的负载量为92.6mg/g,负载后材料的孔径以中孔为主,比表面积急剧下降,只有1.163m~2/g。材料用量为2.0g (对应高度5.3cm)时吸附50mg/L的Pb(II)、Cu(II)和Zn(II)溶液,穿透时间分别达到30.55h、6.17h、4.9h,对应吸附量分别为10.4mg/g,2.88mg/g和2.47mg/g。
     溶胶-凝胶法原位合成的SiO_2负载无定形磷酸氢锡材料孔隙率高,孔径分布窄(主要集中在2-10nm范围),比表面积达到513m~2/g,无定形磷酸氢锡在SiO_2网络上负载均匀,负载量为96.4mg/g。在淡水介质中,对Pb(II)、Cu(II)和Zn(II)的饱和吸附量分别为30.02mg/g、27.59mg/g、25.12mg/g;材料用量为1.0g (对应高度2.7cm)、吸附浓度为4.5mg/L时吸附Pb(II)、Cu(II)和Zn(II)离子溶液,穿透时间分别达到39.85h、10.07h、5.45h。在接近海水浓度的0.6mol/L NaCl溶液中表现出较好的吸附性能,对Pb(II)、Cu(II)和Zn(II)的吸附量分别达到12.82mg/g、4.39mg/g和3.37mg/g。人工海水介质下的试验中,吸附三种离子的穿透时间分别为5533min、8330min和22min,性能优异,在去除养殖海水中的重金属离子方面具有较好的应用潜力。
     该论文有图115幅,表41个,参考文献246篇。
Freuquent heavy metal pollution events have made it a major environmental problem inthe whole society. Owing to the merits of smaller investments, easy to operation, high selectiveadsorption, no secondary pollution, adsorption has become a common method for the removalof heavy metal in waste water with moderate and low concentration. However, the adsorptionprocess is affected by coexisted ions in high salinity waste water and traditional adsorbentshave poor adsorption capacity. Aiming to this problem, study to explore new inorganic andefficient material was conducted in this dissertation. Study on the adsorption property andmechanism with tin(IV) hydrogen phosphate (abbr. SnP) is rather incomplete and study on thefixation and its application has never been reported.
     In this dissertation, crystalline and amorphous SnP were synthesized by modifiedhydrothermal method and liquid-phase precipitation method, respectively. Batch experimentswere used to examine the adsorption property for Pb(II), Cu(II), and Zn(II) at single ion system,binary ions system, and ternary ions system, respectively. Multiple detection techniques, XRD,SEM, TEM, FT-IR, TG, and specific surface area, were employed to characterize the sampleand understand the surface chemistry. Mechanism of heavy metal removal by SnP wasinvestigated by thermodynamics analysis and potentiometric titration along withabove-mentioned methods. The immobilization of amorphous SnP was conducted andexperiments were carried out in salinity water to investigate the adsorption property. Mainresults were given as follow:
     The selective adsorption sequence is Pb(II)>Cu(II)>Zn(II), either by crystalline SnP oramorphous SnP, which is relative to hydratation heat of heavy metal ions. The main adsorptionmechanism is ion exchange. These two materials all exhibited favorable behavior in highsalinity media. The material used can be regenerated by dilute HCl solution. However,amorphous SnP presented much better adsorption property than crystalline one, activatedcarbon, and several ion exchange resins. The reason for this phenomenon may lie in the largespecific surface area (four times larger than crystalline SnP), less acting force of hydrogen atom,and larger free degree.
     The amorphous SnP loaded on the diatomite is170mg/g. The total pore volume andspecific surface area of diatomite both decreases greatly after the loading. The equilibrium datafollows Freundlich model well. The main adsorption mechanism is chemical sorption.Intra-particle diffusion is the reaction rate control step when adsorbing Pb(II). The adsorptionamount is13.9mg/g,3.75mg/g, and3.74mg/g under the conditions of initial concentration50 mg/L and volume50mL in the media of0.6mol/L NaCl solutions. The composite material canbe regenerated with HCl solution and so has the potential for the practice of heavy metalsequestration in high salinity media.
     The amorphous SnP loaded on the macro-porous silica gel is92.6mg/g. In the columnadsorption, the breakthrough time is30.55h,6.17h,4.9h, and corresponding adsorptioncapacity was10.4mg/g,2.88mg/g,2.47mg/g, for Pb(II), Cu(II), and Zn(II), respectively underthe conditions of initial concentration50mg/L, adsorbent mass2.0g (corresponding bed height5.3cm). The material after column adsorption can also be regenerated, while the adsorptionproperty will be subjected to declination by a small margin. The breakthrough time predictedwith Yoon-Nelson and BDST model can serve as a reference in actual operation.
     Amorphous SnP-SiO2composite prepared by gel-sol method in-situ possesses large specificsurface area (513m2/g) and abundant pore. The load amount is96.4mg/g, slightly larger thanthat of amorphous SnP loaded on the macro-porous silica gel. Adsorption behavior followsFreundlich model well. The main adsorption mechanism is chemical sorption. In the fresh watermedia, the breakthrough time is39.85h,10.07h,5.45h for Pb(II), Cu(II), and Zn(II),respectively under the conditions of initial concentration4.5mg/L, adsorbent mass1.0g(corresponding bed height2.7cm). In the media of artificial sea water, the breakthrough time is5533min,8330min, and22min. These results demonstrate a new material with excellentadsorption property and bright future for the potential application in sequestering heavy metalsin high salinity waste water.
     *There are115figures,41tables, and246references.
引文
[1]赵大勇,马婷,曾巾,等.南京玄武湖富营养化及重金属污染现状[J].河海大学学报(自然科学版),2012,40(1):83-87.
    [2]刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学,2012,33(1):260-265.
    [3]刘恩峰,沈吉,朱育新,等.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,2004,16(2):113-119.
    [4]陈秀开,田慧娟,刘吉堂,等.海州湾近海海水、沉积物及贝类体内重金属的含量和分布特征[J].检验检疫学刊,2009,19(5):6-11.
    [5]郑伟,董志国李晓英,等.海州湾养殖四角蛤蜊体内组织中重金属分布差异及安全评价[J].食品科学,2011,32(3):199-203.
    [6]阮金山.厦门海域养殖贝类体内重金属的初步研究[J].海洋科学,2009,33(2):32-37.
    [7]魏复盛,文传浩,王焕校.水和废水监测分析方法指南[M].(上册).北京:中国环境科学出版社,1990.
