用户名: 密码: 验证码:
麒麟菜低分子海藻多糖的制备及其消化吸收与生物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立以麒麟菜为原料制备低分子海藻多糖的方法,对制备样品的粘度、凝胶强度和硫酸酯质量分数等理化特性进行检测和分析,用液相色谱-质谱联用技术和高效凝胶色谱法测定分子量,并对麒麟菜低分子海藻多糖的消化吸收及其对食物的消化吸收,对机体抗氧化与免疫调节功能的影响等生物活性进行研究。
     方法
     1麒麟菜低分子海藻多糖的制备:
     1.1清洗切割粉碎:将麒麟菜用自来水清洗晾干后,横向切割成薄片状。
     1.2酸液二级水解:将上述麒麟菜切片置于pH值为2.5的盐酸溶液中浸泡进行一级水解,过滤收集麒麟菜切片置于蒸馏水中冲洗后,再置于pH值为4.5的盐酸溶液中浸泡,进行二级水解,过滤收集麒麟菜切片置于蒸馏水中冲洗。
     1.3碱液皂化去脂:将收集的麒麟菜切片置于pH值为8的碱性溶液中浸泡,过滤收集麒麟菜切片,置于蒸馏水中冲洗。
     1.4干燥研磨粉碎:将上述收集的麒麟菜切片置于烘干机中干燥后,放在粉碎机中研磨成粉末状过筛,收集筛过的粉末,即为麒麟菜低分子海藻多糖。
     1.5样品的提取得率:提取得率(%)=样品(g)÷麒麟菜干重(g)×100
     2麒麟菜低分子海藻多糖样品理化特性的检测分析
     2.1样品的感官指标及粘度、凝胶强度、硫酸酯质量分数、水分含量和总灰分等指标的检测分析。
     2.2应用高效凝胶色谱法和液相色谱-质谱联用技术测定样品的分子量。
     3空腹小鼠对麒麟菜低分子海藻多糖的消化吸收状况研究:将30只昆明种小鼠随机分为正常对照组、卡拉胶对照组和实验组(麒麟菜低分子海藻多糖组),禁食12h后,卡拉胶对照组和实验组动物分别给予0.09g/mL的卡拉胶溶液和麒麟菜低分子海藻多糖溶液灌胃,每次1mL,每3.5hl次,连续4次。正常对照组则只给予相同剂量的蒸馏水。收集各组小鼠粪便并称量湿重及干重,计算食物消化吸收率。眼球后静脉丛取血检测血清D-木糖含量。
     4麒麟菜低分子海藻多糖对小鼠正常进食消化吸收的影响:将30只昆明种小鼠随机分为正常对照组、卡拉胶对照组和实验组(麒麟菜低分子海藻多糖组)共3个组,各组均喂食普通饲料。卡拉胶对照组和实验组的动物在每天早晚用0.05g/mL的卡拉胶溶液和麒麟菜低分子海藻多糖溶液各1mL灌胃,正常对照组灌相同体积蒸馏水,每天2次,连续7天。检测小鼠体重、摄食量、粪便干重和湿重,并根据以下公式计算食物利用率和吸收率:食物利用率(%)=(最终体重-初始体重)÷实验期间摄食量×100,食物吸收率(%)=(实验期间摄食量—实验组粪便干重)÷实验期间摄食量×100。
     5麒麟菜低分子海藻多糖对大鼠的高脂膳食消化吸收及抗氧化与免疫调节功能的影响:将50只Wistar大鼠随机分为正常对照组、高脂膳对照组、卡拉胶对照组3个对照组和麒麟菜低分子海藻多糖的低、高剂量组,连续喂养30天,称量各组动物的体重、摄食量、粪便干重与湿重,计算食物利用率和吸收率。测定小肠粘膜Na+-K+-ATP酶活性、血糖、血脂、谷胱甘肽过氧化物酶(GSH-Px)活性,丙二醛(MDA)含量,氧化低密度脂蛋白(ox-LDL)含量,白细胞介素2(IL-2)水平,肿瘤坏死因子α(TNF-α)水平和脾淋巴细胞增殖活性等指标。
     结果
     1麒麟菜低分子海藻多糖的制备:建立了麒麟菜低分子海藻多糖的制备方法,制备了足量实验样品,测得麒麟菜低分子海藻多糖的提取得率为48.31%。
     2麒麟菜低分子海藻多糖的感官与主要理化指标:麒麟菜低分子海藻多糖样品为浅褐色粉末,溶于水,凝胶强度为10g/cm2,粘度为10mPa·s,硫酸酯质量分数为26%。样品的凝胶强度低于卡拉胶,粘度处于卡拉胶的国家标准最低限,而硫酸酯质量分数在卡拉胶的国家标准15%-40%的范围内。
     3麒麟菜低分子海藻多糖的分子量:高效凝胶色谱法测定样品的数均分子量为1199Da,液质联用(HPLC-MS)测定样品的分子量多集中在1000Da以下,较卡拉胶大幅度降低。
     4空腹小鼠对麒麟菜低分子海藻多糖的消化吸收状况:实验组的粪便干重和湿重分别为(0.168±0.029)g和(0.218±0.031)g,消化吸收率为(57.78±6.06)%,血清D-木糖含量为(2.71±0.42)mmol/L。粪便干重和湿重均低于卡拉胶组,而消化吸收率和血清D-木糖含量则均高于卡拉胶组,差异均有显著性意义(P<0.05)说明麒麟菜低分子海藻多糖较卡拉胶的消化吸收率升高,而粪便排出量和含水量降低,其原因可能与麒麟菜低分子海藻多糖的分子量和吸水性小于卡拉胶有关。
     5麒麟菜低分子海藻多糖对小鼠正常进食消化吸收的影响:实验组的粪便干重和湿重分别为(2.19±0.29)g/d和(3.10±0.31)g/d,均较正常对照组升高但低于卡拉胶组(P<0.05)。食物利用率和吸收率分别为(15.52±0.91)%和(39.17±3.45)%,均显著低于正常对照组但高于卡拉胶组(P<0.05)。说明麒麟菜低分子海藻多糖对正常食物的利用率和吸收率均有一定抑制作用,但抑制程度小于卡拉胶,其原因也与麒麟菜低分子海藻多糖的分子量和吸水性小于卡拉胶有关。
     6麒麟菜低分子海藻多糖对大鼠高脂膳食消化吸收的影响:麒麟菜低分子海藻多糖高剂量组的食物利用率和吸收率分别为(45.37±2.24)%和(52.13±4.49)%,餐后血糖为(6.19±0.70)mmol/L,血TG为(2.62±0.55)mmol/L,TC为(1.57±0.35)mmol/L。均低于高脂对照组但高于卡拉胶组(P<0.05)。麒麟菜低分子海藻多糖高剂量组的Na+-K+-ATP酶活性为(12.27±1.43)μmolpi·mgpro-1·h-1,明显低于高脂对照组和卡拉胶组(P<0.05)。说明麒麟菜低分子海藻多糖对高脂膳食的吸收利用有一定抑制作用,但作用程度低于卡拉胶,其可能机制与除麒麟菜低分子海藻多糖的分子量和吸水性小于卡拉胶以外,还与对小肠粘膜细胞酶活性的影响有关。
     7麒麟菜低分子海藻多糖对高脂膳食大鼠抗氧化和免疫调节功能的影响:
     麒麟菜低分子海藻多糖高剂量组大鼠的血清ox-LDL和MDA含量分别为(3.87±0.31)ng/ml和(5.63±0.63)nmol/ml,均较高脂对照组显著性降低(P<0.05);GSH-Px活力为(1377.17±82.53)U/ml,较高脂对照组显著性升高(P<0.05)。说明麒麟菜低分子海藻多糖可降低高脂膳食大鼠的血清ox-LDL和MDA水平,提高GSH-Px活力,增强其抗氧化能力,降低脂质过氧化水平。
     麒麟菜低分子海藻多糖高剂量组血清IL-2为(814.17±25.53)pg/ml,脾淋巴细胞增殖活性OD值为(0.264±0.019),均较高脂对照组显著性升高(P<0.05);TNF-α水平为(141.70±43.76)pg/ml,较高脂对照组显著性降低(P<0.05)。说明麒麟菜低分子海藻多糖可提高高脂膳食大鼠的血清IL-2水平和淋巴细胞增殖活性,降低TNF-α水平,增强其免疫活性。
     结论综合本次实验结果可以认为:
     1本研究创建了麒麟菜低分子海藻多糖的制备方法,与目前用成品卡拉胶制备低分子海藻多糖的方法相比较,本方法具有工艺简便、提取得率高、资源充分利用等特点。对制备样品的检测分析结果显示,其分子量、凝胶强度、粘度等理化指标均与用成品卡拉胶制备的同类产品相一致。
     2麒麟菜低分子海藻多糖较卡拉胶容易被消化吸收,对小鼠普通进食的食物利用率和吸收率的抑制作用小于卡拉胶。
     3麒麟菜低分子海藻多糖可抑制大鼠对高脂食物的消化吸收,对高脂食物引发的血糖、血脂升高具有一定降低功效,但其作用程度低于卡拉胶。麒麟菜低分子海藻多糖降低小肠粘膜Na+-K+-ATP酶活性的作用高于卡拉胶。
     4麒麟菜低分子海藻多糖能增强高脂膳食大鼠的抗氧化能力,降低其脂质过氧水平,提高机体免疫力。其作用强度大于卡拉胶。
     5麒麟菜低分子海藻多糖类似于卡拉胶有一定的吸水膨胀性,可阻碍食物与肠粘膜细胞的接触而影响消化吸收,还因其分子量小而易被消化吸收,可进而产生某些生物活性。
Objective:To establish a method taking Eucheuma as raw materials to prepare low-molecular-weight seaweed polysaccharides and detect its characteristics such as viscosity, gel strength and sulphate mass fraction. To determine its molecular weight with high performance liquid chromatography-mass spectrometry (HPLC-MS) and high performance gel permeation chromatography(GPC). To study on the absorption of low-molecular-weight seaweed polysaccharides,as well as its effect on food absorption and bioactivities such as anti-oxidant and immunomodulation functions.
