用户名: 密码: 验证码:
燃煤锅炉低NOx燃烧系统的数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,以煤为主的能源结构,决定了火电在我国电力生产中的主要地位。氮氧化物(NOx)是燃煤电厂主要排放的污染物之一。现阶段,由于国家对燃煤污染物NOx排放的严格控制,火电厂必须采取有效措施来降低NOx的排放。
     炉内低NOx燃烧技术中,空气分级燃烧以其较为简单的结构布置、较高的脱硝效果,成为电站锅炉低NOx燃烧采取的基本方式,同时也是炉内进行低NOx改造的优先选择。
     本文在详细分析煤粉燃烧过程中NOx生成特性的基础上,采用数值模拟与现场试验相结合的方法,根据燃煤锅炉空气分级燃烧系统的结构特点,在保证锅炉安全、经济和稳定运行的前提下,进行了深化炉内低NOx燃烧方式以及优化炉内燃烧方面的研究。主要研究内容如下:
     首先,针对某300MW墙式燃煤锅炉出现NOx排放量较高的问题,通过分析并结合该机组炉型及结构特点,提出去除部分卫燃带及部分三次风上移来降低炉内NOx生成的改造方案;在数值模拟研究中,着重考虑CO及焦炭对NOx的综合还原效果,提出了改进型NOx模型,将数值模拟结果与现场实测数据进行对比,炉内温度分布、炉膛出口NOx浓度值等主要参数均吻合较好,表明了数值模拟方法的可靠性。
     在此基础上,对提出的低NOx改造方案进行了数值模拟优化,在对炉内燃烧稳定性、煤粉燃烧效率以及锅炉运行安全性影响较小,并尽量降低改造工作量的前提下,确定改造方案并进行了工程实施。改造后的现场调试试验结果表明,锅炉NOx排放量降低了28.5%,同时炉内结渣较轻。
     其次,对某600MW超临界机组四角切圆燃煤锅炉进行了数值模拟研究,结果表明,具有LNCFS深度空气分级低NOx燃烧系统的燃煤锅炉,在炉内具有较低的NOx浓度水平;燃尽区内,SOFA风的集中送入,使NOx的浓度出现反弹,并且影响了炉膛出口最终的NOx排放。为了进一步提高炉内的低NOx燃烧效果,结合该机组炉型及结构特点,提出将SOFA风喷口沿炉高两级布置的方案,并通过数值模拟研究了喷口布置方式对NOx生成的影响规律。
     数值模拟结果表明,将SOFA风喷口沿炉高两级布置,并且分阶段送入,在两级燃尽风之间建立低氧浓度区域,不仅可以减少煤粉在燃尽过程中的NOx生成,同时还可促进焦炭对已生成NOx的异相还原作用,从而提高燃尽区内的低NOx燃烧效果。兼顾低NOx效果以及煤粉燃烧效率,下级SOFA风占SOFA风总量的60%时,炉膛出口NOx浓度较现有燃烧技术能降低23.8%,且炉膛出口飞灰可燃物升幅较小。
     最后,针对某300MW四角切圆燃煤锅炉,由于燃用非设计煤种,在运行中出现的燃烧不稳、再热气温偏低、灰渣含碳量过高以及热偏差较大等问题进行分析,并提出了初步的改造方案。
     通过数值模拟,对提出的改造方案进行研究,建立结渣模型并嵌入FLUENT软件平台中,与炉内燃烧过程进行耦合计算,优化选取卫燃带的敷设面积以及布置方式,来提高燃烧稳定性以及再热汽温;优化确定下两层一、二次风集中布置,来减少灰渣含碳量;确定采用增大OFA反切角度来减小热偏差。数值模拟结果表明,敷设卫燃带后,炉内NOx生成略有增加;增大OFA反切角度,对炉内NOx生成影响较小。
     改造后的测试试验结果表明,炉内燃烧稳定性大幅提高,且再热汽温可基本达到设计参数;灰渣含碳量可降至较低水平;增大OFA反切角度,可实现对热偏差的有效控制,且对锅炉NOx排放影响较小。
Coals have the main position in the energy structure in China. It decides the important position of thermal power in the power production. Nitrogen oxide (NOx) is one of the major gaseous pollution emitted from the coal-fired boilers. Nowadays the country control the NOx emission which is from pulverized coal combustion strictly; the power production should adopt effective measure to low the NOx emission.