    [8]王慕华,徐宏英,苏槟楠.黑曲霉菌丝球还原水中六价铬的研究[J].科学技术与工程,2010,10(26):6472-6476.
    [9]陈建春,林玉满,陈祖亮.六价铬还原菌的筛选及其还原特性研究[J].福建师范大学学报,2010,26(2):78-82.
    [10]肖伟,王磊,李倬锴,等.六价铬还原细菌Bacillus cereus S5.4还原机理及酶学性质研究[J].环境科学,2008,29(3):751-755.
    [11]王韬,李鑫钢,杜启云.含重金属离子废水治理技术的研究进展[J].化工环保,2008,28(4):323-326.
    [12] Aroua M. K., Zuki F. M., Sulaiman N. M. Removal of chromium ions from aqueous solutions bypolymer-enhanced ultrafiltration [J]. Journal of Hazardous Materials,2007,147(3):752-758.
    [13] Ennigrou Jellouli Dorra,Ben Sikali Mourad,Dhahbi Mahmoud. Retention of Cadmium and Zinc fromAqueous Solutions by Poly(acrylic Acid)-Assisted Ultrafiltration [J]. International Journal of ChemicalReactor Engineering.2010,8:197-209.
    [14]包申旭,张一敏,刘涛,等.电渗析处理石煤提钒废水[J].中国有色金属学报,2010,20(7):1440-1445.
    [15]刘艳艳,彭昌盛,王震宇.电解电渗析联合处理含铜废水[J].电镀与精饰,2009,31(4):34-39.
    [16]诸爱士,成忠,沈芬芳,等. Co、Ni离子分离研究[J].高校化学工程学报,2008,22(3):412-417.
    [17]陈浚,朱润晔,陈建孟,等.用电渗析法纯化回用含铅废水[J].水处理技术,2005,31(6):43-46.
    [18]刘可鑫,保积庆,肖连生,等.电渗析法处理氧化铝厂外排废水[J].安全与环境学报,2004,4(1):89-92.
    [19]王帅,钟宏,王仲南,等.对苯二甲酰基硫脲螯合树脂对Cu(II)的吸附性能[J].应用化工,2011,40(2):191-194.
    [20]张青梅,郑寿荣,王家宏,等.胺基树脂合成及对水中重金属离子的吸附特征[J].环境工程学报,2010,4(12):2657-2661.
    [21]谢祖芳,陈渊,晏全,等.载硫脲树脂对Pd2+的吸附与脱附性能[J].化学工程,2010,38(9):6-10.
    [22]刘丰良,刘畅,徐军,等.三聚硫氰酸交联聚氯乙烯树脂的合成及其对Cu2+的吸附性能[J].化学研究,2010,21(5):36-39.
    [23]王菲,王连军,孙秀云,等.强酸性阳离子交换树脂对铅的吸附行为及机理[J].中国有色金属学报,2008,18(3):564-569.
    [24]莫建军,熊春华.亚胺基二乙酸树脂对镉的吸附性能及其机理[J].中国有色金属学报,2006,16(5):924-928.
    [25]马桂云,孙开进,王京平,等.双硫腙负载树脂对铅和镉的吸附性能研究[J].化学世界,2006,(12):726-729.
    [26] Phadnis N P. Activated carbons-carbonaceous adsorbents in technology and environmental protection [J].Chem. Eng. World,1995,30(2):69-71.
    [27]雒和敏,曹国璞.活性炭对含铅废水吸附特性研究[J].环境工程学报,2010,4(2):373-376.
    [28]王桂仙,张启伟.改性竹炭对含铅废水吸附处理的效果研究[J].广东微量元素科学,2008,15(3):26-29.
    [29]滕曼,付强,贾立明.骨炭对铅的吸附性能研究[J].环境科学与技术,2010,33(3):88-91.
    [30]黄鑫,高乃云,张巧丽.改性活性炭对镉的吸附研究[J].同济大学学报(自然科学版),2008,36(4):508-515.
    [31]裘凯栋,黎维彬.水溶液中六价铬在碳纳米管上的吸附[J].物理化学学报,2006,22(12):1542-1546.
    [32] Xu Yijun, Rosa Arrigo, Liu Xi, et al. Characterization and use of functionalized carbon nanotubes for theadsorption of heavy metal anions [J]. New Carbon Materials,2011,26(1):157-62.
    [33]曾鸣,巩学敏,彭先佳,等.碳纳米管溶胶对水中微量Cd2+与Cu2+吸附的研究[J].化学工程,2009,37(6):8-11.
    [34]刘泊良,张玉军,王蒲芳,等.改性碳纳米管对水中铜离子的去除作用[J].应用化工,2011,40(1):68-80.
    [35]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003,24(1):47-49.
    [36]朱丽珺,张金池,宰德欣,等.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报(自然科学版),2007,31(4):73-76.
    [37]马明广,周敏,蒋煜峰,等.不溶性腐殖酸对重金属离子的吸附研究[J].安全与环境学报,2006,6(3):68-71.
    [38]贾黎,张自立.腐殖酸对La3+、Nd3+等重金属离子混合体系吸附的研究[J].中国稀土学报,2009,27(6):816-821.
    [39]朱霞萍,白德奎,李锡坤,等.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-648.
    [40]席永慧,赵红,胡中雄.粉煤灰、粘土、膨润土等对Zn2+的吸附试验研究[J].岩土力学,2005,26(8):1269-1287.
    [41]施惠生,刘艳红.膨润土对重金属离子Pb2+, Zn2+, Cr(VI),Cd2+的吸附性能[J].建筑材料学报,2006,9(5):507-510.
    [42]沈岩柏,朱一民,王忠安,等.硅藻土对水相中Pb2+的吸附[J].东北大学学报(自然科学版),2003,24(10):981-985.
    [43]朱健,王平,罗文连,等.硅藻土深度物理改性及对水中Fe3+的吸附性能研究[J].硅酸盐通报,2010,29(6):1290-1298.
    [44]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [45]胡克伟,贾冬艳,颜丽,等.改性沸石对Zn2+的吸附特性研究[J].中国土壤与肥料,2011,(1):49-52.
    [46]王金明,易发成.浙江天然沸石对Cs+的吸附性能研究及其晶体结构表征[J].硅酸盐通报,2010,29(3):670-675.
    [47]张新艳,王起超,张少庆,等.巯基功能化沸石吸附Hg2+特征及固化/稳定化含汞废物研究[J].环境科学学报,2009,29(10):2134-2140.
    [48]张宝述,宋海明,王励生,等. Na型蛭石中2Na+=Pb2+离子交换过程的动力学研究[J].功能材料,2007,38(5):790-794.
