用户名: 密码: 验证码:
海洋细菌Cellulophaga sp.QY3ι-卡拉胶酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卡拉胶酶是一类能够专一性降解卡拉胶分子中β-1,4糖苷键的糖水解酶,根据其降解底物的不同主要分为κ-、ι-和λ-卡拉胶酶。根据序列和结构的特征,ι-卡拉胶酶被归属为糖水解酶82家族(GH82),目前已经发现了九种ι-卡拉胶酶,但只有四种进行了部分的性质研究。关于该家族酶的结构与功能研究目前还处于起步阶段,只有和催化相关的部分氨基酸残基有所报道。因此新ι-卡拉胶酶的发现和深入研究不仅可以丰富GH82家族ι-卡拉胶酶资源,而且对GH82家族酶的结构与功能阐释有重要意义。
     来自Cellulophaga sp. QY3的ι-卡拉胶酶CgiA的研究工作是在本实验室前期工作的基础上继续进行的。首先研究了CgiA降解不同类型底物的降解方式。CgiA降解非胶态底物时表现为随机内切酶的特点,而降解胶态底物时采用持续性降解的方式,在GH82家族的ι-卡拉胶酶中属于首次报道。
     其次,利用同源模建的方法获得了CgiA的三维结构。结合荧光辅助碳水化合物电泳分析表明,CgiA降解ι-卡拉胶的终产物为新ι-卡拉四糖和新ι-卡拉二糖,最小降解底物为新ι-卡拉六糖。该酶的催化腔大小为八(-4~+4)六糖在催化腔中占据-4~+2位点。
     利用序列标识图(sequence logo)的方式展示出GH82家族催化腔中与底物相距6以内的氨基酸残基。从GH82家族催化腔的保守分析可以明显看出催化腔-1和+1位点处的残基保守性高于其他位点。根据氨基酸残基的保守性及残基在结构中的空间位置,我们选择了六个位点(G228,Y229,R254,R314,K335和K480)进行突变实验。
     通过GH82家族多个底物结合位点的突变及性质比较,验证了功能残基的保守性与其重要性是正相关的。根据突变前后酶活力变化,米氏常数变化及高级结构分析,证明了催化腔-1,+1位点处G228, Y229,R254和R314是该酶与底物结合相关的残基。其中G228, Y229和R254在GH82家族中完全保守,因此推测它们为该家族最重要的与底物结合相关的残基。GH82家族最重要的两个底物结合残基(Y229和R254)是与底物的硫酸根直接作用的,推测这是该家族酶专一性降解ι-卡拉胶的关键。这是首次对GH82家族ι-卡拉胶酶的底物结合残基的研究,进一步阐释了该家族的底物专一性机制。
     接下来,利用简并PCR和Sitefinding PCR成功从Cellulophaga sp. QY3中克隆得到了一种新的ι-卡拉胶酶CgiB的编码序列。该基因含有一段长度为1383bp的ORF编码框,编码得到461aa的蛋白序列。CgiB归属于GH82家族,除了一个未进行表达和研究的序列,与其相似度最高的蛋白序列是来自Zobellia galactanovora DsiJT的CgiA2,相似度仅为32%。
     对重组酶CgiB的性质研究表明:该酶的最适反应条件为45℃、pH6.5磷酸盐缓冲液;在低于40℃条件下存放1h该酶还能保留70%的活性;在pH6.0-9.6的缓冲体系中存放较稳定;Na+和K+对酶活力有促进作用,CuCl2, SDS和EDTA都非常显著的抑制了酶活性,而一些二价金属离子,如Mg2+, Fe2+及Mn2+对酶活力有明显的促进。
     利用凝胶色谱分析酶解产物随时间的变化可知该酶是一种典型的内切酶,降解主产物四糖在终产物中约占80%。利用二级质谱技术鉴定出酶解主产物为新ι-卡拉四糖,表明该酶通过断裂卡拉胶分子中的β-1,4糖苷键实现对ι-卡拉胶的降解。CgiB具有与已报道的ι-卡拉胶酶不同的性质特点,不仅丰富了ι-卡拉胶酶的资源,而且对卡拉寡糖的制备和纯化具有重要意义。
Carrageenases are kinds of glycoside hydrolases which could cleave the internalβ (1→4) linkages of carrageenans. Based on the substrate specificity, the enzymes areclassified into three groups, namely, κ-, ι-, and λ-carrageenases. ι-Carrageenases havebeen classified into family GH82according to the sequence and structure. Up to now,nine gene sequences of family GH82ι-carrageenases have been found, but only fourof them have been characterized. The relationship between structures and functions ofGH82is still in its infancy. Only the catalytic residues have been identified. Therefore,the discovery and study of the new ι-carrageenases are important not only for the richof GH82but also for the interpretation of the relationship between structures and theirfunctions.
     The study on ι-carrageenase CgiA from Cellulophaga sp. QY3was continued onthe basis of the preliminary work of our lab. At first, we studied the degradationmethods of CgiA on substrates in different conformations. The degradation of solubleι-carrageenans was by random-type cleaving. In contrast, the degradation of gelsubstrates was by processive-type. It was the first time to report that GH82ι-carrageenase showed different types of degradations which depended on the formsof substrates.
     Secondly, the three-dimensional structure of CgiA was obtained byhomology modeling. Combined the structure and the electrophoresis analysis, wefound that CgiA cleaved ι-carrageenan yielding neo-ι-carrabiose andneo-ι-carratetraose as the main end products, and neo-ι-carrahexaose was theminimum substrate. The number of subsites for CgiA was eight (-4~+4) and thehexasaccharide bound to subsites4to+2.