     Among the technology of Low-NOx combustion in boiler, air staging have simpler structural arrangement and higher effect of denitration become the basic way of low the NOx emission of station boiler and the priority selection of the Low-NOx reconstruction.
     Basing on analyzing the generation of NOx the combustion characteristics in detail, the numerical simulation and field trial were combined. On the basis of the structure characteristic of air staged combustion, the deep air staged combustion style and combustion optimization was studied under ensuring the boiler can operate safely, economically and stably.
     Firstly, the Low-NOx transformation program in coal fired boiler was computed by numerical simulation and the optimization combustion was studied by experiment. The NOx emission is higher in the300MW pulverized coal fired boiler with whirl burners, the higher temperature region and smaller degree of air staging combustion are the main reason of higher NOx emission. Based on installed the refractory belt and the ball type pulverize system, NOx emission was reduced by removing refractory belt and tertiary air staging to improve the degree of air stage combustion. The typical temperature field and gaseous density component were computed by numerical simulation. The temperature distribution contrast results along the height of boiler between numerical simulation and experiment show that the simulation means and simulation results are correct.
     On the basis, the proposed Low-NOx construction programs were optimized by numerical simulation, considering the combustion stability, pulverized coal combustion efficiency and operation safety. The reconstruction projects were implemented according to the optimized construction programs under the condition of reducing the reconstruction workload as far as possible. Experimental results after the reconstruction show that the reduction ratio of NOx is28.5%in the optimal low-NOx operation program and the slagging in furnace is smaller than before.
     Secondly, there is program of deep the mode of air staging combustion was computed by numerical simulation. The combustion and the generation of NOx were simulated in a600MW Tangentially Fired Furnace. The numerical results show that the NOx emission was controlled by reducing the generation of NOx in the combustion process to keep lower NOx concentration level. But the NOx concentration appears rebound in burnout region by centralized over fir air. For improving the effects of Low-NOx combustion, the analysis results show that two staging SOFA can reduce the generation of NOx in burnout region to improve the Low-NOx combustion effect. The influence rules between nozzle arrangements and NOx emission were studied through the numerical simulation.
     The simulated results show that the rebound extent of NOx concentration which was caused by centralized over fir air was reduce by two staging SOFA program. The low oxygen content region can reduce the NOx generation in the process of burnout and advance the char of heterogeneous reduction with NOx. The two staging SOFA can reduce the NOx generation in burnout region and improve the Low-NOx effect. The proportion of lower SOFA is60%in the optimization program basing on the better effects of Low-NOx combustion and the less combustion efficiency effect. The NOx concentration of furnace exit is reduced by23.8%and the gain of carbon in fly ash is small.
     Lastly, many problems were exposed for adopting non-design coals in the300MW Tangentially Fired Furnace. Such as combustion instability, lower reheat steam temperature, higher carbon in slag and higher thermal deviation. In view of these problems, the analysis and modification scheme were proposed by simulated and experimental researches.
     The slagging model, made by numerical simulation basing on the proposed retrofit scheme, was embedded into the FLUENT software platform. The installation area and arrangement form of refractory belt were optimized by numerical simulation coupling the slagging model for improving the stability of combustion and reheat steam temperature. To reduce the quality of pulverized coal which drop in the ash hopper, the under layer primary air and secondary air were centralized layout. Increasing the angle of opposing tangential decreased the thermal deviation. The numerical simulation results show that the NOx concentration has a little increase after laying the refractory belt and increasing the angle of opposing tangential has less influence to the NOx emission.
     The experiment results after reconstruction show that the combustion stability raising and the steam temperature of reheat can reach the design parameter. Ash carbon content drops to a lower level. Increasing the angle of opposing tangential realizes effective control of thermal deviation and has less influence to NOx emission.
引文
[1]陈砺.能源概论[M].北京:化学工业出版社,2009.
    [2]斯东波.超细煤粉再燃和深度空气分级技术的试验研究与数值模拟[D].浙江大学,2008.
