用户名: 密码: 验证码:
单轴对称工字形单悬伸梁和双跨连续梁整体稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯扭屈曲是钢梁的重要的破坏模式之一,不同的截面形式、边界条件以及荷载形式对梁的失稳模式和稳定承载力有很大影响。从十九世纪末开始,各国学者针对各种形式的梁进行了试验研究和理论分析,有关各种条件下单跨梁的整体稳定性能的研究已经很成熟,各国规范中用于计算单跨梁的整体稳定承载力公式也基本一致。
     由于悬伸梁和连续梁屈曲问题的复杂性,目前还没有简便的方法来计算其弯扭屈曲荷载。国外学者对双轴对称截面的连续梁进行过试验研究,国内尚未查阅到相关的试验资料。现今学者们提出用于计算悬伸梁和连续梁的整体稳定承载力计算方法多针对双轴对称截面,而且荷载作用点高度和截面不对称性对整体稳定性能的影响考虑的不够全面。因此,对单轴对称工字形悬伸梁和连续梁的整体稳定性能及其承载力的计算方法还需进行深入的研究。
     本课题采用试验与理论分析相结合的方法,对单轴对称工字形单悬伸梁和双跨连续梁的整体稳定性能进行了较为系统的研究,并据此提出了可考虑截面形式、荷载作用位置的临界弯矩和极限弯矩的简化计算公式。
     考虑到国内缺少悬伸梁和连续梁的试验数据,本文对5根单轴对称工字形单悬伸梁和3根单轴对称工字形双跨连续梁进行了集中荷载作用在上翼缘时的整体稳定承载力试验研究。试验结果表明:当单悬伸梁控制稳定的部分在简支段,且大部分上翼缘受压时,相同条件下,上翼缘加强截面的极限承载力明显高于下翼缘加强截面。当自由端荷载位置不变,简支段的集中荷载越靠近悬伸段支座,悬伸段对简支段的约束越大,梁的极限承载力也随之增大;对于双跨连续梁,当控制梁段跨度不变时,随着约束梁段的跨度逐渐增大,梁段间的相互约束逐渐减弱,梁的极限承载力降低。并且当约束梁段上作用荷载为零时,其对控制梁段的约束最小。在进行梁的整体稳定试验时,可利用Southwell法获得较精确的构件弹性临界荷载,从而可以利用有限的试件得到更多的试验数据。
     采用截面法对焊接单轴对称工字形截面的残余应力分布进行了测量。根据实测值建立了接近试验情况的单轴对称工字形截面残余应力分布模型,并用FORTRAN语言编写了能自动生成初应力文件的程序。利用ANSYS进行非线性屈曲分析时读入初应力文件,计算得到的极限承载力与试验结果吻合较好。经分析发现不考虑残余应力的有限元结果与试验结果相差较大。
     在试验的基础上,分别对单轴对称工字形单悬伸梁和双跨连续梁进行了大量的参数分析。通过研究截面形式、截面尺寸、梁跨度、相邻梁段跨度比及荷载作用点高度等参数对极限弯矩的影响发现:对于单悬伸梁,当集中荷载作用在下翼缘,悬伸段对简支段的约束随悬伸长度与简支段跨度比η的增大或简支段与悬伸段荷载之比R的减小而增强;当集中荷载作用在上翼缘,R值较大时,悬伸段对简支段的约束随η增大而增强,而当R值较小时,约束随η增大反而减弱。单悬伸梁受均布荷载时,梁段间的约束随η增大而增强,与相同条件下集中荷载作用时相比,R对极限弯矩的影响不如η大。对于双跨连续梁,约束梁段的跨度越大,梁段间的相互约束越弱。
     以有限元分析结果为依据,通过对集中荷载(或均布荷载)作用下单轴对称工字形单悬伸梁、双跨连续梁临界弯矩与相同条件下单跨简支梁临界弯矩之比Mc/Mce(或Md/Mde)的研究,发现在其它条件一定时,Mc/Mce(或Md/Mde)随控制梁段的扭转刚度系数K1的变化呈抛物线变化。由此回归得到了单轴对称工字形单悬伸梁和双跨连续梁临界弯矩的计算公式。通过对弹塑性弯扭屈曲模拟结果的回归得到了极限弯矩与临界弯矩的关系式。
     开展了单、双轴对称工字形双跨、单跨梁在焊接残余应力影响下整体稳定性能的探索性研究。分析了荷载形式、荷载作用高度、截面不对称性、梁跨度及翼缘残余拉、压应力面积之比对梁极限承载力的影响,并提出了考虑残余应力梁的极限弯矩与折算长细比的关系式。通过分析发现,当受压翼缘残余拉、压应力面积之比大于1时,残余应力会提高出平面相对长细比较大的梁的极限承载力,其提高程度不容忽视。这与本文的试验结果完全吻合。
The flexural-torsional buckling is an important failure mode of the steel beams. The buckling modes and stability capacities are significantly influenced by the variations in the section shape, condition of support and the type of loading. From the end of nineteen century, experimental investigation and theory analysis on all kinds of beams are being carried by many scholars. The researches on the overall stability capacity of the single span beams under various conditions are already very mature, and the formulas for calculating this capacity are also similar to in the design codes among different countries.
     Until now, the simple and convenient methods of calculating the buckling loads of the overhanging beams and continuous beams have not been presented, because this problem is considerably complex. Some tests were conducted on the double-symmetric I-section continuous beams by the foreign scholars, but the related experiment data have not been found in the domestic. Actually the proposed formulas for calculating the overall stability capacity mostly focus on the double-symmetric I-section beams, and in which the influence of the loading position and the monosymmetry section constant have not been fully accounted for. Therefore the overall stability behavior and the methods of calculating the overall load-carrying capacity of the monosymmetric I-section overhanging beams and continuous beams still need to be further investigated.