    [49]张宝述,宋海明,彭同江,等. Cu2+、Pb2+、Zn2+离子在工业蛭石上的吸附行为研究[J].中国矿业,2007,16(10):106-113.
    [50]王峰,梁成华,杜丽宇,等.天然蛭石和沸石吸附铜和锌的特性研究[J].沈阳农业大学学报,2007,38(4):531-534.
    [51]丁振华,冯俊明,王明士.天然氧化铁矿物对铅离子的吸附研究[J].生态环境,2003,12(2):131-134.
    [52]祝春水,孙振亚,龚文琪,等.生物矿化针铁矿吸附废水中铬的实验研究[J].环境科学研究,2003,16(6):57-59.
    [53]罗文倩,魏世强.镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J].农业环境科学学报,2009,28(5):897-902.
    [54]黄承玲,张道勇,潘响亮.向日葵根分泌物对针铁矿吸附Cd2+的抑制效应[J].地理科学,2009,29(3):455-460.
    [55]李浙英,梁剑茹,柏双友,等.生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J].环境科学学报,2011,31(3):460-467.
    [56]豆小敏,于新,赵蓓,等.5种氧化铁去除As(V)性能的比较研究[J].环境工程学报,2010,4(9):1989-1994.
    [57]侯明,刘振国.接枝壳聚糖对铅、镉吸附行为研究及应用.分析试验室,2006,25(10):1-6.
    [58]宋庆平,王崇侠,高建纲. N-羧甲基壳聚糖的制备及其对重金属离子吸附研究[J].离子交换与吸附,2010,26(6):559-564.
    [59]徐慧,仵彦卿,刘预.新型壳聚糖用于地下水中Pb2+的吸附性能研究[J].装备环境工程,2010,7(5):42-46.
    [60]谢志英,肖化云,王光辉.交联壳聚糖对铀的吸附研究[J].环境工程学报,2010,4(8):1749-1752.
    [61]陈中兰,曾艳.多胺型稻草纤维素球的制备及其对水体中Zn2+的吸附性能[J].应用化学,2006,23(10):1116-1119.
    [62]黄金阳,刘明华.新型纤维素螯合吸附剂对Cr(VI)的吸附研究[J].纤维素科学与技术,2010,18(1):7-11.
    [63]林春香,詹怀宇,刘明华,等.球形纤维素吸附剂对Cu2+的吸附动力学与热力学研究[J].离子交换与吸附,2010,26(3):226-238.
    [64]何莼,李忠,赵桢霞,等.低成本木质素吸附剂对废水中Pb2+吸附性能的研究[J].离子交换与吸附,2006,22(6):481-488.
    [65]谢燕,曾祥钦.巯基木质素的制备及其对重金属离子的吸附[J].水处理技术,2006,32(6):73-74.
    [66]袁怀波,曹树青,张宁,等.交联羧甲基木薯淀粉对Pb2+的吸附特性研究[J].安全与环境学报,2008,8(4):42-45.
    [67]周睿,曹龙奎,包鸿慧.交联羧甲基玉米淀粉对水溶液中铅离子吸附性能的优化研究[J].环境工程学报,2009,3(10):1793-1799.
    [68]苏秀霞,杨祥龙,诸晓峰,等.新型淀粉微球对Cu2+、Cr3+和Pb2+的吸附机理研究[J].环境工程学报,2010,4(3):492-496.
    [69] Yekta G ksungur, Sibel üren, Ulgar Güvenc. Biosorption of cadmium and lead ions by ethanol treatedwaste baker’s yeast biomass [J]. Bioresource Technology,2005,96(1):103-109.
    [70]董新姣,潘瑞通,林宣兴.无花果曲霉对铅的吸附研究[J].四川环境,2002,21(1):12-16.
    [71] Liping Deng, Yingying Su, Hua Su, et al. Biosorption of copper(II) and lead(II) from aqueous solutionsby nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects [J].Adsorption,2006,12(4):267-277.
    [72] Pingxin Sheng, Yenpeng Ting, J. Paul Chen, et al. Sorption of lead, copper, cadmium, zinc, and nickel bymarine algal biomass: characterization of biosorptive capacity and investigation of mechanisms [J].Journal of colloid and Interface Science,2004,275(1):131-141.
    [73] W.S. Wan Ngah, M. A. K. M Hanafiah. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder:kinetic, equilibrium and thermodynamic studies [J]. Biochemical Engineering Journal,2008,39(3):521-530.
    [74] ZheXian Xuan, Yanru Tang, Xiaomin Li, etal. Study on the equilibrium, kinetics and isotherm ofbiosorption of lead ions onto pretreated chemically modified orange peel [J]. Biochemical EngineeringJournal,2006,31(2):160-164.
    [75] Kailas L. Wasewar, Mohammad Atif, B. Prasad, et al. Batch adsorption of zinc on tea factory waste [J].Desalination,2009,244(1-3):66-71.
    [76] Qingge Feng, Qingyu Lin, Fuzhong Gong, et al. Adsorption of lead and mercury by rice husk ash [J].Journal of Colloid and Interface Science,2004,278(1):1-8.
    [77]叶林顺,刘慧璇,谢咏梅,等.改性稻草吸附铜离子的动力学机理[J].环境科学与技术,2006,29(8):28-30.
    [78]杨明平,傅勇坚.锰矿尾渣对Cu2+和Ni2+的吸附性能研究[J].材料保护,2007,40(3):65-67.
    [79]檀竹红,郑水林,张娟.石棉尾矿酸浸渣对废水中Zn2+的吸附性能研究[J].非金属矿,2007,30(6):44-52.
    [80]羊依金,李志章,张雪乔,等.坡缕石-钢渣颗粒吸附剂处理含铜离子废水的研究[J].工业水处理,2006,26(11):31-34.
    [81]陈芳艳,钟宇,唐玉斌.炉渣去除废水中六价铬[J].化工环保,2008,28(3):209-213.
    [82]兰叶,王毓华,李艳.改性铝土矿浮选尾矿处理含Cr(Ⅵ)废水的试验研究[J].矿业工程,2006,26(6):43-46.
    [83]张道勇,潘响亮,穆桂金,等.铝渣吸附去除水中锑的研究[J].水处理技术,2008,34(10):34-37.
    [84]袁峥, Grant Douglas, Laura Wendling,等.钢铁、钛和铝工业废渣去除水中重金属和酸性中的作用[J].南昌大学学报(工科版),2010,32(2):168-172.