     Methods:There are the preparation and analytical methods, as well as experimental methods on absorption and bioactivities.
     1Preparation of Eucheuma low-molecular-weight seaweed polysaccharides:
     1.1Clean and cut:Eucheuma was cut into slice form after cleaning by running water and open-air drying.
     1.2Twice hydrolyze in acid liquor:The collected Eucheuma slice was placed and hydrolyzed in the solution of hydrochloric acid (pH2.5). Then the collected slice was filtrated, placed and hydrolyzed in the solution of hydrochloric acid (pH4.5),too. The collected slice was filtrated and washed by distilled water once more time。
     1.3Saponification in lixivium:The collected Eucheuma slice was placed and saponified in alkaline solution (pH8). The collected slice was filtrated and washed by distilled water again.
     1.4Dry and ground:After the collected Eucheuma slice was dried in the dehydrator, it was placed in disintegrator and grounded to small particles. The powder was Eucheuma low-molecular-weight seaweed polysaccharides.
     1.5Extraction yield of sample: Extraction yield(%)=sample(g)÷Eucheuma dry weight(g)×100
     2Characteristic detection and analysis of sample:
     2.1Detection and analysis of oranoleptic indicator, viscosity, gel strength, sulphate mass fraction, humidity and total ash.
     2.2Determination of its molecular weight with high performance liquid chromatography-mass spectrometry (HPLC-MS) and high performance gel permeation chromatography.
     3Study on digestion and absorption of Eucheuma low-molecular-weight seaweed polysaccharides in fasting mice:Thirty Kunming mice were randomly divided into normal control group, carrageenan control group and experimental group (Eucheuma low-molecular-weight seaweed polysaccharides group). After fasting and drinking for12h, the carrageenan control group and experimental group were intragastrically given0.09g/mL carrageenan and Eucheuma low-molecular-weight seaweed polysaccharides,1mL each time, once every3.5hours,4times continuously. An equivalence of distilled water was administered in the normal control group. Wet fecal weight and dry fecal weight were measured and food absorbtivity was calculated. The blood was obtained in venous plexus behind the eyeball to detect the content of serum D-xylose.
     4. The effect on digestion and absorption of Eucheuma low-molecular-weight seaweed polysaccharides in mice fed a normal diet:Thirty Kunming mice were randomly divided into three groups:normal control group, carrageenan control group and experimental group(Eucheuma low-molecular-weight seaweed polysaccharides group).The mice in all of groups were fed normal diet.The rats in carrageenan control group and experimental group were intragastrically given0.05g/mL carrageenan and Eucheuma low-molecular-weight seaweed polysaccharides,1mL each time, twice one day,7days continuously. An equivalence of distilled water was administered in the normal control group. The body weight, food consumption, wet fecal weight and dry fecal weight were measured. Food availability and food absorbtivity were calculated according to the below formula:food availability (%)=(the final body weight-the initiate body weight)÷food consumption in experimental session×100; food absorbtivity=(food consumption in experimental session-dry fecal weight in experimental group)÷food consumption in experimental session×100.
     5The effect on digestion and absorption, anti-oxidant and immunomodulation function of Eucheuma low-molecular-weight seaweed polysaccharides in rats fed a high-fat diet:Fifty Wistar rats were divided into five groups:normal control group, high-fat diet control group, carrageenan control group, low dose and high dose Eucheuma low-molecular-weight seaweed polysaccharides groups. All of the rats were continuously fed for30days.Body weight, food consumption,wet fecal weight and dry fecal weight were measured. Food availability and food absorbtivity was calculated. Na+-K+-ATPase activities were measured by spectroscopic analysis. Blood glucose, triglycerides(TG), total cholesterol(TC) and the activity of glutathione-peroxidase (GSH-Px), the content of malanydiadehyde (MDA), oxidized low-density lipoprotein (ox-LDL), interleukin-2(IL-2),tumor necrosis factor-a(TNF-a) and the proliferation of splenic lymphocyte were detected in each group.
     Results:
     1Preparation of Eucheuma low-molecular-weight seaweed polysaccharides:The method to prepare low-molecular-weight seaweed polysaccharides was established and the sufficiency experimental sample was prepared. Extraction yield of the Eucheuma low-molecular-weight seaweed polysaccharides was48.31%.
     2The oranoleptic indicator and the main characteristic of Eucheuma low-molecular-weight seaweed polysaccharides:The sample of Eucheuma low-molecular-weight seaweed polysaccharides was sandy beige powder. It was dissolved in water.Its viscosity was10mPa·s and gel strength was below10g/cm2.The sulphate mass fraction of it was limited in15%-40%which was national standards of carrageenan.
     3The molecular weight of Eucheuma low-molecular-weight seaweed polysaccharides:Its number-average molecular weight which was determined by high performance gel permeation chromatography was1199Da.The most molecular weight of Eucheuma low-molecular-weight seaweed polysaccharides which was determined by high performance liquid chromatography-mass spectrometry (HPLC-MS) was under1000Da.The molecular weight was far below carrageenan.
     4The digestion and absorption condition of Eucheuma low-molecular-weight seaweed polysaccharides in fasting mice:The dry fecal weight and wet fecal weight of the experimental group were (0.168±0.029)g and (0.218±0.031)g, respectively. The food absorbtivity was (57.78±6.06)%. The conten of serum D-xylose was (2.71±0.42) mmol/L. The dry fecal weight and wet fecal weight of the Eucheuma low-molecular-weight seaweed polysaccharides group were lower than the carrageenan group,but the food absorbtivity and the conten of serum D-xylose were higher than the carrageenan group, significantly (P<0.05). These show that the food absorbtivity of Eucheuma low-molecular-weight seaweed polysaccharides is higher than that of carrageenan,but feces and fecal moisture capacity are lower than those of carrageenan. The cause is relevant with the lower molecular weight and hydrophilia of Eucheuma low-molecular-weight seaweed polysaccharides than carrageenan.