    [3]吕学敏.煤粉锅炉两段式空气分级低NOx燃烧技术的实验研究与数值模拟[D].上海交通大学,2009.
    [4]张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析[J].环境科学学报,2008(12):2470-2479.
    [5]标准编制组。《火电厂大气污染物排放标准》编制说明[R]。北京:国电环境保护研究院、中国环境科学研究院,2009.
    [6]岑可法.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    [7]孙克勤,韩祥.燃煤电厂烟气脱硝设备及运行[M].北京:机械工业出版社,2011.
    [8]杨飚.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    [9]徐璋,苏亚欣,毛玉如.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2012.
    [10]孙雅丽,郑骥,姜冰.燃煤电厂烟气氮氧化物排放控制技术发展现状[J].环境科学与技术,2011,(S1):174-179.
    [11]陈彦广,王志,郭占成.燃煤过程NOx抑制与脱除技术的现状与进展[J].过程工程学报,2007,7(3):632-638.
    [12]王文选,肖志均,夏怀祥.火电厂脱硝技术综述[J].电力设备,2006,7(8):1-5.
    [13]张翱.电站锅炉煤粉燃烧器降低NOx排放的研究[D].华中科技大学,2007.
    [14]马风哪,程伟琴.国内火电厂氮氧化物排放现状及控制技术探讨[J].广州化工,2011,39(15):57-59.
    [15]高正阳,阎维平.煤粉再燃过程再燃煤比脱硝量的实验研究[J].中国电机工程学报,2009,29(5):32-36.
    [16]姚钧凯,张惠娟,沈炳耘.燃料分级再燃技术及在我国应用前景[J].能源研究与利用,2010,(2):28-30.
    [17]杜维鲁,朱法华.燃煤产生的NOx控制技术[J].中国环保产业,2007,(12):42-45.
    [18]氮氧化物和氨氮被列入”十二五”约束性指标[J].环境保护与循环经济,2011,31(4):4-5.
    [19]杨华.大型电站锅炉氮氧化物排放控制措施的技术经济比较[D].浙江大学,2007.
    [20]王春昌.低NOx燃料分级燃烧技术应用探讨[J].热力发电,2009,38(5):10-13.
    [21]陈振龙,姚伟,王桂芳.空气分级燃烧锅炉的运行安全经济性研究[J].热力发电,2011,40(12):4-7.
    [22]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2001.
    [23]贾艳艳.四角切圆燃煤锅炉超细煤粉再燃技术数值试验研究[D].大连理工大学,2008.
    [24]张秀霞.焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D].浙江大学,2012.
    [25]Coda B, Kluger F, Rtsch DF, et al. Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion[J]. Energy & Fuels,1998, (12):1322-1327.
    [26]Pevida C, Arenillas A, Rubiera F, et al. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel,2007,86(1-2):41-49.
    [27]Spinti J P, Pershing D W. The fate of char-N at pulverized coal conditions [J]. Combustion And Flame,2003,135(3):299-313.
    [28]Molina A, Murphy J J, Winter F, et al. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion[J]. Combustion And Flame, 2009,156(3):574-587.
    [29]陈瑶姬.w型火焰锅炉燃用无烟煤低NOx燃烧技术机理和模化试验研究[D].杭州:浙江大学,2011.
    [30]惠世恩.煤的清洁利用与污染防治[M].北京: 中国电力出版社,2008.
    [31]周力行,徐旭常.燃烧技术手册[M].北京:化学工业出版社,2008.
    [32]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原理工大学,2004.
    [33]朱全利.大型锅炉NOx生成机理及燃烧器火焰脱硝数值模拟的研究[D].华中科技大学,2001.
    [34]Stanmore B R, Visona S P. Prediction of NO emissions from a number of coal-fired power station boilers[J]. Fuel Processing Technology,2000,64(1-3): 25-46.
    [35]潘维.超细煤粉再燃机理及改造方案的数值模拟研究[D].浙江大学,2005.
    [36]刘海峰,刘银河,刘艳华,等.煤热解过程中含氮气相产物转化规律的实验研究[J].燃料化学学报,2008,36(2):134-138.
    [37]赵宗彬,陈皓侃,李保庆.煤燃烧过程中NO-x的生成和还原[J].煤炭转化,1999,22(4):10-15.