    [85]马士军.微生物絮凝剂的开发及应用[J].工业水处理,1997,12(1):7-10.
    [86]瞿建国,申如香,徐伯兴,等.硫酸盐还原菌还原Cr(VI)的初步研究[J].华东师范大学学报(自然科学版),2005,(1):105-110.
    [87]谢水波,王水云,张浩江,等.硫酸盐还原菌还原U(VI)的影响因素与机制[J].环境科学,2009,30(7):1962-1967.
    [88]苏冰琴,李亚新. EGSB反应器中硫酸盐还原与重金属去除[J].中国矿业大学学报,2008,37(2):246-249.
    [89]刘云国,李欣,徐敏,等.土壤重金属镉污染的植物修复与土壤酶活性[J].湖南大学学报(自然科学版),2002,29(4):108-113.
    [90]赵克俭.城市重金属污染水体的植物修复试验研究[J].安徽农业科学,2010,38(14):7462-7464.
    [91]唐艳葵,韦星任,蓝梓铭,等.浮萍在Cd、Zn污染水体植物修复中的应用潜力研究[J].安徽农业科学,2010,38(27):15163-15165.
    [92]杨柳,李广枝,童倩倩,等. Pb2+、Cd2+胁迫作用下蚯蚓、菌根菌及其联合作用对植物修复的影响[J].贵州农业科学,2010,38(11):156-158.
    [93] Vi Nu Hoai Nguyen, Rose Amal, Donia Beydoun. Effect of formate and methanol onphotoreduction/removal of toxic cadmium ions using TiO2semiconductor as photocatalyst [J].Chemical Engineering Science,2003,58(19):4429-4439.
    [94] Xiaoling Wang, S.O. Pehkonen, Ajay K. Ray. Photocatalytic reduction of Hg(II) on two commercialTiO2catalysts [J]. Electrochimica Acta,2004,49(9-10):1435-1444.
    [95] Tatsuo Kanki, Hiroshi Yoneda, Noriaki Sano, et al. Photocatalytic reduction and deposition of metallicions in aqueous phase [J]. Chemical Engineering Journal,2004,97(1):77-81.
    [96] Puangrat Kajitvichyanukul, Jirapat Ananpattarachai, Siriwan Pongpom. Sol-gel preparation andproperties study of TiO2thin film for photocatalytic reduction of chromium(VI) in photocatalysisprocess [J]. Science and Technology of Advanced Materials,2005,6(3-4):352-358.
    [97] Vi Nu Hoai Nguyen, Rose Amal, Donia Beydoun. Photodeposition of CdSe using Se-TiO2suspensionsas photocatalysts [J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,179(1-2):57-65.
    [98]龚慧,黄卓楠;国静,等.光和TiO2对酒石酸还原Cr(Ⅵ)的催化作用研究[J].环境污染与防治,2009,31(10):15-18.
    [99]李天成,李鑫钢,王大为,等.一种处理含重金属离子有机废水的新工艺[J].化工进展,2002,21(8):604-605.
    [100]王大为,姜斌,李天成,等.新型工艺处理含重金属离子的有机废水[J].化学工业与工程,2003,20(5):270-274.
    [101]王韬,李鑫钢,孙津生,等.电生物反应器降解含Cr6+和Zn2+的高浓度苯酚废水[J].水处理技术,2006,32(11):54-57.
    [102]吴志坚,刘海宁,张慧芳.离子强度对吸附影响机理的研究进展[J].环境化学,2010,29(6):997-1003.
    [103]徐洁,侯万国,周维芝,等.东北草甸棕壤对重金属铅的吸附行为研究[J].山东大学学报.2007,42(5):50-54.
    [104]林友文,陈伟,罗红斌.羧甲基壳聚糖对铅离子的吸附性能研究[J].离子交换与吸附,2001,17(4):333-338.
    [105]李英敏,杨海波,吕福荣,等.小球藻对Pb2+的吸附及生物吸附机理探讨[J].农业环境科学学报,2004,23(4):696-699.
    [106]张波涛,董德明,杨帆,等.溶液离子强度对自然水体生物膜吸附Pb2+和Cd2+的影响[J].吉林大学学报(地球科学版),2004,34(4):566-570.
    [107]张树芹,路福绥,李丽芳,等.蒙脱土和高岭土对Pb2+的吸附[J].应用化学,2011,28(12):1441-1447.
    [108]陈丽萍,司秀荣,李凌云.磷酸活化活性炭对Cu2+的吸附特征研究[J].生态环境学报,2011,20(2):353-358.
    [109]杨耐德.离子强度对可变电荷土壤吸附Cu(II)的影响[J].河南农业科学,2009,(7):66-68.
    [110]董茜,李燕杰,朴香兰,等.铝盐吸附剂从盐湖卤水中吸附锂的研究[J].稀有金属,2007,31(3):357-361.
    [111]李艳,齐涛,王丽娜,等.离子筛材料的合成及其对盐湖卤水中锂的选择性吸附[J].过程工程学报,2006,6(5):724-728.
    [112]钟辉.偏钛酸型离子交换剂的交换性质及从气田卤水中提锂[J].应用化学,2000,17(3):307-309.
    [113]娄红斌,马红钦,张自龙. TD-11吸附剂对盐矿卤水中钙镁离子吸附净化实验研究[J].盐业与化工,2009,38(5):6-9.
    [114]江东,李长玲,黄翔鹄,等.波吉卵囊藻(Oocystis borgei)对Cu2+、Zn2+吸附研究[J].广东海洋大学学报,2011,31(6):50-54.
    [115]何占航,陈纯,白素贞.驯化活性污泥富集高盐度废水中金属离子的研究[J].郑州大学学报(理学版),2005,37(2):104-108.
    [116] G E Millward and R M Moore. The adsorption of Cu, Mn and Zn by iron oxyhydroxide in modelestuarine solutions [J]. Water Research,1982,16(6):981-985.
    [117] Carlos Green-Ruiz, Victor Rodriguez-Tirado, Bruno Gomez-Gil. Cadmium and zinc removal fromaqueouss by Bacillus jeotgali: pH, salinity and temperature effects [J]. Bioresource Technology,2008,99(9):3864-3870.
    [118]赵雪涛,郜洪文.锯末对Pb2+的吸附性能研究[J].苏州科技学院学报(工程技术版),2010,23(4):5-9.
    [119]耿利娜,相明辉,李娜,等.层状无机化合物-磷酸锆的研究和应用进展[J].化学进展,2004,16(5):717-728.