     5The effect on digestion and absorption of Eucheuma low-molecular-weight seaweed polysaccharides in mice fed a normal diet:The dry fecal weight and wet fecal weight of the experimental group were (2.19±0.29) g/d and (3.10±0.31) g/d, respectively. All of them were significantly higher than those of the normal control group,but lower than those of the carrageenan group (P<0.05).The food availability and food absorbtivity were (15.52±0.91)%and (39.17±3.45)%. All of them were significantly lower than those of the normal control group,but higher than those of the carrageenan group(P<0.05). These show that Eucheuma low-molecular-weight seaweed polysaccharides has the inhibitory action on food availability and food absorbtivity of a normal diet in mice, but the action degree is lower than carrageenan. The cause is relevant with the lower molecular weight and hydrophilia of Eucheuma low-molecular-weight seaweed polysaccharides than carrageenan, too.
     6The effect on digestion and absorption of Eucheuma low-molecular-weight seaweed polysaccharides in rats fed a high-fat diet:The food availability and food absorbtivity of Eucheuma low-molecular-weight seaweed polysaccharides high dose group were (45.37±2.24)%and (52.13±4.49)%. The postprandial blood sugar of the Eucheuma low-molecular-weight seaweed polysaccharides group was (6.16±0.70) mmol/L, the TG and TC were (2.62±0.55)mmol/L and (1.57±0.35)mmol/L, All of them were significantly lower than those of the high-fat control group,but higher than those of the carrageenan group(P<0.05). The Na+-K+-ATPase activity was (12.27±1.43) μmol pi·mg pro-1·h-1, which significantly lower than those of the high-fat control group and the carrageenan group(P<0.05). These show that Eucheuma low-molecular-weight seaweed polysaccharides has the inhibitory action on high-fat diet,but the action degree is lower than carrageenan.The possible mechanism is not only the molecular weight and hydrophilia is below carrageenan but also concerned with the effect of enzymic activity in mucous membrane of small intestine.
     7The effect of anti-oxidant and immunomodulation functions of Eucheuma low-molecular-weight seaweed polysaccharides in rats fed a high-fat diet:
     The content of serum ox-LDLand MDA of Eucheuma low-molecular-weight seaweed polysaccharides high dose group were (3.87±0.31) ng/ml and (5.63±0.63) nmol/ml. All of them were significantly lower than those of the high-fat control group (P<0.05). The GSH-Px activity of Eucheuma low-molecular-weight seaweed polysaccharides high dose group was (1377.17±82.53)U/ml which was significantly higher than those of the high-fat control group(P<0.05).These show that Eucheuma low-molecular-weight seaweed polysaccharides can decrease the content of serum ox-LDL and MDA, increase the GSH-Px activity, strengthen anti-oxidant ability and reduce the lipid peroxidation level.
     The content of serum IL-2of Eucheuma low-molecular-weight seaweed polysaccharides high dose group were (814.17±25.53) pg/ml and the OD value of the proliferation of splenic lymphocyte was (0.264±0.019). All of them were significantly higher than those of the high-fat control group (P<0.05). The TNF-α of Eucheuma low-molecular-weight seaweed polysaccharides high dose group was (141.70±43.76) pg/ml which was significantly lower than those of the high-fat control group (P<0.05). These show that Eucheuma low-molecular-weight seaweed polysaccharides can increase the content of serum IL-2and the proliferation of splenic lymphocyte, decrease the content of serum TNF-a, strengthen immunomodulation activities.
     Conclusion:The experimental results show the conclusion as follow:
     1Our research has established the preparative method of Eucheuma low-molecular-weight seaweed polysaccharides taking Eucheuma as raw materials. Compared to the method of taking carrageenan as raw materials, the method have some characteristic such as convenient technology, making the best of resources and so on. The results of characteristic detection and analysis of preparative sample show that the molecular weight, viscosity, gel strength and so on are coincident with the same kind of product which is made from carrageenan.
     2The digestion and absorption of Eucheuma low-molecular-weight seaweed polysaccharides is easier than those of carrageenan. Eucheuma low-molecular-weight seaweed polysaccharides has the inhibitory action on food availability and food absorbtivity of a normal diet, but the action degree is lower than that of carrageenan.
     3Eucheuma low-molecular-weight seaweed polysaccharides can inhibit the digestion and absorption of a high-fat diet, decrease blood glucose and blood fat because of a high-fat diet, but the action degree is lower than carrageenan. Eucheuma low-molecular-weight seaweed polysaccharides can reduce Na+-K+-ATPase activity, the action degree is higher than carrageenan.
     4Eucheuma low-molecular-weight seaweed polysaccharides can strengthen the anti-oxidant ability, reduce the lipid peroxidation level, increase immunomodulation activities.
     5The action mechanism of Eucheuma low-molecular-weight seaweed polysaccharides like carrageen can take into water to expand, impede the contact of intestinal mucosa and food to affect digestion and absorption. Because its molecular weight is low and easy to be absorbed, the Eucheuma low-molecular-weight seaweed polysaccharides can produce some bioactivity.
引文
1 张乐华,王元兰,李忠海.卡拉胶的结构·性能·生产及其在饮料工业中的应用[J].安徽农业科学,2008,36(7):3042-3044.
    2 陶慧娜,孙涛,周冬香,等.卡拉胶及其衍生物的生物活性研究进展[J].安徽农业科学,2008,36(19):7967-7968.
    3 Samarghandian Saeed, Hadjzadeh Mosa-Al-Reza, Amin Nya Fatemeh,et al. Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats. Pharmacogn Mag.2012,8(29):65-72.
    4 Cheng A C,Chen Y Y,Chen J C. Dietary administration of sodiumalginate and κ-carrageenan enhances the innate immune response of brown-marbled grouper Epinephelus fuscoguttatus and its resistance against Vibrio alginolyticus[J].Veterinary Immunology and Immunopathology, 2008,121:206-215.
    5 薛山,链国华.低分子质量岩藻多糖的制备与生物学功能研究[J].农产品加工.2009,176:35-37.
    6 乐晓桐,尹鸿萍,徐士君.低分子螺旋藻多糖的制备及其硫酸酯化物体外抗肿瘤活性的初步研究[J].药物生物技术,2006,13(2):119-122.
    7 王淼,于海燕,欧阳健明.异枝麒麟菜硫酸多糖的降解及其对尿石矿物草酸钙的抑制作用[J].海洋科学,2008,32(8):34-37.
    8 Mou H, Jiang X, Guan H. A carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti tumor activity[J]. J Appl Phycol,2003,15(4):297-303.
    9 朱楠楠,姚子昂,吴海歌,等。卡拉胶寡糖的研究进展[J].化学与生物工程,2009,26(10):9-12.
    10 栾晖,牟海津,罗兵,等.κ-卡拉胶寡糖硫酸基含量与其抗疱疹病毒活性的关系[J].渔业科学进展,2010,31(1):110.
    11 Sun Tao, Tao Hui-na, Zhou Dong-xian, et al. The effects of different degradation methords on antioxidant actixities of κ-carrageenan oligsaccharides[J].Food and Fermentation Industries, 2009,35(7):24-27.
    12 ZHOU G, SUN Y, XIN H, et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrusocellatus[J].Pharmacol Res,2004,50: 47-53.
    13 Ning J, Zhang W, Yi Y T, et al. Synthesis of (3-(1→6)-branched β-(1→3)glucohexaose and its analogues containing an α-(1→3)linked bond with antitumor activity[J].Bio org Med Chem, 2003,11(10):2193-2203.
    14 赵晓燕,王长云.海洋多糖分子修饰方法研究概况.海洋科学,2000,24:20-22.
    15 Yu G L. Guan H S. Ioanovici u A S. et al. Structural Studies on κ-carrageenan derived oligo-saccharides [J]. Carbohydrate Research 2002,337:433-440.
    16 袁华茂.卡拉胶寡糖与衍生物的制备及生物活性研究[D].青岛:中国科学院研究生院(海洋研究所),2005.
    17 Yan Jun, Zong Hongliang, Shen Aiguo, et al. The β-(1→6)-branched β-(1→3) glucohexaose and its analogues containing an α-(1→3)-linked bond have similar stimulatory effects on the mouse spleen as Lentinan[J].Int Immunopharmacol,2003,3(13-14):1861-1871.