    [38]Jing J, Li Z, Zhu Q, et al. Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner[J]. Energy,2011, 36(2):1206-1213.
    [39]Wilk V, Hofbauer H. Conversion of fuel nitrogen in a dual fluidized bed steam gasifier[J]. Fuel,2013,106(1):793-801.
    [40]Lucassen A, Labbe N, Westmoreland P R, et al. Combustion chemistry and fuel-nitrogen conversion in a laminar premixed flame of morpholine as a model biofuel[J]. Combustion And Flame,2011,158(9):1647-1666.
    [41]Mori H, Asami K, Ohtsuka Y. Role of Iron Catalyst in Fate of Fuel Nitrogen during Coal Pyrolysis[J]. Energy & Fuels,1996,10(4):1022-1027.
    [42]Ohtsuka Y, Wu Z. Nitrogen release during fixed-bed gasification of several coals with CO2:factors controlling formation of N2[J].Fuel,1999,78(5): 521-527.
    [43]Friebel J, Kopsel RFW. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study[J]. Fuel,1999,78(8):923-932.
    [44]Pai T Y, Shyu G S, Chen L, et al. Modelling transportation and transformation of nitrogen compounds at different influent concentrations in sewer pipe[J]. Applied Mathematical Modelling,2013,37(3):1553-1563.
    [45]刘艳华,姚明宇,车得福.模型化合物氮的热解释放及N2转化特性研究[J].工程热物理学报,2009,30(4):691-694.
    [46]Thomas K M. The release of nitrogen oxides during char combustion[J]. Fuel, 1997,76(6):457-473.
    [47]郭永红,孙保民,康志忠.超细粉再燃技术中HCN对NOx的生成和还原的影响[J].电站系统工程,2005,21(2):15-17.
    [48]Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel,1995,74(9):1247-1253.
    [49]刘银河,刘艳华,车得福,等.煤中灰分和钠添加剂对煤燃烧中氮释放的影响[J].中国电机工程学报,2005,25(4):136-141.
    [50]Glarborg P, Jensen A D, Johnsson JE. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress In Energy And Combustion Science,2003,29(2): 89-113.
    [51]冯志华,常丽萍,任军,等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-12.
    [52]Scappin F, Stefansson S H, Haglind F, et al. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines[J]. Applied Thermal Engineering, 2012,37(2):344-352.
    [53]Molina A, Eddings E G, Pershing D W, et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers[J]. Progress In Energy And Combustion Science,2000,26(4-6):507-531.
    [54]Harding A W, Brown S D, Thomas K M. Release of NO from the combustion of coal chars [J]. Combustion And Flame,1996,107(4):336-350.
    [55]J T C. Effect of SO2 and NO on the conversion of fuel nitrogen to N2O and NO in single particle combustion of coal[J]. Fuel & Energy,1997,38(1):42-45.
    [56]Fan W, Lin Z, Kuang J. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion[J]. Fuel Processing Technology, 2010,91(3):625-634.
    [57]刘汉涛,李慧,李英杰,等.煤粉燃烧燃料氮析出研究进展[J].山东建筑工程学院学报,2004,19(4):69-72,80.
    [58]Li Y H, Lu G Q, Rudolph V. The kinetics of NO and N2O reduction over coal chars in fluidised-bed combustion[J]. Chemical Engineering Science,1998, 53(1):1-26.
    [59]Yamashita H, Tomita A, Yamada H, et al. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy & Fuels,1993,7(1): 85-89.
    [60]Chambrion P, Kyotani T, Tomita A. C-NO reaction in the presence of O2[J]. Symposium (International) on Combustion,1998,27(2):3053-3059.
    [61]Sousa J P S, Pereira MFR, Figueiredo J L. Modified activated carbon as catalyst for NO oxidation[J]. Fuel Processing Technology,2013,106(1): 727-733.
    [62]Iqbal N, Afzal A, Cioffi N, et al. NOx sensing one-and two-dimensional carbon nanostructures and nanohybrids:Progress and perspectives[J]. Sensors and Actuators B:Chemical,2013,181(2):9-21.