    [120] A. Clearfield, J.A. Stynes. The preparation of crystalline zirconium phosphate and some observationson its ion exchange behaviour [J]. J. Inorg. Nucl. Chem.,1964,26:117-129.
    [121] G. Alberti. Synthesis, crystalline structure, and ion exchange properties of insoluble acid salts oftetravalent metals and their salt forms [J]. Accounts of Chemical Research,1978,11:163-165.
    [122] C. Ferragina, P. Cafarelli, A. De Stefanis, et al. Synthesis and characterization of sol-gel zirconiumphosphate with template surfactants by different methods [J]. Journal of Thermal Analysis andCalorimetry,2003,71(3):1023-1033.
    [123]杜以波,李峰,何静,等.胺和醇对α-磷酸锆的插层性能研究[J].石油学报(石油加工),1998,14(1):62-65.
    [124]刘燕,郭灿雄,孙鹏,等.混合金属氧化物柱撑α-磷酸锆的研究[J].无机化学学报,2002,18(2):166-170.
    [125] Carla Ferragina, Maria Antonietta Massucci. XPS studies on the host-guest interaction of2-2’-Bipyridyl,1,10-phenanthroline and2,9-dimethyl-1,10-phenanthroline intercalated in α-zirconiumphosphate [J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry,1989,7(5):529-536.
    [126] A. O. Rajeh, L. Szirtes. FT-IR studies on intercalates and organic derivatives of crystalline (α-andγ-forms) zirconium phosphate and zirconium phosphate-phosphite [J]. Journal of Radioanalytical andNuclear Chemistry,1999,241(1):83-91.
    [127] Dandan Yang, Yuan Hu, Lei Song, et al. Catalyzing carbonization function of α-ZrP based intumescentfire retardant polypropylene nanocomposites [J]. Polymer Degradation and Stability,2008,93(11):2014-2018.
    [128] C. Ferragina, R. Di rocco, L. Petrilli. Thermal behavior of zincγ-zirconium phosphate intercalationcompounds: synthesis and x-ray characterization [J]. Journal of Thermal Analysis and Calorimetry,2005,81(1):67-74.
    [129] C. Ferragina, P. Cafarelli, R. Di Rocco. Incorporation of cadmium ions and cadmium sulfide particlesinto sol-gel zirconium phosphate [J]. Journal of Thermal Analysis and Calorimetry,2001,63(3):709-721.
    [130]张蕤,胡源,汪世龙.原位插层聚合法制备聚丙烯酰胺/α-磷酸锆纳米复合材料及其结构表征[J].高等学校化学学报,2005,26(11):2173-2175.
    [131]王海燕,韩大雄,相明辉,等.水溶性阳离子型卟啉对层状磷酸锆插层行为的研究[J].化学学报,2005,63(14):1361-1364.
    [132] Angel A. Martí, Giovanni Paralitici, Lorena Maldonado, et al. Photophysical characterization of methylviologen ion-exchanged within a zirconium phosphate framework [J]. Inorganica Chimica Acta,2007,360(5):1535-1542.
    [133]石士考,刘颖,韩士田,等.四苯基卟啉在改性磷酸锆层间的插入及荧光增强[J].无机化学学报,2007,23(4):703-707.
    [134] J. Ullrich, M. Tympl, V. Pekárek, et al. Preparation and sorption properties of zirconium phosphatespherical particles [J]. Journal of Radioanalytical Chemistry,1975,24(2):361-368.
    [135] Abraham Clearfield, John M. Kalnnis. On the mechanism of ion exchange in zirconium phosphates [J].J. inorg. Nucl. Chem.,1976,38:849-852.
    [136] M. Zamin, T. Shaheen, A. Dyer. Use of amorphous zirconium phosphate for the treatment ofradioactive waste [J]. Journal of Radioanalytical and Nuclear Chemistry,1994,182(2):323-333.
    [137] K.M. Parida, B.B, Sahu, D.P. Das. A comparative study on textural characterization: cation-exchangeand sorption properties of crystallineα-zirconium(IV), tin(IV), and titanium (IV) phosphates [J].Journal of Colloids and Interface Science,2004,270(2):436-445.
    [138] Toshishige M. Suzuki, Setsu Kobayashi, David A. Pacheco Tanaka, et al. Separation and concentrationof trace Pb(II) by the porous resin loaded with α-zirconium phosphate crystals [J]. Reactive&Functional Polymers,2004,58(2):131-138.
    [139] A. Nilchi, M. Ghanadi Maragheh, A. Khanchi, et al. Synthesis and ion-exchange propertoes ofcrystalline titanium and zirconium phosphates [J]. Journal of Radioanalytical and Nuclear Chemistry,2004,261(2):393-400.
    [140] B.C. Pan, Q.R. Zhang, W.M. Zhang, et al. Highly effective removal of heavy metals by polymer-basedzirconium phosphate: A case study of lead ion [J]. Journal of Colloids and Interface Science,2007,310(1):99-105.
    [141] Peijuan Jiang, Bingjun Pan, Bingcai Pan, et al. A comparative study on lead sorption by amorphous andcrystalline zirconium phosphates [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,322(1-3):108-112.
    [142] Le Van So. Investigation of the silica gel supported form of a microcrystalline zirconium phosphateion-exchanger Si-ZrP and its application in chemical separations: II. Investigations on the structure ofSi-ZrP [J]. Journal of Radioanalytical and Nuclear Chemistry,1986,98(2):225-233.
    [143] Claudemir A. Borgo, Yoshitaka Gushikem. Zirconium phosphate dispersed on a cellulose fiber surface:preparation, characterization, and selective adsorption of Li+, Na+, and K+from aqueous solution [J].Journal of Colloid and Interface Science,2002,246(2):343-347.
    [144] A. Hayashi, Y. Fujimoto, Y. Ogawa, et al. Adsorption of gaseous formaldehyde and carboxylic acids byammonium-ion-exchanged α-zirconium phosphate [J]. Journal of Colloids and Interface Science,2005,283(1):57-63.
    [145]孙美丹,傅相铠,周杰,等. α-磷酸氢锆-六氢吡啶的超分子插层组装及其对废水中酚的吸收研究[J].化学通报,2006,69(2):114-118.
    [146] Lina Geng, Na Li, Nan Dai, et al. Layeredγ-zirconium phosphate a new matrix for immobilization ofhemoglobin [J]. Colloids and Surfaces B: Biointerfaces.2003,29(1):81-88.