     The sequence logo of GH82showed the amino acid residues in catalyticcavity which closed to the substrate within6. The amino acid residues at subsite-1and+1were more conserved than those at other subsites. Based on the conservation and position in three-dimensional structure, we chose six residues(G228, Y229, R254, R314, K335and K480) for site-directed mutagenesis.
     Based on the site-directed mutagenesis of the substrate-binding residues infamily GH82, we could infer that the conservations of residues were positivecorrelation to the the importance of them. Site-directed mutagenesis followed bykinetic and structure analyses identified four residues at subsite-1and+1of CgiA,G228, Y229, R254and R314, which played important roles for substrate binding.G228, Y229and R254were strictly conserved in family GH82ι-carrageenases,therefore we inferred they were the important substrate binding residues for GH82.The most important binding residues (Y229and R254in CgiA) were interactspecifically with the sulfate groups of the sugar substrate located at subsite-1and+1and this may shed light on the mechanism of the substrate specificity for family GH82toward ι-carrageenan. It was the first time to identify the substrate binding residuesand explain the mechanism of the substrate specificity for GH82.
     The gene for a new ι-carrageenase, CgiB, from Cellulophaga sp. QY3wascloned by degenerate PCR and Sitefinding PCR. It comprised an open readingframe of1386bp, which encodes a protein consisting of461amino acid residues.According to the sequence analysis, CgiB was categorized as a new member ofGH family82and shared the highest identity of32%in amino acids withι-carrageenase CgiA2from Zobellia galactanovorans except an uncharacterizedι-carrageenase.
     The recombinant CgiB showed maximum specific activity at45°C and pH6.5.The enzyme retained70%of the original activity after incubation at the temperaturesbelow40°C for1h. It was stable between pH6.0-9.0. Cations Na+and K+increasedthe activity of CgiB significantly. CuCl2, SDS and EDTA reduced the enzyme activitysignificantly, while most divalent metal cations, such as Mg2+, Fe2+and Mn2+,increased the enzyme activity notably.
     According to the size-exclusion chromatography analysis on the degradationproducts, CgiB was an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages ofι-carrageenan, yielding tetrasaccharide as the main product (more than80%of the total product). By the secondary mass spectrometry analysis, we identified the mainproduct was neo-ι-carratetraose showing CgiB cleaved the internal β (1→4) linkagesof ι-carrageenan. The characterization of CgiB was different from other reportedι-carrageenases, which showing great benefit not only for the rich of ι-carrageenasesbut also for the production and purification of carrageenan oligosaccharides.
引文
[1] Van de Velde F, Peppelman H A, Rollema H S, et al. On the structure of κ/ι-hybridcarrageenans. Carbohydr Res,2001,331(3):271-283.
    [2] Stanley N. Chapter3: Production, properties and uese of carrageenan. Rome: Food andAgriculture Organization of the United Nations,1987.116-146.
    [3] Anderson N S, Dolan T C and Rees D A. Carrageenans. VII. Polysaccharides from Eucheumaspinosum and Eucheuma cottonii. The covalent structure of λ-carrageenan. J Chem SocPerkin1,1973,192173-2176.
    [4] Patel B K, Campanella O H and Janaswamy S. Impact of urea on the three-dimensionalstructure, viscoelastic and thermal behavior of ι-carrageenan. Carbohydr Polym,2013,92(2):1873-1879.
    [5] Meunier V, Nicolai T and Durand D. Structure of aggregating κ-carrageenan fractions studiedby light scattering. Int J Biol Macromol,2001,28(2):157-165.
    [6] Borgstrom J, Piculell L, Viebke C, et al. On the structure of aggregated κ-carrageenan helices.A study by cryo-TEM, optical rotation and viscometry. Int J Biol Macromol,1996,18(3):223-229.
    [7] Morris E R, Rees D A and Robinson G. Cation-specific aggregation of carrageenan helices:Domain model of polymer gel structure. J Mol Biol,1980,138(2):349-362.
    [8] Janaswamy S and Chandrasekaran R. Three-dimensional structure of the sodium salt ofι-carrageenan. Carbohydr Res,2001,335(3):181-194.
    [9] Anderson N. S., Campbell J. W., Harding M. M., et al. X-ray diffraction studies ofpolysaccharide sulphates: double helix models for κ-and λ-carrageenans. J Mol Biol,1969,45(1):85-99.
    [10] Le Questel J Y, Cros S, Mackie W, et al. Computer modelling of sulfated carbohydrates:applications to carrageenans. Int J Biol Macromol,1995,17(3-4):161-175.
    [11] Volery P, Besson R and Schaffer-Lequart C. Characterization of commercial carrageenans byFourier transform infrared spectroscopy using single-reflection attenuated total reflection.J Agric Food Chem,2004,52(25):7457-7463.
    [12] Prechoux A, Genicot S, Rogniaux H, et al. Controlling carrageenan structure using a novelformylglycine-dependent sulfatase, an endo-4S-ι-carrageenan sulfatase. Mar Biotechnol(NY),2012,
    [13] Kirsch P P. Carrageenan: a safe additive. Environ Health Perspect,2002,110(6): A288;author reply A288.
    [14] Estevez J M, Ciancia M and Cerezo A S. The system of galactans of the red seaweed,Kappaphycus alvarezii, with emphasis on its minor constituents. Carbohydr Res,2004,339(15):2575-2592.
    [15] Marcelo G, Saiz E and Tarazona M P. Unperturbed dimensions of carrageenans in differentsalt solutions. Biophys Chem,2005,113(3):201-208.
    [16] Tomarelli R M, Tucker W D, Bauman L M, et al. Nutritional quality of processed milkcontaining carrageenan. J Agric Food Chem,1974,22(5):819-824.
    [17] Tijssen R L, Canabady-Rochelle L S and Mellema M. Gelation upon long storage of milkdrinks with carrageenan. J Dairy Sci,2007,90(6):2604-2611.