    [63]苟湘,周俊虎,周志军,等.烟煤煤粉及热解产物对NO的还原特性实验研究[J].中国电机工程学报,2007,27(23):12-17.
    [64]周志军,陈瑶姬,杨卫娟,等.无烟煤焦炭对NO的还原率[J].燃烧科学与技术,2011,17(6):477-482.
    [65]陈瑶姬,周志军,周宁,等.贵州无烟煤的燃烧动力学特性和NOx生成机制试验研究[J].中国电机工程学报,2011,31(20):52-59.
    [66]Schonenbeck C, Gadiou R, Schwartz D. A kinetic study of the high temperature NO-char reaction[J]. Fuel,2004,83(4-5):443-450.
    [67]肖韡,李宇,肖萌,等.高温下氧气氛对煤焦还原NO影响机理研究[J].锅炉技术,2011,42(5):1-6.
    [68]Gupta H. Reduction of nitric oxide from flue gas by bituminous coal char in the presence of oxygen[J]. Industrial & Engineering Chemistry Research,2003, 42(12):2536-2543.
    [69]王恩禄,彭玲,罗永浩,等.燃煤电站锅炉NOx排放的控制措施[J].锅炉技术,2003,34(5):48-52.
    [70]周昊.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究[D].浙江大学,2004.
    [71]殷捷.分级燃烧控制大型燃煤锅炉NOx生成的试验研究[D].同济大学,2007.
    [72]郑友取,樊建人,查旭东,等.切向燃烧锅炉炉内NOx生成的数值模拟[J].动力工程,2000,20(3):689-692.
    [73]刘冬冬.煤粉炉分级燃烧及NOx排放的数值模拟[D].东北电力大学,2012.
    [74]周月桂,章明川,徐通模,等.四角切向燃烧锅炉烟道烟速偏差的实验研究与数值模拟[J].中国电机工程学报,2001,21(1):68-72.
    [75]姜秀民,崔志刚,马玉峰,等.670t/h四角切圆锅炉反切消旋的数值模拟和工程实践[J].中国电机工程学报,2005,25(18):109-115.
    [76]申春梅,孙锐,吴少华.1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟[J].中国电机工程学报,2006,26(15):51-57.
    [77]刘建全,孙保民,白涛,等.600MW超临界旋流燃烧锅炉炉内温度场数值模拟及优化[J].中国电机工程学报,2011,31(2):15-21.
    [78]苟湘,周俊虎,周志军,等.三次风对四角切圆锅炉燃烧和NOx排放的影响[J].中国电机工程学报,2008,31(8):13-17.
    [79]Choi C R, Chang N K. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler[J]. Fuel,2009,88(9):1720-1731.
    [80]Diez L I, Cortes C, Pallares J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation[J]. Fuel,2008,87(7):1259-1269.
    [81]Munir S, Nimmo W. Gibbs B M. The effect of air staged, co-combustion of pulverised coal and biomass blends on NOx emissions and combustion efficiency[J]. Fuel,2011,90(1):126-135.
    [82]Zhang H, Zhang J. Effects of gas temperature fluctuation on the NO release from pulverized coal particle during char combustion[J]. Fuel,2010,89(5): 1177-1180.
    [83]Fan W, Lin Z, Kuang J, et al. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion[J]. Fuel Processing Technology, 2010,91(6):625-634.
    [84]Luan T, Wang X, Hao Y, et al. Control of NO emission during coal reburning[J]. Applied Energy,2009,86(9):1783-1787.
    [85]郭永红.超细粉再燃低NO_x燃烧技术的数值模拟与实验研究[D].华北电力大学(北京),2006.
    [86]Xu M, J. L T A, M. G C. Modelling of the combustion process and NOx emission in a utility boiler[J]. Fuel,2000,79(13):1611-1619.
    [87]周俊虎,赵晓辉,刘建忠,等.锅炉内卫燃带上高熔点灰渣沉积机理分析[J].中国电机工程学报,2008,28(14):20-26.
    [88]Wigley F, Williamson J, Riley G. The effect of mineral additions on coal ash deposition[J]. Fuel Processing Technology,2007,88(11-12):1010-1016.
    [89]李文艳.电站锅炉煤粉燃烧过程及结渣的数值模拟[D].华北电力大学(北京),2003.