    [147] Sarah M. Lane, Julien Monot, Marc Petit, et al. XPS investigation of DNA binding tozirconium-phosphonate surfaces [J]. Colloids and Surfaces B: Biointerfaces.2007,58(1):34-38.
    [148] C. Velásquez, F. Rojas, V.H. Lara, et al. On the textural and morphological properties of crystalline andamorphous α-tin phosphate [J]. Phys. Chem,2004,6:4714-4721.
    [149] Hui Qiao, Falong Jia, Zhihui Ai, et al. One-pot synthesis of spring-like superstructures consisting oflayered tin(IV) hydrogen phosphate nanodisks [J]. Chem Commun,2006,2033-2035.
    [150] Parasa Hazarika, Saikat Das Sharma, Dilip Konwar. Tin(IV) hydrogen phosphate nanodisks: a mild andefficient catalyst for the protection of carbonyl compounds as1,3-oxathiolanes [J]. CatalysisCommunications,2008,9(14):2398-2402.
    [151] Vasco F.D. álvaro, Robert A.W. Johnstone. High surface area Pd, Pt and Ni ion-exchanged Zr, Ti andSn(IV) phosphates and their application to selective heterogeneous catalytic hydrogenation of alkenes[J]. Journal of Molecular Catalysis A: Chemical,2008,280(1-2):131-141.
    [152] Chitra Sumel, Beena Raveendran. Synthesis and characterization of tin(IV) phenyl phosphonate innano form [J]. Bull. Mater. Sci.,2008,31(4):613-617.
    [153] Alkihiko Isobe, Yuko Yabuuchi, Nobuhiro Iwasa, et al. Gas-phase hydration of ethane overMe(HPO4)2·nH2O (Me=Ge, Zr, Ti, and Sn)[J]. Applied Catalysis A: General,2000,194-195:395-401.
    [154] U.Costantino, A. Gasperoni. Crystalline insoluble acid salts of tetravalent metals XI. Synthesis andion-exchange properties of tin(IV) phosphate and tin(IV) arsenate [J]. Journal of chromatography,1970,51:289-296.
    [155] M.J. Fuller. Ion exchange properties of tin(IV) materials [J]. J. inorg. Nulc.chem.,1971,33:559-566.
    [156] Bipini Bihari Sahu, Himangshu Kumar Mishra, Kulamani Parida. Cation exchange and sorptionproperties of crystalline tin(IV) phosphate [J]. Journal of Colloid and Interface Science,2000,225(2):511-519.
    [157] I.A. Stenina, A.D. Aliev, I. V. Glukhov, et al. Cation mobility and ion exchange in acid tin phosphate [J].Solid State Ionics,2003,162(2):191-195.
    [158] K.G. Varshney, M.Z.A. Rafiquee, Amita Somya. Effect of surfactants on the adsorption behaviour oftin(IV) phosphate, cation exchanger for alkaline earths and heavy metal ions [J]. Colloids and SurfacesA: Physicochem. Eng. Aspects,2007,301(1-3):224-228.
    [159] Dhruv K. Singh, Pallavi Mehrotra. Ion-exchange equilibria of metal ions and hydrogen ions onanilinium tin(IV) phosphate [J]. Transition Met. Chem.,1989,14(2):119-122.
    [160] Asif Ali Khan, Inamuddin. Preparation, physico-chemical characterization, analytical applications andelectrical conductivity measurement studies of an ‘organic-inorganic’ composite cation-exchanger:polyaniline Sn(IV) phosphate [J]. Reactive&Functional Polymers,2006,66(12):1649-1663.
    [161] K.G. Varshney, V. Jain, A. Agrawal, et al. Pyridine based zirconium(IV) and tin(IV) phosphates as newand novel intercalated ion exchangers [J]. Journal of Thermal Analysis and Calorimetry,2006,86(3):609-621.
    [162] E. Rodríguez-Castellón, A. Rodríguez-García, S. Bruque. Exchange of first row transition metal ionswith n-butylamine intercalate of tin(IV) hydrogenphosphate [J]. Mat. Res. Bull.,1985,20(2):115-124.
    [163] Andrea Briones Gon alves, Antonio Savio Mangrich, Aldo José Gorgatti Zarbin. Polymerization ofpyrrole between the layers of α-Tin(IV) bis(hydrogenphosphate)[J]. Synthetic Metals,2000,114(2):119-124.
    [164]王桂萍,王桂燕,李锋,等.氧化锆负载树脂氟离子吸附剂的性能研究[J].水处理技术,2008,34(11):32-34.
    [165]刘海玲,赵铁生,王英辉,等.纤维状负载双硫腙聚酰胺树脂对铅的吸附性能[J].分析测试学报,2004,23(6):25-28.
    [166]张静泽,史作清,施荣富,等.负载金属离子的磺酸型树脂对酚类成分的吸附[J].离子交换与吸附,2005,21(1):1-8.
    [167]梁慧锋,王秀玲,马子川,等. MnO2负载树脂的制备及对As(V)的去除效果[J].环境污染治理技术与设备,2006,7(10):73-76.
    [168]黄海兰,曲荣军,孙昌梅,等.新型螯合树脂聚苯乙烯负载葡糖胺对Pt(IV)吸附性能[J].离子交换与吸附,2010,26(5):385-392.
    [169]葛磊,王静,陈欢,等.活性炭负载水合氧化铁对草甘膦吸附性能的研究[J].环境工程学报,2009,3(10):1745-1748.
    [170]姜良艳,周仕学,王文超,等.活性炭负载锰氧化物用于吸附甲醛[J].环境科学学报,2008,28(2):337-341.
    [171]周建斌,邓丛静,傅金和,等.竹炭负载纳米TiO2吸附与降解甲苯的研究[J].新型炭材料,2009,24(2):131-135.
    [172]王曙光,李延辉,赵丹,等.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究[J].高等学校化学学报,2003,24(1):95-99.
    [173]姚淑华,贾永锋,汪国庆,等.活性炭负载Fe(III)吸附剂去除饮用水中的As(V)[J].过程工程学报,2009,(2):250-256.
    [174]汪爱河,胡凯光,张伟.海藻酸钙固定的ZVI-SRB吸附废水中铀的研究[J].铀矿冶,2009,28(4):190-193.
    [175]武运,张子萱,周建中,等.固定化啤酒酵母废菌体吸附Ni2+的研究[J].新疆农业大学学报,2009,32(5):67-71.
    [176]唐玉斌,吕华,陈芳艳,等.固定化改性累托石微球对水中染料橙黄Ⅱ的吸附[J].环境科学与技术,2008,31(11):13-17.