    [18] Fang Y, Li L, Inoue C, et al. Associative and segregative phase separations ofgelatin/κ-carrageenan aqueous mixtures. Langmuir,2006,22(23):9532-9537.
    [19] Loren N, Shtykova L, Kidman S, et al. Dendrimer diffusion in κ-carrageenan gel structures.Biomacromolecules,2009,10(2):275-284.
    [20] Hugerth A, Nilsson S and Sundelof L O. Gel-sol transition in κ-carrageenan systems:microviscosity of hydrophobic microdomains, dynamic rheology and molecularconformation. Int J Biol Macromol,1999,26(1):69-76.
    [21] Hossain K S, Miyanaga K, Maeda H, et al. Sol-Gel transition behavior of pure ι-carrageenanin both salt-free and added salt states. Biomacromolecules,2001,2(2):442-449.
    [22] Aktas D K, Evingur G A and Pekcan O. Universal behaviour of gel formation fromacrylamide-carrageenan mixture around the gel point: a fluorescence study. J BiomolStruct Dyn,2006,24(1):83-90.
    [23] Anderson W, Duncan J and Harthill J. The anticoagulant activity of carrageenan. J PharmPharmacol,1965,17(10):647-654.
    [24] Nickerson M T, Darvesh R and Paulson A T. Formation of calcium-mediated junction zonesat the onset of the sol-gel transition of commercial κ-carrageenan solutions. J Food Sci,2010,75(3): E153-156.
    [25] Johnston K H and McCandless E L. The immunologic response of rabbits to carrageenans,sulfated galactans extracted from marine algae. J Immunol,1968,101(3):556-562.
    [26] Shubin J A, Thomas D W and Starr P. Acid hydrolase activity in the resorbing carrageenangranuloma. Proc Soc Exp Biol Med,1974,147(1):300-304.
    [27] Nicklin S, Atkinson H A and Miller K. Adjuvant properties of polysaccharides: effect ofι-carrageenan, pectic acid, pectin, dextran and dextran sulphate on the humoral immuneresponse in the rat. Food Addit Contam,1988,5(4):573-580.
    [28] Tobacman J K, Wallace R B and Zimmerman M B. Consumption of carrageenan and otherwater-soluble polymers used as food additives and incidence of mammary carcinoma.Med Hypotheses,2001,56(5):589-598.
    [29] Yang B, Bhattacharyya S, Linhardt R, et al. Exposure to common food additive carrageenanleads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in humanepithelial cells. Biochimie,2012,94(6):1309-1316.
    [30] Carthew P. Safety of carrageenan in foods. Environ Health Perspect,2002,110(4):A176-177.
    [31] McHugh D J. A guide to the seaweed industry. Rome: Food and Agriculture Organizationof the United Nations,2003.
    [32] Coombe D R, Parish C R, Ramshaw I A, et al. Analysis of the inhibition of tumour metastasisby sulphated polysaccharides. Int J Cancer,1987,39(1):82-88.
    [33] Yukihiro M, Tateno M, Hirano T, et al. Pentavalent technetium-99m dimercaptosuccinic aciduptake in primary amyloidosis: comparison with autopsy findings. Radiat Med,1997,15(5):317-320.
    [34] Noda H, Amano H, Arashima K, et al. Studies on the antitumour activity of marine algae.Nippon Suisan Gakkaishi,1989,55(7):1259-1264.
    [35] Hoffman R, Burns W W and Paper D H. Selective inhibition of cell proliferation and DNAsynthesis by the polysulphated carbohydrate ι-carrageenan. Cancer chemotherapy andpharmacology,1995,36(4):325-334.
    [36] Zierer M S and Mourao P A. A wide diversity of sulfated polysaccharides is synthesized bydifferent species of marine sponges. Carbohydr Res,2000,328(2):209-216.
    [37] Ehresman D, Deig E and Hatch M. Antiviral properties of algal polysaccharides and relatedcompounds. Marine algae in pharmaceutical science,1979,293-302.
    [38] Nakashima H, Kido Y, Kobayashi N, et al. Purification and characterization of an avianmyeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor,sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother,1987,31(10):1524-1528.
    [39] Anderson W and Duncan J G. The anticoagulant activity of carrageenan. J Pharm Pharmacol,1965,17(10):647-654.
    [40] Hawkins W W and Leonard V G. The antithrombic activity of carrageenan in human blood.Can J Biochem Physiol,1963,411325-1327.
    [41] Guven K C, Ozsoy Y and Ulotin O N. Anticoagulant, fibrinolytic and antiaggregant activityof carrageenans and alginic acid. Botanica Marina,1991,34(5):429-432.
    [42] Carlucci M J, Pujol C A, Ciancia M, et al. Antiherpetic and anticoagulant properties ofcarrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives:correlation between structure and biological activity. Int J Biol Macromol,1997,20(2):97-105.
    [43] Anderson W and Soman P D. Degraded and undegraded carrageenans and experimentalgastric and duodenal ulceration. J Pharm Pharmacol,1967,19(8):520-526.
    [44] Abdel-Hafez S H and Hussein M A. Selenium-containing heterocycles: synthesis andpharmacological activities of some new4-methylquinoline-2(1H) selenone derivatives.Arch Pharm (Weinheim),2008,341(4):240-246.
    [45] Li D, Yang X, Han Q, et al.[Antiarrhythmic effects of kappa-seleno-carrageenan inexperimental animals]. Yao Xue Xue Bao,1992,27(10):725-728.
    [46] Hjerde T, Smidsr d O and Christensen B E. The influence of the conformational state of κ-and ι-carrageenan on the rate of acid hydrolysis. Carbohydr Res,1996,288(19):175-187.