    [90]徐志明,赵永萍,文孝强,等.基于退火支持向量的燃煤锅炉结渣特性预测[J].热能动力工程,2011,26(4):440-444.
    [91]Degereji M U, Ingham D B, Ma L, et al. Prediction of ash slagging propensity in a pulverized coal combustion furnace[J]. Fuel,2012,101(2):171-178.
    [92]Rushdi A, Gupta R, Sharma A, et al. Mechanistic prediction of ash deposition in a pilot-scale test facility[J]. Fuel,2005,84(10):1246-1258.
    [93]Zbogar A, Frandsen F J, Jensen P A, et al. Heat transfer in ash deposits:A modelling tool-box[J]. Progress In Energy And Combustion Science,2005, 31(5-6):371-421.
    [94]Rushdi A, Sharma A, Gupta R. An experimental study of the effect of coal blending on ash deposition[J]. Fuel,2004,83(4-5):495-506.
    [95]Fryda L, Sobrino C, Glazer M, et al. Study of ash deposition during coal combustion under oxyfuel conditions[J]. Fuel,2012,92(1):308-317.
    [96]Kreutzkam B, Wieland C, Spliethoff H. Improved numerical prediction of ash formation and deposition using a novel developed char fragmentation model[J]. Fuel,2012,98(5):103-110.
    [97]Wang H. Modeling of ash formation and deposition in PC fired utility boilers[D]. Utah:Brigham Young University,1998.
    [98]Mendes N. L J, Bazzo E. Characterization and growth modeling of ash deposits in coal fired boilers[J]. Powder Technology,2012,217(2):61-68.
    [99]Richards G H, Slater P N, Harb J N. Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor[J]. Energy & Fuels,1993,7(6): 774-781.
    [100]G U, F C, M D. Viscosity of silicate melts[J]. Journal of the American Ceramic Society,1981,80(9):139-141.
    [101]D. P. Kalmanovitch M F. An effectivemodel of viscosity for ashdeposition phenomena[M]. New York:United Engineering Foundation,1990.
    [102]Senior C L, Srinivasachar S. Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking[J]. Energy & Fuels,1995, (9):277-283.
    [103]Al-Otoom A Y, Elliott L K, Wall T F, et al. Measurement of the Sintering Kinetics of Coal Ash[J]. Energy & Fuels,2000,14(5):994-1001.
    [104]Abd-Elhady M S, Clevers S H, Adriaans TNG, et al. Influence of sintering on the growth rate of particulate fouling layers[J]. International Journal Of Heat And Mass Transfer,2007,50(1-2):196-207.
    [105]Wall T F, Bhattacharya S P, Zhang D K, et al. The properties and thermal effects of ash deposits in coal-fired furnaces[J]. Progress In Energy And Combustion Science,1993,19(6):487-504.
    [106]周涌,由长福,祁海鹰,等.锅炉结渣过程数值模拟研究进展[J].燃烧科学与技术,2004,10(4):375-382.
    [107]Harb JN, Munson C L, Richards G H. Use of Equilibrium Calculations To Predict the Behavior of Coal Ash in Combustion Systems[J]. Energy & Fuels, 1993,7(2):208-214.
    [108]Nowok J W, Benson S A, Jones M L, et al. Sintering behaviour and strength development in various coal ashes[J]. Fuel,1990,69(8):1020-1028.
    [109]Biernacki J J, Vazrala A K, Wayne Leimer H. Sintering of a class F fly ash[J]. Fuel,2008,87(6):782-792.
    [110]Erol M, Kucukbayrak S, Ersoy-Mericboyu A. Characterization of sintered coal fly ashes[J]. Fuel,2008,87(7):1334-1340.
    [111]孙平.600MW电站锅炉炉内多相流动、传热、燃烧过程及炉内偏差、污染、结渣的数值试验研究[D].杭州:浙江大学,1999.
    [112]张广全,董建勋,伊磊.300MW机组锅炉结焦原因分析及优化调整试验[J].发电设备,2008(3):194-197.
    [113]王福军.计算流体动力学分析[M].北京:清华大学出版社,2005.
    [114]陈国明.安全工程信息化技术概论[M].山东:中国石油大学出版社,2008.