    [177]杨秀山,李军,田沈,等.固定化甲烷八叠球菌及处理高浓度有机废水研究[J].环境科学学报,2003,23(2):282-284.
    [178]刘耀兴,郭会超欧阳通,等.水合氧化铈负载沸石对含磷废水的深度处理[J].集美大学学报:自然科学版,2009,14(2):131-136.
    [179]赵纯,邓慧萍.疏水沸石负载纳米TiO2光催化去除水中土霉素[J].同济大学学报(自然科学版),2009,37(10):1360-1365.
    [180]常玥,吕学谦,查飞,等.坡缕石负载阴-阳表面活性剂对甲基橙的吸附行为[J].安徽农业科学,2009,37(3):1311-1314.
    [181]查飞,常玥,吕学谦,等.坡缕石-活性炭-壳聚糖负载环糊精对硝基苯酚的吸附性质[J].精细化工,2007,24(3):209-212.
    [182]查飞,程再华,李少光,等.坡缕石-壳聚糖负载环糊精-活性炭对酚类化合物的吸附行为[J].西北师范大学学报:自然科学版,2008,44(1):60-63.
    [183]传秀云,卢先春,卢先初.负载TiO2的硅藻土对亚甲基蓝的光降解性能研究[J].无机化学学报,2008,23(4):657-661.
    [184]孙冲,林俊雄,汪澜.硅藻土负载TiO2的制备及对染料的吸附降解性能[J].浙江理工大学学报,2010,27(1):36-40.
    [185]张东,张文杰,关欣,等.负载型纳米钛酸锶钡对水中Cd2+吸附行为研究[J].光谱学与光谱分析,2009,29(3):824-828.
    [186]邓培昌,胡杰珍,王海增,等.硅胶负载氯掺杂二氧化钛光催化剂的水热制备及光催化活性评价[J].物理化学学报,2010,26(4):915-920.
    [187]刘宏.硅胶负载铂催化剂催化合成二环戊基二氯硅烷[J].精细石油化工,2010,27(6):39-41.
    [188]杨水金,宋荷娟,王伟平.硅胶负载硅钨酸催化合成苯甲醛乙二醇缩醛[J].化工中间体,2011,(2):41-44.
    [189]许招会,严楠,周鹏,等.硅胶负载铌酸催化合成环戊醇的研究[J].石油炼制与化工,2010,41(4):54-57.
    [190]甄彬,李原,黎汉生,等.硅胶负载丙磺酸催化剂的制备及其催化制生物柴油的性能[J].化学反应工程与工艺,2010,26(6):509-514.
    [191]邓军,施周,许光眉.石英砂负载氧化铁吸附锑的动力学及其吸附机理研究[J].工业用水与废水,2009,40(5):19-23.
    [192]宋立民,许佩瑶,吴扬,等.石英砂负载TiO2薄膜光催化降解制革废水的实验研究[J].华北电力大学学报,2007,34(1):141-144.
    [193]马忠华,杨秋红,马敬中.二氧化硅负载全氟丁基磺酰亚胺的制备与耐水性研究[J].化学学报,2012,70(3):311-317.
    [194]徐慧,颜文晶,张鹏华,等.氨基改性Fe3O4@SiO2核壳结构的DNA吸附特性[J].中南大学学报(自然科学版),2012,43(1):100-104.
    [195]皮丕辉,陈军,李利君,等.纳米SiO2包覆改性薄片铝粉颜料及其耐酸性研究[J].湖南大学学报(自然科学版),2009,36(12):53-58.
    [196] K. G. Varshney, M.Z.A Rafiquee, Amita somya. Effect of surfactants on the adsorption behavior oftin(IV) phosphate, cation exchanger for alkaline earths and heavy metal ions [J]. Colloids and SurfacesA: Physicochem. Eng. Aspects,2007,224-228.
    [197]苏营营,于艳卿,杨沛珊,等.纳米TiO2/硅藻土光催化降解蒽醌染料废水的研究[J].中国环境科学.2009,29(11):1171-1176.
    [198] Pratap Chutia, Shigeru Kato, Toshinori Kojima, et al. Arsenic adsorption from aqueous solution onsynthetic zeolites [J]. Journal of Hazardous Materials,2009,162(1):440-447.
    [199]金晓英,卢志丽,王清萍,等.沸石处理亚甲蓝的动态实验研究[J].工业安全与环保,2010,36(4):18-20.
    [200] Xing Xu, Baoyu Gao, Wenyi Wang, et al. Adsorption of phosphate from aqueous solutions ontomodified wheat residue: characteristic, kinetic and column studies [J]. Colloids and Surfaces B:Biointerfaces,2009,70(1):46-52.
    [201] Shuqin Zhang, Wanguo Hou. Adsorption behavior of Pb(II) on montmorillonite [J]. Colloids andSurfaces A: Eng. Aspects,2008,320(1-3):492-97.
    [202] D. Xu, X.L. Tan, C. L. Chen, et al. Adsorption of Pb(II) from aqueous solution t MX-80bentonite:effect of pH, ionic strenrth, foreign ions and temperature [J]. Applied Clay Science,2008,41(1-2):37-46.
    [203] Md. Tamez Uddin, Md. Rukanuzzaman, Md. Maksudur Rahman Khan, et al. Adsorption of methyleneblue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed columnstudy [J]. Journal of Environmental Management,2009,90(11):3443-3450.
    [204] Zümriye Aksu, Ferda G nen. Biosorption of phenol by immobilized activated sludge in a continouspacked bed: prediction of breakthrough curves [J]. Process biochemistry,2004,39(5):599-613.
    [205] T.S. Anirudhan, P.G. Radhakrishnan. Kinetic and equilibrium modeling of cadmium(II) ions sorptiononto polymerized tamarind fruit shell [J]. Desalination,2009,249(3):1298-1307.
    [206]丘永樑,陈洪龄,徐南平.水热法制备CdS/TiO2及其光活性[J].化工学报,2005,56(7):1338-1342.
    [207] Bipini Bihari Sahu, Kulamani Parida. Cation exchange and sorption properties of crystallineα-titanium(IV) phosphate [J]. Journal of Colloid and Interface Science,2002,248(2):221-230.
    [208]吴越.应用催化基础[M].北京:化学工业出版社,2009:411-413.
    [209] Xue-Fei Sun, Shu-Guang Wang, Xian-Wei Liu, et al. Competitive biosorption of zinc(II) and cobalt(II)in single-and binary-metal systems by aerobic granules [J]. Journal of colloid and Interface Science,2008,324(1/2):1-8.