    [47] Yang B, Yu G, Zhao X, et al. Mechanism of mild acid hydrolysis of galactan polysaccharideswith highly ordered disaccharide repeats leading to a complete series of exclusivelyodd-numbered oligosaccharides. Febs J,2009,276(7):2125-2137.
    [48]杨波,于广利,郝翠,等.系列ι-卡拉胶寡糖制备及其电喷雾串联质谱序列分析.2010,2303-308.
    [49] Tabata K, Ito W, Kojima T, et al. Ultrasonic degradation of schizophyllan, an antitumorpolysaccharide produced by Schizophyllum commune Fries. Carbohydr Res,1981,89(1):121-135.
    [50] Zhou G, Sun Y, Xin H, et al. In vivo antitumor and immunomodulation activities of differentmolecular weight λ-carrageenans from Chondrus ocellatus. Pharmacol Res,2004,50(1):47-53.
    [51] Michel G, Chantalat L, Duee E, et al. The κ-carrageenase of P. carrageenovora features atunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases.Structure,2001,9(6):513-525.
    [52] Guibet M, Colin S, Barbeyron T, et al. Degradation of λ-carrageenan by Pseudoalteromonascarrageenovora λ-carrageenase: a new family of glycoside hydrolases unrelated to κ-andι-carrageenases. Biochem J,2007,404(1):105-114.
    [53] Michel G, Chantalat L, Fanchon E, et al. The iota-carrageenase of Alteromonas fortis. Abeta-helix fold-containing enzyme for the degradation of a highly polyanionicpolysaccharide. J Biol Chem,2001,276(43):40202-40209.
    [54] Barbeyron T, Gerard A, Potin P, et al. The κ-carrageenase of the marine bacterium Cytophagadrobachiensis. Structural and phylogenetic relationships within family-16glycosidehydrolases. Mol Biol Evol,1998,15(5):528-537.
    [55] Araki T, Higashimoto Y and Morishita T. Purification and characterization of κ-carrageenasefrom a marine bacterium, Vibrio sp. CA-1004. Fish Sci,1999,65(6):937-942.
    [56] Rebuffet E, Barbeyron T, Jeudy A, et al. Identification of catalytic residues and mechanisticanalysis of family GH82ι-carrageenases. Biochemistry,2010,49(35):7590-7599.
    [57] Hatada Y, Mizuno M, Li Z, et al. Hyper-production and characterization of the ι-carrageenaseuseful for iota-carrageenan oligosaccharide production from a deep-sea bacterium,Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalyticmechanism. Mar Biotechnol (NY),2011,13(3):411-422.
    [58] Knutsen S H, Sletmoen M, Kristensen T, et al. A rapid method for the separation and analysisof carrageenan oligosaccharides released by ι-and κ-carrageenase. Carbohydr Res,2001,331(1):101-106.
    [59] Jouanneau D, Boulenguer P, Mazoyer J, et al. Enzymatic degradation of hybridι-/nu-carrageenan by Alteromonas fortis ι-carrageenase. Carbohydr Res,2010,345(7):934-940.
    [60] Tojo E and Prado J. Chemical composition of carrageenan blends determined by IRspectroscopy combined with a PLS multivariate calibration method. Carbohydr Res,2003,338(12):1309-1312.
    [61] Pereira L, Amado A M, Critchley A T, et al. Identification of selected seaweedpolysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman).Food Hydrocolloids,2009,23(7):1903-1909.
    [62] Pereira L, Sousa A, Coelho H, et al. Use of FTIR, FT-Raman and13C-NMR spectroscopy foridentification of some seaweed phycocolloids. Biomol Eng,2003,20(4-6):223-228.
    [63] Guibet M, Kervarec N, Genicot S, et al. Complete assignment of1H and13C NMR spectra ofGigartina skottsbergii λ-carrageenan using carrabiose oligosaccharides prepared byenzymatic hydrolysis. Carbohydr Res,2006,341(11):1859-1869.
    [64] Fukuyama Y, Ciancia M, Nonami H, et al. Matrix-assisted ultraviolet laser-desorptionionization and electrospray-ionization time-of-flight mass spectrometry of sulfatedneocarrabiose oligosaccharides. Carbohydr Res,2002,337(17):1553-1562.
    [65] Fatema M K, Nonami H., Ducatti D. R., et al. Matrix-assisted laser desorption/ionizationtime-of-flight (MALDI-TOF) mass spectrometry analysis of oligosaccharides andoligosaccharide alditols obtained by hydrolysis of agaroses and carrageenans, twoimportant types of red seaweed polysaccharides. Carbohydr Res,2010,345(2):275-283.
    [66] Antonopoulos A, Hardouin J, Favetta P, et al. Matrix-assisted laser desorption/ionisation massspectrometry for the direct analysis of enzymatically digested κ-, ι-and hybridι/nu-carrageenans. Rapid Commun Mass Spectrom,2005,19(16):2217-2226.
    [67] Ohara K, Jacquinet J C, Jouanneau D, et al. Matrix-assisted laser desorption/ionization massspectrometric analysis of polysulfated-derived oligosaccharides usingpyrenemethylguanidine. J Am Soc Mass Spectrom,2009,20(1):131-137.
    [68] Ekeberg D, Knutsen S H and Sletmoen M. Negative-ion electrospray ionisation-massspectrometry (ESI-MS) as a tool for analysing structural heterogeneity in κ-carrageenanoligosaccharides. Carbohydr Res,2001,334(1):49-59.
    [69] Yu G, Zhao X., Yang B., et al. Sequence determination of sulfated carrageenan-derivedoligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry.Anal Chem,2006,78(24):8499-8505.
    [70] Aguilan J T, Dayrit F M, Zhang J, et al. Structural analysis of κ-carrageenan sulfatedoligosaccharides by positive mode nano-ESI-FTICR-MS and MS/MS by SORI-CID. JAm Soc Mass Spectrom,2006,17(1):96-103.