    [115]Inc F. Fluent 6.3 user's guide[M]. Ann Arbor:Fluent Inc,2006:2210-2212.
    [116]侯晓春,侯凌云.喷嘴技术手册[M].北京:中国石化出版社,2007.
    [117]陆方.切圆煤粉锅炉低NO_x燃烧技术的研究与应用[D].上海交通大学,2009.
    [118]He R, Suda T, Takafuji M, et al. Analysis of low NO emission in high temperature air combustion for pulverized coal[J]. Fuel,2004,83(9): 1133-1141.
    [119]De Soete G G. Overall reaction rates of NO and N2 formation from fuel nitrogen[J]. Fifteenth Symposium (International) on Combustion,1975,15(1): 1093-1102.
    [120]Jones J M, Patterson PM, Pourkashanian M, et al. Approaches to modelling heterogeneous char NO formation/destruction during Pulverised coal combustion[J]. Carbon,1999,37(10):1545-1552.
    [121]Aarna I, Suuberg E M. The Role of Carbon Monoxide in the NO-Carbon Reaction[J]. Energy & Fuels,1999, (13):1145-1153.
    [122]苟湘.直流煤粉低NOx燃烧和再燃技术的实验、理论与数值模拟研究[D].浙江大学,2007.
    [123]Tighe C J, Dennis JS, Hayhurst AN, et al. The reactions of NO with diesel soot, fullerene, carbon nanotubes and activated carbons doped with transition metals[J]. Proceedings of the Combustion Institute,2009,32(2):1989-1996.
    [124]Shirahama N, Mochida I, Korai Y, et al. Reaction of NO with urea supported on activated carbons [J]. Applied Catalysis B:Environmental,2005,57(4): 237-245.
    [125]Gil M V, Riaza J, alvarez L, et al. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres[J]. Energy,2012,48(1):510-518.
    [126]Rosas J M, Ruiz-Rosas R, Rodriguez-Mirasol J, et al. Kinetic study of NO reduction on carbon-supported chromium catalysts[J]. Catalysis Today,2012, 187(1):201-211.
    [127]Srinivasan R A, Sriramulu S, Kulasekaran S, et al. Mathematical modeling of fluidized bed combustion 4:N2O and NOx emissions from the combustion of char[J]. Fuel,1998,77(9-10):1033-1049.
    [128]武雪芳,王宗爽,王晟,等.小型燃煤工业锅炉NOx形成与释放规律模拟研究[J].环境工程技术学报,2011,1(5):365-376.
    [129]张晓辉.挥发分反应特性和立体分级燃烧对NOx排放的影响[D].哈尔滨工业大学,2008.
    [130]周俊虎,赵琛杰,许建华,等.电站锅炉空气分级低NOx燃烧技术的应用[J].中国电机工程学报,2010,30(23):19-23.
    [131]张晓辉,孙锐,孙绍增,等.200MW锅炉空气分级低NOx燃烧改造实验研究[J].热能动力工程,2008,23(5):676-683.
    [132]陆杰.锅炉整体空气分级燃烧NOx排放及控制的关键问题的试验研究[D].上海:上海交通大学,2008.
    [133]周俊虎,宋国良,刘建忠,等.高浓度煤粉燃烧低NOx排放特性的试验研究[J].中国电机工程学报,2007,27(2):42-47.
    [134]朱宝田,赵毅.我国超超临界燃煤发电技术的发展[J].华电技术,2008,30(2):1-5.
    [135]孟凡敬.350MW四角切圆煤粉炉燃烧及NOx排放的数值模拟[D].大连理工大学,2009.
    [136]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [137]潘维,池作和,斯东波,等.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005,25(8):110-115.
    [138]Coda B, Kluger F, Fortsch D, et al. Coal-Nitrogen Release and NOx Evolution in Air-Staged Combusiton[J]. Energy & Fuels,1998, (12):1322-1327.
    [139]Maier H, Spliethoff H, KichererA, et al. Effect of coal blending and particle size on NOx emission and burnout [J]. Fuel,1994, (73):1447-1452.