    18全香花,钟进义.麒麟菜中天然色素糖蛋白的提取方法.中国:200910015667.8[P].2009-10-21
    19 邱霞,王可平,钟进义.一种低凝胶强度麒麟菜卡拉胶的制备方法.中国:201110419627.7[P].2012-07-11
    20 中华人民共和国国家标准.食品添加剂.卡拉胶[s].北京:中国标准出版社.2009.
    21 Mao Wenjun, Li Hongyan, Li Yi, et al. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum[J].International Journal of Biological Macromolecules,2009,44(1):70-74.
    22 郑敏.高效液相色谱联用技术的研究及其分析应用[D].重庆:西南大学,2011.
    23 张乐华,王元兰,李忠海.卡拉胶的结构·性能·生产及其在饮料工业中的应用[J].安徽农业科学,2008,36(7):3042-3044.
    24 Summary and conclusions of Joint FAO WHO Expert Committee on Food Additives Fifty-Seventh meeting R.Rome5-14,2001 FAO WHO.
    25 杜云建,赵玉巧,黄国军.麒麟菜中多糖的提取研究[J].食品工业.2012,33(12):75-78.
    26 L Relleve,N Nagasawa.Degradation of carrageenan by radiation[J].Polymer Degradation and Stability.2005,87:403-410.
    27 刘丽红,谢晓琼.微波处理对卡拉胶结构性质的影响[J].广东化工,2003,30(5):16-19.
    28 Cheng-yi Li, Chun-Hsien Chen,An-I Yeh. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound[J].Food Hydrocolloids.1999,13:477-481.
    29 Hjerde T O Smidsmd, B E Christensen. The influnence of the conformational state of κ-and ι-carrageenan on the rate of acid hydrolysis[J].Carbohydmte Research,1996,288:175-187.
    30 迟连利,于广利,任玮娜,等.κ-卡拉胶五糖的制备及结构研究[J].中国海洋药物,2002,(3):22-27.
    31 Quemener B,M Lahaye, Fetro.Assessment methanolysis for the determination of the composite sugars of gelling carrageenans and agarose of HPLC[J].Food Hydrocolloids.2000,24(1):9-17.
    32 程跃谟;吴仕鹏;孙梅,等.一种卡拉胶的提取与加工工艺中国,101983973A[P].2011-03-11.
    33 郑淑贞.琼枝多糖结构的研究[J].生物化学与生物物理学报,1991,23(2):112-116.
    34 李春海,杨礼俊.海藻中提取卡拉胶碱改性的工艺研究[J].海洋通报2004,23(3):94-96
    35 孙涛,陶慧娜,周冬香,等.氧化与酸降解卡拉胶寡糖抗氧化活性的研究[J].食品工业科技.2009(8):111-112.
    36 全香花,于霞,李帅,等.海藻色素糖蛋白制备及其对小鼠肝癌生长抑制作用[J].青岛大学医学院学报2011,47(4):296-297
    37 潘祖仁.高分子化学[M].北京:化学工业出版社,2011.8-11.
    38 Simon Young,Mark Wong,Yasuhiko Tabata,et al.Journal of Controlled Release[M].2005, 109:256.
    39 李春莲.低分子量亨氏马尾藻岩藻聚糖硫酸醋的制备及抗肿瘤活性研究[D].湛江:食品科技学院,2011.
    40郝翠.系列海洋寡糖衍生物的制备及其抗2型糖尿病作用机理研究[D].青岛:中国海洋大学,2011.
    41 魏立平,姜雄平.高效凝胶色谱法测定牛膝多糖和商陆多糖的分子量及其分布[J].中华中医药杂志.2007,增刊:352-354.
    42 Guo W, Zhang Y, Huang LJ, et al. High performance liquid chromatograpHy/electrospray ionization ion-trap mass spectrometry analysis of chitooligos accharides by pre-column derivatization with 3-amino-9-ethylcarbazole [J]. Chin J Chromatogr,2010,28:776.
    43 董权锋,荣敏.寡糖研究新进展[J].食品与药品,2009,11(7):63-66.
    44 李潇,王红敏,黄琳娟,等.海藻胶寡糖的分离制备及电喷雾质谱分析[J].食品科学,2011,32(2):150-153.
    45 杨波,于广利,郝翠,等.系列τ-卡拉胶寡糖制备及其电喷雾串联质谱序列分析[J].高等学校化学学报,2010,31(2):303-308.
    46 Liang YL, Zhang YL, He YN. Progress in the Methods of Separation and Analysis of Sugar [J]. Hebei Chem,2006,29(6):42-44.
    47 高洋,陈海敏,徐继林,等.κ-卡拉胶寡糖的反相离子对超高效液相色谱-四极杆-飞行时间质谱研究[J]..分析化学研究报告.2009.37(11):1590-1595.
    48 胡烨敏,李丹,高新开.AEC柱前衍生-高压液相色谱-质谱联用法分析混合植物浓缩液中多糖[J].食品安全质量检测学报.2013.4(2).
    49 姜莹,周雅婷.明胶分子量与粘度的关系[J]明胶科学与技术.2010,30(3):132-135.
    50 Le Questel J Y,Cros S,Mackie W,et a 1.Computer modeling of sulfated carbohydrates: Applications to carrageenans[J]. International Journal of Biological Macromolecules, 1995,17:161-174.
    51 秦晓娟,王洪新,马朝阳,等.醇碱改性制备高凝胶强度κ-卡拉胶[J].世界科技研究与发展,2011,33(5):787-790.
    52 Quemener B,Lahaye M,Metro F.Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agarose by HPLC[J]Carbohydr Res.1995,266(1):53-64.
    53 吴静娜.海藻硫酸多糖抗氧化活性研究进展[J].福建水产,2009,9(3),75-77.
    54 梁智渊,岑颖洲,叶绍明,等.琼枝和异枝麒麟菜中硫酸酯基多糖不同提取方法的化学分析比较[J].暨南大学学报(自然科学版)2005,26(3):380-385
    55 Diane Jouanneau.New insights into the structure of hybrid λ/μ-arrageenan and its alkaline conversion[J].Food Hydrocolloids.2010.24:452-461.
    56 朱楠楠,姚子昂,吴海歌,等.卡拉胶寡糖的研究进展化学与生物工程[J].2009,26(10):9-12.
    57 司晓喜,袁智泉,邱贺媛,等.海藻有效成分的提取分离研究进展[J].延边大学学报(自然科学版)2011,37(2):103-109.
    58 彭梅,姚佳,杨晓玲,等.土党参多糖促进小鼠胃肠运动的初步研究[J].山地农业生物学报2011,30(5):461-463.
    59 赵爱爱,张秀萍.膳食纤维在人体健康中的作用[J].求医问药,2012,10(3):180.
    60 Cummings JH,Mann JI,NishidaC,etal.Dietary fiber:An agreed definition[J].Lancet,2009,373 (9661):365-366.
    61 陶慧娜,孙涛,周冬香,等.卡拉胶及其衍生物的生物活性研究进展[J].安徽农业科学,2008,36(19):7967-7968.
    62 Zhou G, Sun Y, Xin H, et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrusocellatus[J].Pharmacol Res,2004,50: 47-53.
    63 朱楠楠,姚子昂,吴海歌,等.卡拉胶寡糖的研究进展[J].化学与生物工程,2009,26(10):9-12.
    64 Samarghandian Saeed, Hadjzadeh Mosa-Al-Reza, Amin Nya Fatemeh,et al. Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats[J]. Pharmacogn Mag.2012,8(29):65-72.
    65 武晓琳.分子量对海参岩藻聚糖硫酸酯活性和消化吸收的影响研究[D],青岛:中国海洋大学,2011.
    66 王敏.壳聚糖聚合度与小鼠肠道对壳聚糖吸收率的关系[D]:大连:大连医科大学,2011.
    67 Hong-Quan Zhang, Cheng-Hua Zhou,et al. Effect of emodin on small intestinal peristalsis of mice and relevant mechanism[J]. World J Gastroenterol.2005,11(20):3147-3150.