    [71] Antonopoulos A, Favetta P, Helbert W, et al. On-line liquid chromatography electrosprayionization mass spectrometry for the characterization of κ-and ι-carrageenans.Application to the hybrid ι-/nu-carrageenans. Anal Chem,2005,77(13):4125-4136.
    [72] Antonopoulos A, Favetta P, Helbert W, et al. On-line liquid chromatography-electrosprayionisation mass spectrometry for κ-carrageenan oligosaccharides with a porous graphiticcarbon column. J Chromatogr A,2007,1147(1):37-41.
    [73] Lemoine M, Nyvall P and Helbert W. Physical state of κ-carrageenan modulates the mode ofaction of κ-carrageenase from Pseudoalteromonas carrageenovora. Biochem J,2009,419(3):545-553.
    [74] Guibet M, Boulenguer P, Mazoyer J, et al. Composition and distribution of carrabiosemoieties in hybrid κ-/ι-carrageenans using carrageenases. Biomacromolecules,2008,9(1):408-415.
    [75] Yamada T, Ogamo A, Saito T, et al. Preparation and anti-HIV activity oflow-molecular-weight carrageenans and their sulfated derivatives. CarbohydratePolymers,1997,32(1):51-55.
    [76] Wang W, Zhang P, Hao C, et al. In vitro inhibitory effect of carrageenan oligosaccharide oninfluenza A H1N1virus. Antiviral research,2011,92(2):237-246.
    [77] Kalitnik A, Byankina Barabanova A, Nagorskaya V, et al. Low molecular weight derivativesof different carrageenan types and their antiviral activity. J Appl phycol,2013,25(1):65-72.
    [78] Mou H, Jiang X. and Guan H. A κ-carrageenan derived oligosaccharide prepared byenzymatic degradation containing anti-tumor activity. J Appl phycol,2003,15(4):297-303.
    [79] Zhou G, Sheng W, Yao W, et al. Effect of low molecular λ-carrageenan from Chondrusocellatus on antitumor H-22activity of5-Fu. Pharmacol Res,2006,53(2):129-134.
    [80] Zhou G, Xin H, Sheng W, et al. In vivo growth-inhibition of S180tumor by mixture of5-Fuand low molecular λ-carrageenan from Chondrus ocellatus. Pharmacol Res,2005,51(2):153-157.
    [81] Yuan H and Song J. Preparation, structural characterization and in vitro antitumor activity ofκ-carrageenan oligosaccharide fraction from Kappaphycus striatum. J Appl Phycol,2005,17(1):7-13.
    [82] Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity of κ-carrageenanoligosaccharides. Cancer Lett,2006,243(2):228-234.
    [83] Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of κ-carrageenanoligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives.Carbohydr Res,2005,340(4):685-692.
    [84] Yuan H., Song J., Zhang W., et al. Antioxidant activity and cytoprotective effect ofκ-carrageenan oligosaccharides and their different derivatives. Bioorg Med Chem Lett,2006,16(5):1329-1334.
    [85]周革非,邢荣莲,孙利芹,等.不同分子量的角叉菜(Chondrus ocellatus)λ-卡拉胶的抗氧化活性.2009,40(5):545-550.
    [86] Chen H, Yan X, Lin J, et al. Depolymerized products of λ-carrageenan as a potentangiogenesis inhibitor. J Agric Food Chem,2007,55(17):6910-6917.
    [87] Chen H. M., Yan X. J., Mai T. Y., et al. λ-Carrageenan oligosaccharides elicit reactive oxygenspecies production resulting in mitochondrial-dependent apoptosis in human umbilicalvein endothelial cells. Int J Mol Med,2009,24(6):801-806.
    [88]李翊和王海青.卡拉胶寡糖对放射损伤小鼠T细胞功能和亚型的影响.中华放射医学与防护杂志,2005,25(1):41-42.
    [89] Ren S, Li J, Wang W, et al. Protective effects of κ-ca3000+CP against ultraviolet-induceddamage in HaCaT and MEF cells. J Photoch Photobio B,2010,101(1):22-30.
    [90] Skea G L, Mountfort D O and Clements K D. Contrasting digestive strategies in four NewZealand herbivorous fishes as reflected by carbohydrase activity profiles. Comp BiochemPhysiol A Mol Integr Physiol,2007,146(1):63-70.
    [91] Weigl J and Yaphe W. The enzymic hydrolysis of carrageenan by Pseudomonascarrageenovora: purification of a κ-carrageenase. Can J Microbiol,1966,12(5):939-947.
    [92] Barbeyron T, Henrissat B. and Kloareg B. The gene encoding the κ-carrageenase ofAlteromonas carrageenovora is related to beta-1,3-1,4-glucanases. Gene,1994,139(1):105-109.
    [93] McLean M W and Williamson F B. κ-Carrageenase from Pseudomonas carrageenovora. EurJ Biochem,1979,93(3):553-558.
    [94] Sarwar G, Oda H, Sakata T, et al. Potentiality of artificial sea water salts for the production ofcarrageenase by a marine Cytophaga sp. Microbiol Immunol,1985,29(5):405-411.
    [95] Sarwar G, Matayoshi S and Oda H. Purification of a κ-carrageenase from marine Cytophagaspecies. Microbiol Immunol,1987,31(9):869-877.
    [96] Dyrset N, Lystad K and Levine D. Development of a fermentation process for production of aκ-carrageenase from Pseudomonas carrageenovora. Enzyme Microb Tech,1997,20(6):418-423.
    [97] Araki T, Higashimoto Y and Morishita T. Purification and characterization of κ-carrageenasefrom a marine bacterium, Vibrio sp. CA-1004. Fisheries Sci1999,65(6):937-942.