    [210] Muhammad Iqbal, Asma Saeed. Production of an immobilized hybrid biosorbent for the sorption ofNi(II) from aqueous solution [J]. Process Biochemistry,2007,42(2):148-157.
    [211]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [212]邹卫华,刘晨湘,江利,等.二氧化锰对铜、铅离子的吸附研究[J].郑州大学学报(工学版),2005,26(3):15-19.
    [213] Qingzhu Li, Liyuan Chai, Zhihui Yang, et al. Kinetics and thermodynamics of Pb(II) adsorption ontomodified spent grain from aqueous solutions [J]. Applied Surface Science,2009,255(7):4298-4303.
    [214]胡克伟,贾冬艳,查春梅,等.天然沸石对重金属离子的竞争性吸附研究[J].中国土壤与肥料,2008,(3):66-69.
    [215]刘丽莉,景有海,欧阳通.水合氧化铈吸附水中磷酸根特性的研究[J].安全与环境学报,2007,7(2):64-67.
    [216] Rao M M, Ramesh A, Rao G P C, et al. Removal of copper and cadmium from the aqueous solutions byactivated carbon derived from Ceiba pentandra hulls [J]. Journal of Hazardous Materials,2006,129:123-129.
    [217]杨明平,胡忠于.铝交联累托石对水溶液中钍(Ⅳ)的吸附性能及吸附热力学[J].硅酸盐学报,2009,37(4):562-567.
    [218]张晋京,王帅,窦森,等.土壤粗胡敏素对铜离子的吸附作用及其影响因素[J].环境科学学报,2008,28(12):2527-2533.
    [219]蒋明琴,金晓英,王清萍,等.天然高岭土对Pb2+,Cd2+,Ni2+,Cu2+的吸附及解吸性能研究[J].福建师范大学学报(自然科学版),2009,25(2):55-59.
    [220]王永利,马晓建,常春.离子交换树脂吸附乙酰丙酸的动力学研究[J].离子交换与吸附,2007,23(4):330-336.
    [221] Donat R, Akdogan A, Erdem E, et al.Thermodynamics of Pb2+and Ni2+adsorption onto naturalbentonite from aqueous solutions [J]. Journal of Colloid and Interface Science,2005,286(1):43-52.
    [222]邱宇平,陈金龙,李爱民,等.超高交联树脂吸附酚类的热力学研究与机理探讨[J].水处理技术,2004,30(2):82-87.
    [223] C. Velasquez, F. Rojas, V.H. Lara, et al. On the textural and morphological properties of crystalline andamorphous α-tin phosphate [J]. Phys. Chem.,2004,6:4714-4721.
    [224]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002.
    [225]王利剑,郑水林,舒锋.硅藻土负载二氧化钛复合材料的制备与光催化性能[J].硅酸盐学报,2006,34(7):823-826.
    [226]高如琴,郑水林,刘月,等.硅藻土基多孔陶瓷的制备及其对孔雀石绿的吸附和降解[J].硅酸盐学报,2008,36(1):21-29.
    [227]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [228] Bahram Bahramian, Faramarz Doulati Ardejani, et al. Diatomite-supported manganese schiff base: anefficient catalyst for oxidation of hydrocarbons [J]. Applied Catalysis A: general,2008,345(1):97-103.
    [229]刘娟,王小艺,刘载文.壳聚糖衍生物固定床中Cu(II)的吸附性能研究[J].北京工商大学学报(自然科学版).2009,27(2):4-7.
    [230] K. S. Rao, S. Anand, P. Venkateswarlu. Modelling the kinetics of Cd(II) adsorption on Syzygium cuminiL leaf powder in a fixed bed mini column [J]. Journal of Industrial and Engineering Chemistry,2011,17(2):174-181.
    [231]李玉飞,高聪丽,豆婵婵,等.麦壳对水溶液中铜离子的动态吸附研究[J].离子交换与吸附,2011,27(2):103-109.
    [232]李方文,吴小爱,许中坚,等.涂铁多孔陶瓷对水中亚甲基蓝的动态吸附[J].环境工程学报,2009,3(3):385-390.
    [233]李大伟,陈登宇,朱锡锋.稻壳炭基高比表面多孔氧化硅的表征及Cu(II)吸附特性[J].化工学报,2011,62(12):3434-3439.
    [234]李仲谨,王磊,肖昊江,等.交联淀粉微球对Ni2+的吸附性能研究[J].高校化学工程学报.2009,23(1):23-27.
    [235]曹晓燕,韩化雨,杨桂朋.人工海水介质中CTAB在胶州湾沉积物上的吸附动力学和热力学行为[J].中国海洋大学学报,2010,40(11):101-107.
    [236]王修林,张正斌.海洋化学中的线性自由能关系III.盐度效应和离子交换剂/配位体效应[J].海洋与湖沼,1985,16(5):380-391.
    [237]张正斌主编.海洋化学[M].青岛:中国海洋大学出版社,2004:305-310.
    [238]尉华娟,倪瑜瑜,姚丽丽,等.不同炭吸附材料对溶液中Pb2+的吸附性能比较[J].广东微量元素科学,2009,16(1):40-44.
    [239]王菲,王连军,李健生,等.大孔弱酸阳离子交换树脂对Pb(II)的静态吸附性能[J].北京化工大学学报(自然科学版).2009,36(1):23-27.
    [240]杨明平,傅勇坚,黄念东.含醚键离子交换树脂对Cu2+和Pb2+的吸附性能研究[J].湖南科技大学学报(自然科学版),2004,19(3):74-76.
    [241]宋春丽,陈兆文,范海明,等.螯合纤维及离子交换树脂对铜离子吸附动力学性能比较[J].舰船防化,2008,(6):1-7.
    [242]周秋菊,罗立新,彭琪,等.强酸型魔芋葡甘聚糖基离子交换树脂对Cu2+的吸附性能研究[J].高分子材料科学与工程,2006,22(1):230-236.
    [243]王昕,张春丽,任广军,等.碳纳米管吸附去除水溶液中锌离子研究[J].电镀与精饰,2008,20(10):4-6.
    [244]熊春华,姚彩萍. D113弱酸性树脂对锌(II)的吸附性能[J].中国有色金属学报,2008,18(4):745-749.
    [245]余少英.油茶果壳活性炭对铜离子的动态吸附[J].应用化工,2011,40(10):1735-1737.
    [246]肖乐勤,陈霜艳,周伟良.改性活性炭纤维对重金属离子的动态吸附研究[J].环境工程,29(增刊),289-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700