    68 罗燕,谷新利,惠文巧,等.黄芪多糖对脾虚小鼠消化吸收功能的影响[J].黑龙江畜牧兽医,2009,9:110-112.
    69 张乐华,王元兰,李忠海.卡拉胶的结构·性能·生产及其在饮料工业中的应用[J].安徽农业科学,2008,36(7):3042-3044.
    70 张华,孙婕,邹春虹.低分子量岩藻多糖的生产途径及药理作用[J].中国甜菜糖业,2006,30(4):31.
    71 武晓琳,王玉明,常耀光,等.不同性质海洋硫酸多糖的制备及其改善大鼠脂肪肝作用的比较研究[J].中国海洋药物,2011,30(1):1.
    72 Athanasios Papathanasopoulos,Michael Camilleri.Dietary fiber supplements:Effects in obesity and metabolic syndrome and relationship to Gastrointestinal Functions[J]. Gastroenterology, 2010,138(1):65-72.
    73 武玉清,王静霞,周成华,等.番泻苷对小鼠肠道运动功能的影响及相关机制研究[J].中国临床药理学与治疗学,2004,9(2):162-165.
    74 林建维,钟进义,王蜀平.魔芋多糖对小鼠瘦素和Na+-K+-ATP酶水平的影响[J].卫生研究,2009,38(2):207-209.
    75 林建维,钟进义.魔芋多糖对小鼠肠道吸收功能的抑制作用与机制[J].营养学报.2009,31(2):164-166.
    76 Athanasios Papathanasopoulos, M.D. and Michael Camilleri, M.D. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to Gastrointestinal Functions[J]. Gastroenterology,2010,138(1):65-72.
    77 王丽纳,吕心阳,朱鹏立,等.2型糖尿病餐后高血糖状态与血管病变关系的研究[J].心血管康复医学杂志,2002,11(4):325-327.
    78 Food and Nutrition Board. Institute of Medicine. Dietary reference intakes proposed definition of dietary fiber[M].Washington D C:National Academy Press,2001:1-64.
    79 Samarghandian Saeed, Hadjzadeh Mosa-Al-Reza, Amin Nya Fatemeh,et al. Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats[J]. Pharmacogn Mag.2012 Jan-Mar; 8(29):65-72.
    80 Huang, L, Wen, K, Gao, X, et al. Hypo lipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats[J]. Pharm. Biol.2010,48,422-426.
    81 Horvath G, Agil A, Joo G, Dobos I, Benedek G, Baeyens JM. Evaluation of endomorphin-1 on the activity of Na+-K+-ATPase using in vitro and in vivo studies[J]. Eur J Pharmacol 2003; 458: 291-297.
    82 Laughery M, Todd M, Kaplan JH. Oligomerization of the Na+-K+-ATPase in cell membranes[J]. J Biol Chem 2004,279:36339-36348.
    83 Ukkola O, Joanisse DR, Tremblay A, Bouchard C. Na+-K+-ATPase alpha 2-gene and skeletal muscle characteristics in response to long-term overfeeding[J]. J Appl Physiol,2003,94:1870-1874.
    84 麦紫欣,关东华,林敏霞,等.膳食纤维降血脂作用及其机制的研究进展[J].广东微量元素科学,2011,18(1):11-12.
    85 Beth N. Hopping, Eva Erber, Andrew Grandinetti,etal. Dietary fiber,magnesium, and glycemic load alter risk of Type 2 Diabetes in a multiethnic cohort in hawaii[J]. J Nutr,2010,140(1):68-74.
    86 康乐,姚尔璧,胡庭俊,等.天门冬多糖对小鼠脾脏淋巴细胞体外增殖的影响[J].中兽医医药杂志,2009,增刊:203-206.
    87 王骁娟,魏传晚,徐淑永,等.生物活性多糖结构与功效关系研究进展[J]广州化工,2004,32(1): 69.
    88 陈瑗,周玫.自由基医学基础与病理生理[M],人民卫生出版社.北京,2002:110-116.
    89 Benzie IFF.Lipidperoxidation:A review of cansescons-enquences. measurement and dietaryinfluences[J]. Food Sc Nutr,1996,47:233-262.
    90 Khoo NK, Cantu-Medellin N, Devlin JE, et al. Obesity-induced tissue free radical generation: An in vivo immuno-spin trapping study[J].Free Radic Biol Med.2012,2:212-215.
    91 Shrivastava A, Chaturvedi U, Sonkar R, et al. Antioxidant effect of azadirachta indica on high fat diet induced diabetic charles foster rats[J]. Appl Biochem Biotechnol.2012,167(2):229-236.
    92 Kishida K, Funahashi T, Shimomura I. et al. Importance of Assessing the Effect of Statins on the Function of High-Density Lipoproteins on Coronary Plaque[J]. Cardiovasc Hematol Disord Drug Targets.2011;19(3):161-167.
    93 Eindhoven JA, Onuma Y, Oemrawsingh RM, Daemen J, et al. Long-term outcome after statin treatment in routine clinical practice:results from a prospective PCI cohort study[J]. Euro lntervention.2012,(12):1420-1427.
    94 李勇,金明,尹学哲.草从蓉抗脂质过氧化活性研究[J].中国实验方剂学杂志,2010,16(15):203-205.
    95 Zhao Wen-na,Chen Zuo-yuan, Dong Xiao-nan. Antioxidation of probucol in rats with experimental atherosclerosis [J]. South China Journal of Cardiology,2012,13(4):258-263.
    96 石学连,张晶晶,王晶,等.浒苔多糖的分级纯化及体外抗氧化活性研究[J].中国海洋药物杂志,2009,28(3):44-49.
    97 Qi Huimin, Zhang Quanbin, Zhao Tingting, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pert usa (Chlorophyta) in vitro[J]. International Journal of Biological Macromolecules,2005,37 (4):195-199.
    98 Singh J, Suruchi A. Anti TNF-a strategy:present stat us of this Therapeutic paradigm[J]. Indian J Pharmacol,2004,36,(1):10-14.
    99 Meldrum DR. Tumor necrosis factor in t he heart [J]. Am J Physiol,1998,274(3):R577-R595.
    100 Singh J, Suruchi A. Anti TNF-a strategy:present stat us of this Therapeutic paradigm[J]. Indian J Pharmacol,2004,36,(1):10-14.
    101 Mcnerlan SE, Rea IM, Alexander HD. A whole blood method for measurement of intracellular TNF-a, IFN-7 and IL-2 expression in stimulated CD3+ lymphocytes:differences between young and elderly subjects [J].ExpGerontol,2002,37:227-234.
    102胡洪波,秦柳,黄汉菊.铁缺乏孕妇外周血单个核细胞IL-2、IL-6分泌水平研究[J].中国优生与遗传杂志,2009,17(4):65-66.
    103 Pauline C,Johan B,Helen W,et al.EV muation of peripheral blood CD, and CDs lymphocyte subset,CD69 expression and histologic rejection grade as diagnostic marker for the presence of cardiac allograft rejection[J].Transplant Immunol,2002,10:285-292.
    104 GAFFEN S L, LIU K D. Overview of interleukin-2 function, production and clinical applications [J]. Cytokine,2004,28(3):109-123.
    105刘辉,钟进义,于萍,等.葡多酚对小鼠肝细胞蛋白激酶c和增殖细胞核抗原表达的影响[J].卫生研究,2007,36(1):31-33.
    106高德富,刘晓蕙,樊剑鸣,等.黄芪提取物对小鼠生长性能、抗氧化及免疫功能的影响[J].航空航天医学杂志,2011,22(2):144-147.
    107 Li Yi, WANG Hal-qing. Effect of carrageenan-derived oligosaccharides on T cell function and subsets in irradiated mice[J]. Chin J Radiol Med Prot,2005,25(1):41-42.
    1 张翼,李晓明,王斌贵.海藻生物活性物质研究的回顾与展望[J].科技前沿与学术评论,2005,27(5):56-63
    2 王晓字,邹明明,王蓉,等.海藻多糖抗肿瘤机理研究进展[J].大连医科大学学报,2007.29(3):318-322
    3 Li Hongyan, Mao Wenjun, Zhang Xiuli, et al. Structural characterization of an anticoagulant-active sulfated polysaccharide isolated from green alga Monostroma latissimum[J]. Carbohydrate Polymers,2011,85 (2):394-400.