    [98] Khambhaty Y, Mody K and Jha B. Purification and characterization of κ-carrageenase from anovel γ-proteobacterium, Pseudomonas elongata (MTCC5261) syn. Microbulbiferelongatus comb. Nov. Biotechnol Bioproc E,2007,12(6):668-675.
    [99] Zhou M, Ma J, Li J, et al. A κ-carrageenase from a newly isolated Pseudoalteromonas-likebacterium, WZUC10. Biotechnol and Bioproc E,2008,13(5):545-551.
    [100] Sun F, Ma Y, Wang Y, et al. Purification and characterization of novel κ-carrageenase frommarine Tamlana sp. HC4. Chin J Oceanol Limn,2010,28(6):1139-1145.
    [101] Liu G, Li Y, Chi Z, et al. Purification and characterization of κ-carrageenase from the marinebacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. ProcessBiochem,2011,46(1):265-271.
    [102] Kobayashi T, Uchimura K, Koide O, et al. Genetic and Biochemical Characterization of thePseudoalteromonas tetraodonis Alkaline κ-Carrageenase. Biosci Biotech Bioch,2012,76(3):506-511.
    [103] Li S, Jia P, Wang L, et al. Purification and characterization of a new thermostableκ-carrageenase from the marine bacterium Pseudoalteromonas sp. QY203. J Ocean UnivChin,2013,12(1):155-159.
    [104] Potin P, Richard C, Barbeyron T, et al. Processing and hydrolytic mechanism of thecgkA-encoded κ-carrageenase of Alteromonas carrageenovora. Eur J Biochem,1995,228(3):971-975.
    [105] Barbeyron T, Michel G, Potin P, et al. ι-Carrageenases constitute a novel family of glycosidehydrolases, unrelated to that of κ-carrageenases. J Biol Chem,2000,275(45):35499-35505.
    [106] Abt B, Lu M, Misra M, et al. Complete genome sequence of Cellulophaga algicola typestrain (IC166). Stand Genomic Sci,2011,4(1):72-80.
    [107] Pati A, Abt B, Teshima H, et al. Complete genome sequence of Cellulophaga lytica typestrain (LIM-21). Stand Genomic Sci,2011,4(2):221-232.
    [108] Michel G, Flament D, Barbeyron T, et al. Expression, purification, crystallization andpreliminary X-ray analysis of the ι-carrageenase from Alteromonas fortis. ActaCrystallogr D Biol Crystallogr,2000,56(6):766-768.
    [109] Michel G, Helbert W, Kahn R, et al. The structural bases of the processive degradation ofι-carrageenan, a main cell wall polysaccharide of red algae. J Mol Biol,2003,334(3):421-433.
    [110] Zablackis E and Perez J. A partially pyruvated carrageenan from hawaiian Grateloupiafilicina (Cryptonemiales, Rhodophyta). Botanica Marina,1990,33(3):273-276
    [111] Fleurence J, Massiani L, Guyader O, et al. Use of enzymatic cell wall degradation forimprovement of protein extraction from Chondrus crispus, Gracilaria verrucosa andPalmaria palmata. J Appl Phycol,1995,7(4):393-397.
    [112] Kloareg B, Barbeyron T, Flament D, et al. Microbial degradation of sulfated galactans.Toward novel utilizations of red algae polysaccharides. Marine Micro Indus,1998,137-143.
    [113] Vreeland V, Zablackis E, Calumpong HP. Electrophoretic analysis of carrageenansubstructure. Philippines: PCAMRD,1993.1-119.
    [114] Guibet M, Kervarec N, Génicot S, et al. Complete assignment of1H and13C NMR spectraof Gigartina skottsbergii λ-carrageenan using carrabiose oligosaccharides prepared byenzymatic hydrolysis. Carbohydr Res,2006,341(11):1859-1869.
    [115] Chubb D, Jefferys B R, Sternberg M J, et al. Sequencing delivers diminishing returns forhomology detection: implications for mapping the protein universe. Bioinformatics,2010,26(21):2664-2671.
    [116] Aita T and Nishigaki K. A visualization of3D proteome universe: mapping of a proteomeensemble into3D space based on the protein-structure composition. Mol Phylogenet Evol,2011,61(2):484-494.
    [117] Haliloglu T and Bahar I. Structure-based analysis of protein dynamics: comparison oftheoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data.Proteins,1999,37(4):654-667.
    [118] Liu Y, Xu Y, Zhu J, et al. Crystallization and preliminary X-ray diffraction analysis ofcentral structure domains from mumps virus F protein. Acta Crystallogr Sect F Struct BiolCryst Commun,2005,61(9):855-857.
    [119] Von Dreele R B, Stephens P W, Smith G D, et al. The first protein crystal structuredetermined from high-resolution X-ray powder diffraction data: a variant of T3R3humaninsulin-zinc complex produced by grinding. Acta Crystallogr D Biol Crystallogr,2000,56(12):1549-1553.
    [120] Espinosa J F, Asensio J L, Garcia J L, et al. NMR investigations of protein-carbohydrateinteractions binding studies and refined three-dimensional solution structure of thecomplex between the B domain of wheat germ agglutinin and N,N',N"-triacetylchitotriose. Eur J Biochem,2000,267(13):3965-3978.
    [121] Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structureprediction. Curr Opin Struct Biol,2005,15(3):285-289.
    [122] Anfinsen C B. Principles that govern the folding of protein chains. Science,1973,181(4096):223-230.
    [123] Xu D and Zhang Y. Ab initio protein structure assembly using continuous structurefragments and optimized knowledge-based force field. Proteins,2012,80(7):1715-1735.
    [124] Jothi A. Principles, challenges and advances in ab initio protein structure prediction. ProteinPept Lett,2012,19(11):1194-1204.