    [140]Wendt. J O L. Mechanisms Governing the Formation and Destruction of NOx and Other Nitrogenous Species in Low NOx Coal Combustion Systems [J]. Combustion.Science and Technology,1995,108:323-344.
    [141]Zhou H, Mo G, Si D, et al. Numerical Simulation of the NOx Emissions in a 1000 MW Tangentially Fired Pulverized-Coal Boiler:Influence of the Multi-group Arrangement of the Separated over Fire Air[J]. Energy & Fuels, 2011,25(5):2004-2012.
    [142]宁晓南.230t/h锅炉掺烧劣质煤稳定燃烧技术探讨[J].热电技术,2011(2):17-19.
    [143]孙立德,张河.劣质煤的燃烧问题及其调整技术探讨[J].内蒙古科技与经济,2008,(6):311-312.
    [144]张国军.劣质煤稳燃措施的探讨[J].华中电力,2007,20(6):72-75.
    [145]温立.燃烧劣质煤对锅炉运行的影响及对策[J].黑龙江电力,2007,(5):387-388.
    [146]侯新.燃用劣质煤时如何保证锅炉的安全运行[J].中国电力教育,2007,(z2):312-313.
    [147]王春昌.煤质下降对炉内燃烧稳定性的影响及解决措施[J].热力发电,2007,36(4):44-46.
    [148]常公鹏,苗长信,秦介海.章丘电厂锅炉汽温偏低的原因分析及改造措施[J].山东电力技术,2004,(3):65-68.
    [149]王亚军,王宏格.三菱1205t/h锅炉低负荷再热汽温偏低原因分析[J].山西电力,2005,(1):11-13.
    [150]石建发.大容量四角切向燃烧炉膛出口烟气热偏差问题的治理[J].电站系统工程,2009,25(4):73-74.
    [151]李永光,李岸然,白宏刚,等.用扭曲分隔屏消除锅炉水平烟道的烟速偏差[J].中国电机工程学报,2007,27(17):34-38.
    [152]马玉峰,高伟,曾汉才.670 t/h四角切圆锅炉燃烧器反切消旋改造及运行[J].热力发电,2001,30(5):48-50.
    [153]Choi C R, Kim C N. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500MWe tangentially fired pulverized-coal boiler[J]. Fuel,2009,88(9):1720-1731.
    [154]李进良,李承曦,胡仁喜.精通FLUENT 6.3流场分析[M].北京:化学工业出版社,2009.
    [155]李永华,陈鸿伟,刘吉臻,等.煤粉燃烧排放特性数值模拟[J].中国电机工程学报,2003,23(3):166-169.
    [156]Erickson T A, Allan S E, Mccollor D P, et al. Modelling of fouling and slagging in coal-fired utility boilers[J]. Fuel Processing Technology,1995,44(1-3): 155-171.
    [157]Walsh P M, Sayre A N, Loehden DO, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube:Effects of coal properties on deposit growth[J]. Progress in Energy and Combustion ScienceAsh Deposition,1990, 16(4):327-345.
    [158]王振.典型煤种及混煤对NOx排放和锅炉结渣影响的数值模拟研究[D].上海:上海交通大学,2012.
    [159]Rezaei HR, Gupta R P, Bryant G W, et al. Thermal conductivity of coal ash and slags and models used[J]. Fuel,2000,79(13):1697-1710.
    [160]Wall TF, Bhattacharya SP, Baxter LL et al. The character of ash deposits and the thermal performance of furnaces [J]. Fuel Processing Technology,1995, 44(1-3):143-153.
    [161]吴春潮,陈新纳,谌丽,等.300MW机组锅炉低温改造[J].华中电力,2004,17(6):62-64.
    [162]王清明.300 MW机组锅炉水冷壁卫燃带敷设实用性及经济性分析[J].四川电力技术,2008,31(6):19-22.
    [163]王春昌.锅炉卫燃带新型布置方式[J].中国电力,2008,41(4):48-51.
    [164]赵铁军,曹际恒,付道华.火电厂锅炉卫燃带的改造[J].中国电力,1997,30(12):68-69.
    [165]陈冬林,杜洋.燃煤锅炉卫燃带设计与优化[M].北京:中国电力出版社,2012.
    [166]丁立新.电站锅炉原理[M].北京:中国电力出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700