    4 Kim Jin-Kyung, Cho Myoung Lae, Karnjanapratum Supatra, et al.In vitro and in vivo immuno modulatory activity of sulfated polysaccharides from Enteromorpha prolifera[J]. International Journal of Biological Macromolecules,2011,49 (5):1051-1058.
    5 Karnjanapratum Supatra, You Sangguan. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomo-dulatory activities[J], International Journal of Biological Macromolecules,2011,48(2):311-318.
    6 蒋忠平,张安强,孙培龙.植物来源寡糖的研究进展[J].浙江食用菌,2009,17(2):36-39.
    7 Marinho-Soriano E., Fonseca P. C., Carneiro M. A. A., et al. Seasonal variation in the chemical composition of two tropical seaweeds[J].. Bioresource Technology,2006,97 (18):2402-2406.
    8 张会娟,毛文君,房芳,李红燕,齐晓辉.绿藻多糖结构与生物活性研究进展[J].海洋科学,2009,4:90-93.
    9 Bilan Maria I., Vinogradova Ekaterina V., Shashkov Alexander S., et al. Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense[J]. Carbohydrate Research,2007,342(3-4):586-596.
    10 Erick Reyes Suarez, Jaroslav A. Kralovec, Grindley T. Bruce. Isolation of phosphorylated polysaccharides from algae:the immunostimulatory principle of Chlorella pyrenoidosa[J]. Carbohydrate Research,2010,345:1190-1204.
    11 黄磊,詹勇,许梓荣.海藻多糖的结构与生物学功能研究进展[J].浙江农业学报,2005,17(1):49-53.
    12 Maria IB,Alexey AG,Nadezhda EU,et al.A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L.[J].Caarbohydrate Research,2003,339:511-517.
    13 王长云.管华诗.多糖抗病毒研究进展:硫酸多糖抗病毒作用[J].生物工程进展,2000,20:3-8.
    14 乐晓桐,尹鸿萍,徐士君.低分子螺旋藻多糖的制备及其硫酸酯化物体外抗肿瘤活性的初步研究[J].药物生物技术,2006,13(2):119-122.
    15 于红,张学成.螺旋藻多糖抗HSV-1作用的体外实验研究[J].高技术通讯,2002,9,64-65.
    16 张海容,郭祀远.螺旋藻多糖及其硫酸酯清除羟自由基的活性[J].华南理工大学学报(自然科学版),2003,31(6),76.
    17诸葛健,赵振峰,方慧英.功能性多糖的构效关系[J].无锡轻工业大学学报.2002.21:209-212.
    18 Zhou Gefei, Hua Xin, Sheng Wenxu, et al.In vivo growth-inhibition of S180 tumor by mixt ure of 52Fu and low molecular λ-carrageenan from Chondrus ocel latus[J].Pharmacological Research, 2005,51(2):153-157.
    19赵晓燕,王长云.海洋多糖分子修饰方法研究概况[J].海洋科学,2000,24:20-22.
    20孟春,郭养浩,石贤爱,等.海藻多糖生物活性及分子修饰[J].中国生物工程杂志,2004,24(3):35-39.
    21李翊,王海青.卡拉胶寡糖对放射损伤的防护作用[J].中华放射医学与防护杂志,2005,25(2):116-117.
    22 Quemener B, Lahaye M, Metro F. Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agaroseby HPLC[J].Carbohydr Res,1995,266 (1):53-64.
    23 Sakai T,Kimura H,Kojima K,et al.Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides[J].Mar Biotechnol(NY),2003,5:70-78.
    24陈方.小分子量硫酸多糖K-卡拉胶衍生物的制备及抗流感病毒活性研究[D].福州:福州大学,2006.
    25 Opoku G, Qiu X,Doctor V.Effect of oversulfation on the chemical and biological properties of kappa carrageenan[J]. Carbohydr Polym,2006,65:134-138.
    26 ZfifiigaE. A., Matsuhiro B., Mejias E.Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymeniabinderi and its anticoagulant activity[J].Carbohydr Polym,2006,66:208-215.
    27 Yamada T,Ogamo A, Saito T, et al. Preparation of O-acylated low molecular weight carrageenans with potent anti-HIV activity and low an coagulant effect[J]. CarbohydrPolym,2000,41:115-120.
    28余成艳,郭锡坤.邻苯二甲酰基化K-卡拉胶的合成及其生物活性[J].汕头大学学报:自然科学版,2007,22(1):37-41,53.
    29 Yuan HM, Song JM, Zhang WW, et al. Antioxidant activityand cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives [J].Bioorganic Medicinal Chemistry Letters,2006,16:1329-1334.
    30 Yuan HM,Zhang WW,Wu XG,et al.Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, andphosphorylated derivatives [J].Carbohydrate Research,2005,340:685-692.
    31杨静,马力文.肿瘤与机体抗氧化系统[J].肿瘤防治杂志,2004,11(3):324-327.
    32石学连,张晶晶,王晶,等.浒苔多糖的分级纯化及体外抗氧化活性研究.中国海洋药物杂志,2009,28(3):44-49.
    33李妍,田晓华,丛建波,等.海藻多糖抑制白细胞呼吸暴发作用的研究[J].生物化学与生物物理 进展,1999,26(2):162-164
    34 Qi Huimin, Zhang Quanbin, Zhao Tingting, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pert usa in vitro[J]. International Journal of Biological Macromolecules,2005,37(4):195-199.
    35 Morita K. Naknao T. Seaweed accelerates the excretion of dioxin stored in arts[J]. Agric Food Chem.2002 Feb13;50(4):910-917.
    36李来好,李刘冬,石红,等.4种海藻膳食纤维清除自由基的比较研究[J].中国水产科学2005,12(4):471-476.
    37李兴泰,张淑梅,等.楔形角叉菜的抗氧化和保护线粒体作用[J].中国海洋药物,2007,26(6):32-35.
    38周革非,邢荣莲,等.不同分子量的角叉菜λ-卡拉胶的抗氧化活性[J].海洋与湖沼.2009,40(5):545-548.
    39 Mishima T,Muarta J.Toyoshima M,et al.Inhibition of tumorinvaion and metastasis by calcium spirulan(Ca sp),anovel sulfated polysaccharide derived fromablue green alga,Spirlinapla tensis[J]. Clin Exp Metastasis,1998,16(6):541.
    40 Geresh S, Adin I, Yarmolinsky E,et al. Characterization of the extracellular polysaccharide of Porphyridiumsp.:Molecular weight determination and rheological properties[J]. Carbohydarate Polymers,2002,50:183-189.
    41 Tehila T S, Margalit B, Dorit V M. Antioxidant activity of the polysaccharide of the red microalgaPorphyridium sp[J]. J Appl Phycol,2005,17:215-222.
    42孙利芹,王长海,石全见,等.紫球藻多糖的降解及其体外抗氧化活性.华东理工大学学报(自然科学版)[J].2010.36(2):211-215.
    43袁华茂.卡拉胶寡糖与衍生物的制备及生物活性研究[D].青岛:中国科学院研究生院(海洋研究所),2005.
    44 BaoXing feng,WangXue Song,Dong Qun,et al.Structural features of immunologically active polysaecharides from Ganoderma Lucidum[J].Phytochemistry,2002,59:175-181.
    45 Harada Naehi,Kodama Noriko,Nanda Hiroaki.Relationship between dendritic cells and the D-fraction-induced Th-1 dominant responsein BALB/ctumor-bearingmice [J].Caner Letters,2003, 192:181-187.
    46 Chen Hung Sen,Tsai Yow Fu,Lin Steven,et al.Studies on the immuno-modulating and antitumor activities of garondema iucidum polysaccharide [J]. Bioorganic and medicinal chemistry.2004.12:5595-5601.
    47 Ramazanov Z, Jimenez del Rio M, Ziegenufss T.Suafited poylsaeeharides of borwn seaweed Cystoseira canariensis bind to serum myostatin protein [J].Aeta Physiol Pharmcol Bulg.2003; 27(2-3):101-106.