    [125] Katagiri D, Fuji H, Neya S, et al. Ab initio protein structure prediction with force fieldparameters derived from water-phase quantum chemical calculation. J Comput Chem,2008,29(12):1930-1944.
    [126] Kanou K, Hirata T, Iwadate M, et al. HUMAN FAMSD-BASE: high quality proteinstructure model database for the human genome using the FAMSD homology modelingmethod. Chem Pharm Bull,2010,58(1):66-75.
    [127] Kopp J and Schwede T. Automated protein structure homology modeling: a progress report.Pharmacogenomics,2004,5(4):405-416.
    [128] Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci,2006,7(3):217-227.
    [129] Bordoli L, Kiefer F, Arnold K, et al. Protein structure homology modeling usingSWISS-MODEL workspace. Nat Protoc,2009,4(1):1-13.
    [130] Eswar N, Eramian D, Webb B, et al. Protein structure modeling with MODELLER.Methods Mol Biol,2008,426145-159.
    [131] Xu J, Jiao F and Yu L. Protein structure prediction using threading. Methods Mol Biol,2008,41391-121.
    [132] Mirny L A and Shakhnovich E I. Protein structure prediction by threading. Why it worksand why it does not. J Mol Biol,1998,283(2):507-526.
    [133] Chothia C. Proteins. One thousand families for the molecular biologist. Nature,1992,357(6379):543-544.
    [134] Wang Z X. A re-estimation for the total numbers of protein folds and superfamilies. ProteinEng,1998,11(8):621-626.
    [135] Jones D T, Taylor W R and Thornton J M. A new approach to protein fold recognition.Nature,1992,358(6381):86-89.
    [136] Barton G J. Protein sequence alignment techniques. Acta Crystallogr D Biol Crystallogr,1998,54(Pt6Pt1):1139-1146.
    [137] Elofsson A. A study on protein sequence alignment quality. Proteins,2002,46(3):330-339.
    [138] Needleman S B and Wunsch C D. A general method applicable to the search for similaritiesin the amino acid sequence of two proteins. J Mol Biol,1970,48(3):443-453.
    [139] Vouzis P D and Sahinidis N V. GPU-BLAST: using graphics processors to accelerate proteinsequence alignment. Bioinformatics,2011,27(2):182-188.
    [140] Pei J. Multiple protein sequence alignment. Curr Opin Struct Biol,2008,18(3):382-386.
    [141] Madhusudhan M S, Webb B M, Marti-Renom M A, et al. Alignment of multiple proteinstructures based on sequence and structure features. Protein Eng Des Sel,2009,22(9):569-574.
    [142] Neuwald A F and Liu J S. Gapped alignment of protein sequence motifs through MonteCarlo optimization of a hidden Markov model. BMC Bioinformatics,2004,5157.
    [143] Di Tommaso P, Moretti S, Xenarios I, et al. T-Coffee: a web server for the multiple sequencealignment of protein and RNA sequences using structural information and homologyextension. Nucleic Acids Res,2011,39: W13-17.
    [144] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexiblestrategies for multiple sequence alignment aided by quality analysis tools. Nucleic AcidsRes,1997,25(24):4876-4882.
    [145] Zhang B, Wustman B A, Morse D, et al. Model peptide studies of sequence regions in theelastomeric biomineralization protein, Lustrin A. I. The C-domain consensus-PG-,-NVNCT-motif. Biopolymers,2002,63(6):358-369.
    [146] Przybylski D and Rost B. Consensus sequences improve PSI-BLAST through mimickingprofile-profile alignments. Nucleic Acids Res,2007,35(7):2238-2246.
    [147] Schneider T D and Stephens R M. Sequence logos: a new way to display consensussequences. Nucleic Acids Res,1990,18(20):6097-6100.
    [148] Crooks G E, Hon G, Chandonia J M, et al. WebLogo: a sequence logo generator. GenomeRes,2004,14(6):1188-1190.
    [149] Sharma V, Murphy D P, Provan G, et al. CodonLogo: a sequence logo-based viewer forcodon patterns. Bioinformatics,2012,28(14):1935-1936.
    [150] Chave K J, Auger I E, Galivan J, et al. Molecular modeling and site-directed mutagenesisdefine the catalytic motif in human γ-glutamyl hydrolase. J Biol Chem,2000,275(51):40365-40370.
    [151] Fisher S H and Wray L V. Feedback-resistant mutations in Bacillus subtilis glutaminesynthetase are clustered in the active site. J Bacteriol,2006,188(16):5966-5974.
    [152] Goosen C, Yuan X L, Munster J M, et al. Molecular and biochemical characterization of anovel intracellular invertase from Aspergillus niger with transfructosylating activity.Eukaryot Cell,2007,6(4):674-681.
    [153] Kaper T, Leemhuis H, Uitdehaag J C, et al. Identification of acceptor substrate bindingsubsites+2and+3in the amylomaltase from Thermus thermophilus HB8. Biochemistry,2007,46(17):5261-5269.
    [154] Kumar V. Identification of the sequence motif of glycoside hydrolase13family members.Bioinformation,2011,6(2):61-63.
    [155] Kostylev M and Wilson D B. Determination of the catalytic base in family48glycosylhydrolases. Appl Environ Microbiol,2011,77(17):6274-6276.
    [156] Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database(CAZy): an expert resource for Glycogenomics. Nucleic Acids Res,2009,37: D233-238.
    [157] Sansenya S, Maneesan J and Cairns J R. Exchanging a single amino acid residue generatesor weakens a+2cellooligosaccharide binding subsite in rice beta-glucosidases.Carbohydr Res,2012,351130-133.
    [158] Jiang Y L, Yu W L, Zhang J W, et al. Structural basis for the substrate specificity of a novelbeta-N-acetylhexosaminidase StrH protein from Streptococcus pneumoniae R6. J BiolChem,2011,286(50):43004-43012.
    [159] Yoshizawa T, Shimizu T, Hirano H, et al. Structural basis for inhibition ofxyloglucan-specific endo-beta-1,4-glucanase (XEG) by XEG-protein inhibitor. J BiolChem,2012,287(22):18710-18716.
    [160] Ben Mabrouk S, Aghajari N, Ben Ali M, et al. Enhancement of the thermostability of themaltogenic amylase MAUS149by Gly312Ala and Lys436Arg substitutions. BioresourTechnol,2011,102(2):1740-1746.
    [161] Anbar M, Gul O, Lamed R, et al. Improved thermostability of Clostridium thermocellumendoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol,2012,78(9):3458-3464.
    [162] Horn S J, Sorbotten A, Synstad B, et al. Endo/exo mechanism and processivity of family18chitinases produced by Serratia marcescens. Febs J,2006,273(3):491-503.
    [163] Sikorski P, Sorbotten A, Horn S J, et al. Serratia marcescens chitinases with tunnel-shapedsubstrate-binding grooves show endo activity and different degrees of processivity duringenzymatic hydrolysis of chitosan. Biochemistry,2006,45(31):9566-9574.
    [164] Horn S J, Sikorski P, Cederkvist J B, et al. Costs and benefits of processivity in enzymaticdegradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A,2006,103(48):18089-18094.
    [165] Zakariassen H, Aam B B, Horn S J, et al. Aromatic residues in the catalytic center ofchitinase A from Serratia marcescens affect processivity, enzyme activity, and biomassconverting efficiency. J Biol Chem,2009,284(16):10610-10617.
    [166] Carriere F, Thirstrup K, Hjorth S, et al. Pancreatic lipase structure-function relationships bydomain exchange. Biochemistry,1997,36(1):239-248.
    [167] Park H S, Nam S H, Lee J K, et al. Design and evolution of new catalytic activity with anexisting protein scaffold. Science,2006,311(5760):535-538.
    [168] Masuko T, Minami A, Iwasaki N, et al. Carbohydrate analysis by a phenol-sulfuric acidmethod in microplate format. Anal Biochem,2005,339(1):69-72.
    [169] Miller G L. Use of dinitrosalicylic acid reagent for Determination of reducing sugar. AnalChem,1959,31(3):426-428.
    [170] Kidby D K and Davidson D J. A convenient ferricyanide estimation of reducing sugars inthe nanomole range. Anal Biochem,1973,55(1):321-325.
    [171] Sengupta S, Jana M L, Sengupta D, et al. A note on the estimation of microbial glycosidaseactivities by dinitrosalicylic acid reagent. Appl Microbiol Biotechnol,2000,53(6):732-735.
    [172] Gao N. Fluorophore-assisted carbohydrate electrophoresis: a sensitive and accurate methodfor the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell culturesand tissues. Methods,2005,35(4):323-327.
    [173] Huang G, Yang H, Mei X, et al. Fluorophore-assisted carbohydrate electrophoresis asdetection method for carbohydrate-protein interactions. Appl Biochem Biotechnol,2007,136(1):17-22.
    [174] Kopp J and Schwede T. Automated protein structure homology modeling: a progress report.Pharmacogenomics,2004,5(4):405-416.
    [175] Bordoli L, Kiefer F, Arnold K, et al. Protein structure homology modeling usingSWISS-MODEL workspace. Nat Protoc,2009,4(1):1-13.
    [176] Horn S J, Sikorski P, Cederkvist J B, et al. Costs and benefits of processivity in enzymaticdegradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A,2006,103(48):18089-18094.
    [177] Zakariassen H, Aam B B, Horn S J, et al. Aromatic residues in the catalytic center ofchitinase A from Serratia marcescens affect processivity, enzyme activity, and biomassconverting efficiency. J Biol Chem,2009,284(16):10610-10617.
    [178] Davies G J, Wilson K S and Henrissat B. Nomenclature for sugar-binding subsites inglycosyl hydrolases. Biochem J,1997,321(Pt2)557-559.
    [179] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexiblestrategies for multiple sequence alignment aided by quality analysis tools. Nucleic AcidsRes,1997,25(24):4876-4882.
    [180] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0. Mol Biol Evol,2007,24(8):1596-1599.
    [181] Schneider T D and Stephens R M. Sequence logos: a new way to display consensussequences. Nucleic Acids Res,1990,18(20):6097-6100.
    [182] Crooks G E, Hon G, Chandonia J M, et al. WebLogo: a sequence logo generator. GenomeRes,2004,14(6):1188-1190.
    [183] Bramucci E, Paiardini A, Bossa F, et al. PyMod: sequence similarity searches, multiplesequence-structure alignments, and homology modeling within PyMOL. BMCBioinformatics,2012,13Suppl4S2.
    [184] Sato T, Kanai Y and Hoshino T. Overexpression of squalene-hopene cyclase by the pETvector in Escherichia coli and first identification of tryptophan and aspartic acid residuesinside the QW motif as active sites. Biosci Biotechnol Biochem,1998,62(2):407-411.
    [185] Birko Z, Schauwecker F, Pfennig F, et al. Expression and rapid one-step purification ofbiologically active His-tagged factor C by Ni+affinity column chromatography. FEMSMicrobiol Lett,2001,196(2):223-227.
    [186] Thomson A B. A theoretical discussion of the use of the Lineweaver-Burk plot to estimatekinetic parameters of intestinal transport in the presence of unstirred water layers. Can JPhysiol Pharmacol,1981,59(9):932-948.
    [187] Yan B and Sun Y. Glycine residues provide flexibility for enzyme active sites. J Biol Chem,1997,272(6):3190-3194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700