    48 Suarez E R,Kralovec J A,Noseda M D,et al.Isolation, characterization and structural determination of a unique type of arabinogalactan from an immuno stimulatory extract of Chlorella pyrenoido[J].Carbohydrate Research,2005,340(8):1489-1498.
    49黄震,迟秀文,束振华等.海藻多糖对小鼠巨噬细胞的免疫调节作用[J].辽宁中医药大学学报,2011,13(4):253-254.
    50 曾波航,王光明,曾亚仑.钝顶螺旋藻多糖对白血病患者外周血LAK细胞活性的影响[J].中国海洋药物,2000,2:39-41.
    51 毕薇薇.紫菜多糖对小鼠淋巴细胞IL-2分泌水平的影响[D].沈阳:中国医科大学,2006.
    52孔娜娜,周革非,王长海.角叉菜提取物的抑菌和免疫活性的研究[J].食品科技.2010.35(11):219-222.
    53李婷.海藻多糖对类风湿关节炎成纤维样滑膜细胞凋亡的影响及机制[D].广州:广州中山大学,2010.
    54 Rami H,Felix M,Miao HQ,et al.Diverential Effects of Polysulfated Inhibition of heparanase activity[J].Journal of Autoimmunity,1995,8:741-750.
    55项华,赵健忠,柏林.海藻多糖的抗突变研究[J].癌变畸变突变.2001,1(1):42-43.
    56王烨,胡中泽.海藻多糖对内杂鸡免疫功能的影响[J].安徽农学通报,2010,16(17):59-62.
    57 Kai Yasuji,Ishizaka Shigeaki,Higashi Okai Kiyoka,et al.Detection of immuno modulating activities in an extract of Japanese edible seaweed, Laminaria japonica(Makonbu)[J]. Sci Food Agric,1996,72(4):455.
    58杨运高,华何与,张红栓,等.海藻多糖对大鼠红细胞免疫及自由基损伤的实验研究[J].深圳中西医结合杂志,2005,15(1):211-213.
    59侯洪宝,高世勇,季宇彬.螺旋藻多糖对S180荷瘤小鼠肿瘤生长及红细胞免疫功能的影响[J]中草药,2009,40(增刊)200-202.
    60傅德贤,赵迪,郭澄联.海藻多糖微量元素配合物的生物活性初步研究[J].热带海洋,1995,2(1):82-88.
    61 牛黎莉.毕阳.张盛贵.刘磊地达菜中不同溶剂提取物抑菌能力的研究[J]-食品工业科技2010(1):68-70.
    62卢克祥,孙涛,王惠英,等.低分子量κ-卡拉胶的化学改性及其抗氧化性能研究进展[J].食品科技,2008,33(1):114-119.
    63 Shibata H, Iimuro M, et al. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils[J].Helicobacter.2003 Feb;8(1):59-65.
    64 Matsui MS,Muizzuddin N,et al.Sulfated polysaccharides in vitro and in vivo[J].Appl Biochem Biotechnol.2003Jan;104(1):13-22.
    65 Matsumoto S,Nagaoka M,et al. Fucoidan derived from Cladosiphon okamuranus Tokida ameliorates murine chronic colitis through the down regulation of interleukin-6 production on colonic epithelial cells[J].Clin Exp Immunol.2004Jun;136(3):432-439.
    66 Xu Hong-Xi,Lee Spencer HS,Lee Song F,et al.Isolation and eharacterization of an anti-BSV polysaccharide from Prunella 6 ulgaris[J].Antiviral research,1999,44:43-54.
    67 Tziveleka LA.Vagias C,Roussia V.Natural Producls With anti-HIV activity from mafine organisms [J].Cair Top Med Chem,2003,3:1512-1535.
    68 Huleihel M, Talyshinsky M, Souprun Yeta 1. Peetroscopic evaluation of the effect of a red microal galpolysaccharide on herpes in feted Vero cells[J].Appl Spectrosc,2003,57:390-395.
    69 Ramesh H P,Tharanathan R N.Carbohydrates the renewable rawratefiah of high biotechnological value[J].Crit Rev Biotechnol,2003,23:149-173.
    70 Zhu w,Ooi V E, ChanP K,et al. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its antiherpes activity[J].Biochem Cell Biol,2003,81:25-33.
    71魏文青,丛建波.海藻硫酸多糖抗乙型肝炎病毒的实验研究[J].中华肝脏病杂志.2002,10(2):112.
    72 Morita K,Naknao T.Seaweed accelerates the excretion of dioxin stored in arts[J].Alge Food Chem.2002,Feb13;50(4):910-7.
    73 Romanos M,Andarda Serpa MJ,et al. Inhibitory effect of extracts of Brazilian marine algae on human T-cell lymphotropic evirus type 1(HTVL-1) induced syncytium formation in vitor[J]. Cancer Invest.2002;20(1):46-54.
    74 Damonte EB, Mattliweiez MC, et al.Sulfated seaweed polysaccharides as antiviral agents[J]. Curr Med Chem.2004 Sep;11(18):2399-2419.
    75孔娜娜.角义菜化学成分及抗菌和免疫活性的研究[D].烟台:烟台大学,2011.
    76 Isuru Wijesekaraa, Ratih Pangestutia, Se-Kwon Kima. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae[J]. Carbohydrate Polymers,2011, 84:14-21.
    77 Ghosh Tuhin, Chattopadhyay Kausik, Marschall Manfred, et al. Focus on antivirally active sulfated polysaccharides:From structure activity analysis to clinical evaluation [J]. Glycobiology, 2009,19(1):2-15.
    78 Lucci MJ,Pujolc A,Clancia M,et a 1.Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives:correlation between structure and biological activity[J].Int J Biol Macromol.1997,20:97-105.
    79张攀,王伟,李春霞.等.卡拉胶抗病毒作用机制研究进展[J].中国海洋药物杂志.2012,31(2):52-57.
    80 Yamada T,Ogamo A,Saito T,et a 1.Preparationof 0-aeylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect[J]Carbnhydr Polym.2000,41:115-120.
    81 Mou HJ,Jiang X L,Guan H S.A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity[J].J Appl Phycol,2003,15:297-303.
    82 Hu X K,Jiang X L,Aubree E,et al.Preparation and in vivo anti-tumor activity of kappa- carrageenan oligo-saccharides[J].Pharm Biol.2006,44:646-650.
    83栾晖.κ-卡拉胶寡糖及其衍生物的制备与抗疱疹病毒活性研究[D].青岛:中国海洋大学,2009.
    84孙抗,林江,张婷.海藻多糖抗肿瘤机制研究综述[J].广西中医学院学报.2012,15(2):103-105.
    85 Ji Hongwu, Shao Haiyan, Zhang Chaohua, et al. Separation of the polysaccharides in Caulerpa racemosa and their chemical composition and antitumor activity[J]. Journal of Applied Polymer Science,2008,110 (3):1435-1440.
    86姚勇,孟庆勇,东野广智.马尾藻多糖体外抗肿瘤活性研究[J].时珍国医国药,2010,21(9):2226-2228.
    87先宏,丛建波.海藻硫酸多糖对巨噬细胞所致肿瘤细胞凋亡的调节作用[J].细胞与分子免疫学杂志.2002,18(3):288-291.
    88 Yang MX, Ma CH, Sun JT, et al. Fucoidan stimulation induces a functional maturation of human monocyte derived dendritic cells[J]. Int Immunopharmacol,2008,4(12):1754.
    89季宇彬,高世勇.海藻多糖对肿瘤细胞膜流动性的影响[J].中草药.2002,33(5):435.
    90季宇彬,高世勇,成秉辰.海藻多糖抗肿瘤作用的实验研究[J].哈尔滨商业大学学报,2001,17(4):10-12
    91 Shen KT, Chen MH, Chan HY, et al. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis [J]. Food Chem Toxicol,2009,47(8):1864.
    92项华,赵健忠,柏林.海藻多糖的抗突变研究[J].癌变畸变突变.2001,1(1):42-43.
    93王晓宇,邹明明,王蓉,等.海藻多糖抗肿瘤机理研究进展[J].大连医科大学报.2007,29(03)318-320.
    94谢佩玉,松仓诚,藤井绩,等.新型海藻多糖化合物保护高糖诱导的RPE细胞异常增殖[J].国际眼科杂志,2011,11(3):409-410.
    95季宇彬,张秀娟,孔琪,等.海嘧啶对H22小鼠完整细胞膜脂流动性及人胃腺癌细胞内DNA含量影响的研究[J].中草药,2001,32(8):7-13.
    96 GoIdsh midt O, Zcharia E, Abramovitch R, et al. Cell surface expression and secretion of heparanase markedly promote tumor angiogenesesis and metastsis[J]. Proc Natl Acad Sci USA, 2002,99(15):10031-10036.
    97 Kim Hs,Kace WS,Lee BM. In vitro chemopreventive effects of plant poIysacchrides[J]. Carcinogenesis,1999,20(8):1637-1640.
    98 Choi J H,Effects of sea tangle (Lamiaria japonica) extract and fucoidan drinks on oxygen radicals and their scavenger enzymes in stressed mouse[J].Journal of the Korean fisheries society,1999, 32(6):764.
    99王长海.海洋生化工程概论[M].北京:化学工业出版社,2004,121-127.
    100季宇彬,孔琪,高世勇,等.羊栖菜多糖对肿瘤细胞膜p53基因蛋白表达的影响[J].哈尔滨商业大 学学报,2001,17(2):1-3.
    101 Schwartsmann G,DaRocha AB,BerIinck RGS. Marine organisms as a source of new anticancer a gents [J]. Lancet Onc,2001,2(4):221-225.
    102 Kong CS, Bahn YE, Kim BK, et al. Antiproliferative effect of chitosan-added kimchi in HT-29 human colon carcinoma cells [J]. J Med Food,2010,13(1):6.
    103 Koyangi S Tanigawa N,Nakagawa H,et al.OversuIfation of fucoidan enhances its antian-gangiogenic and antitumor activies[J].BiochemicaI PharmacoIogy,2003,65:173-179.
    104徐旭,于冰,汤立达,等.海洋生物多糖的药用功能[J].天津药学,2004,16(6):51-53.
    105 Gefei Zhu,Yueping Sun,Hua Xin,et al. In vivo antitumor and immunomodulation activities of different molecularweight lambda -carrageenans from Chondrus ocellatus[J]. Pharmacological Research,2004(50):47-53.
    106刘芳,郑育声,尹学琼,等.灰叶马尾藻多糖的提取及其生物活性[J].食品科学.2013,34(3):93-95.
    107曾波航,王光明,曾亚仑.钝顶螺旋藻多糖对急性白血病病人NK细胞的作用[J].中国海洋药物,2000,19(6):45-47.
    108许青松,魏鹏,窦江丽.壳寡糖抑制肝癌细胞SMMC27721的增殖及其机制探讨[J].天然产物研究与开发,2009,21:152-154.
    109 Feng J,Zhao L,Yu Q.Receptor-mediated stimulatory effect of oligochitosan in macrophages [J]. Biochem Biophys Res Commun,2004,317(2):414-420.
    110 Maeda Y,Kimura Y. Antitumor Effects of Various Low-Molecular-Weight Chitosans Are Due to Increased Natural Killer Activity of Intestinal Intraepithelial Lymphocytes in Sarcoma 180 Bearing Mice[J].Nutrition and Cancer,2004,134(4):945-950.
    111官杰,王琪,王慧.壳寡糖对荷瘤鼠肿瘤细胞凋亡的影响[J].免疫学杂志,2009,25(2):195-198.
    112原丽,林文.海藻多糖降血糖作用及其构效关系的研究进展[J]海峡预防医学杂志,2011,17(2):26-28.
    113王爱珍,安立龙.褐藻岩藻聚糖生物活性的研究进展[J].中国畜牧兽医期.2013.40(5):97-100.
    114 Cynthia M, Galdron KW. Soluble non-starch polysaccharides derived from matrices do not increase average lipid droplet size during gastric emulsification in rats[J].Nutr.,1997,127 (11): 2246-2252.
    115 Kion T, Kochi M, Usui S, Hirano K, Aizawa K, Inakuma T. Antidiabetic effect of an acidic polysaccharide(TAP-H)[J].Biol Pharm Bull.2001;24(12):1400-1403.
    116 Jimenez-Escrig ABS;Sanchen-Muniz FJ Dietary fibre from edible seaweeds:chemical structure, physicochemical properties and effects on cholesterol metabolism[J].Nutrition Research 2000, 20(4):585-598.
    117 Hayashi K, Ito M. Antidiabetic action of low molecular weight chitosan in genetically obabetic KK-Ay mice[J]. J Biol Pharm Bull.2002;25(2):188-192.
    118 Abdel-Zaher AO, Salim SY, Assaf MH, Abdel-Hady RH. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves[J].Ethnopharmacol.2005;101(1-3):129-138.
    119 Basnet P,Kadota S.Shimizu M,Takata Y,Kobayashi M,Namba T.Bellidifolin stimulates glucose uptake in ratl fibroblast and ameliorates hyperglycemic in streptozotocin (STZ)-induced diabetic rats[J].Planta Med.1995;61(5):402-405.
    120 Bao Xing-feng,Wang Xue-Song,DongQun,et al. Structural features of immunologically active polysaecharides from Ganoderma Lucidum[J].Phytochemistry,2002,59:175-181.
    121左绍远,罗华君,利来振宇.螺旋藻多糖对糖尿病小鼠抗氧化能力的影响[J].药物生物技术,2001,8(1):36-38.
    122张成武,曾昭琪,张媛贞,等.钝顶螺旋藻多糖和藻蓝蛋白对小鼠急性放射病的防护作用[J].营养学报,1996,18(3):327-331.
    123先宏,丛建波.海藻硫酸多糖对60Co7射线照射巨噬细胞中一氧化氮的调节作用[J].中华放射医学防护杂志.2003,23(2):101-102.
    124刘志辉,孟庆勇,刘秋英,等.海藻多糖对γ射线照射小鼠免疫功能的影响[J].中国公共卫生,2003,19(2):171-172.
    125李翊,王海青.卡拉胶寡糖对放射损伤小鼠T细胞功能和亚型的影响[J].中华放射医学与防护杂志,2005,25(1):41-42.
    126李翊,王海青.卡拉胶寡糖对放射损伤的防护作用[J].中华放射医学与防护杂志,2005,25(2)116-117.
    127李翊,庄兴俊,王海青,等,卡拉胶低聚糖的辐射防护及其作用机制研究[J].中华放射医学与防护杂志,2009,18(1):24-26.
    128 Hiroaki Kiyohara, Masumi Hirano, Wen xiao-Guang,et al. Characterisation of an antiulcer pectic polysaccharide from leaves of Panax ginseng CA,Meyer [J]. Carbohydrate research,1994,263 (1): 89-101.
    129 Rahgavendarn HR, Sathivel A, et al. Efficacy of brown seaweed hot water extract against HCI-ethanol induced gastric mucosal injury in rats[J]. Arch Pharm Res.2004 Apr;27(4):449-53.
    130范晓,严小军.海藻化学研究与展望[J].海洋科学,1996(2):24-25.
    131魏陵博.角叉菜胶致大鼠尾部血栓形成的机制[J].中西医结合心脑血管病杂志,2008,6(5):542-543.
    132 Hayakwa Y,Hayashi T,Lee J,et al.Inhibition of thrombin by sulfated poly saccha -rides isolated from green algae[J]. Biochim Biophys Acta.2000,1543(1):86-94.
    133刘杰.海藻多糖(SP13)的抗血栓作用及其机制研究[D].广州:中山大学,2008.
    134陈振德,汪东风,王文娇,等.海藻多糖稀土配合物对蔬菜有机磷农药残留的降解作用[J].生态毒理学报.2008,3(2):183-188.
    135包磊,黄建艳,张灵敏,等.大型海藻多糖一琼脂糖改性敷料在动物皮肤再生中的作用[J].中国组织工程研究与临床康复,2010.14(8):1369-1341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700