     Tests and theoretical analysis on the overall stability behavior of the monosymmetric I-section overhanging beams and two-span continuous beams were systematically conducted in this paper. Based on above, the simplified formulas for calculating the critical moment and ultimate moment have been proposed, in which the section shapes and the loading positions are all considered.
     Because of lack of the experimental data about the overhanging beams and continuous beams in the domestic, a total of 8 tests on the overall stability capacity of monosymmetric I-section beams, including 5 overhanging beams and 3 continuous beams, were performed under concentrated load applied on the top flange. As indicated from the experimental results: when the dominative stability portion of the overhanging beam is at the simply supported segment and greater portion of the top flange is compressed, the ultimate load of the beam with the enhanced flange at the top is greater than the beam with the enhanced flange at the bottom under the same conditions. When the position of the load acting at the free end of the beam is constant, the restraint to the simply segment by the overhanging segment is gradually enhanced with the position of the concentrated load acting at the simply segment closing to the support of the overhanging segment, and the ultimate load-carrying capacity of the overhanging beam is also gradually increases. For the continuous beams, if the span of the critical segment keeps invariable, the decrease in the buckling load is greater and greater as the span of the restraining segment gradually increases, due to the interactions between the segments becoming gradually lower. The interactions between the segments are the lowest when the load acting at the restraining segment is zero. The fairly accurate critical load can be obtained by using the Southwell plot method, consequently the more experimental data can be received from the elastic tests by using the limited specimens.
     The residual stresses of the welded monosymmetric I-section are measured by the sectioning method. According to the measured results, the simplified residual stress patterns of the monosymmetric I-section which are close to the test distribution have been proposed. The programs which can automatically create the initial stress file have been also compiled using FORTRAN. The initial stress file can be inputted in the non-linear buckling analysis by using ANSYS, the calculated ultimate loads fit together well with the test results. It is observed that the results of finite element analysis (FEA) in which the residual stresses are not considered are quite different with the test results.
     Based on the tests, large amounts of finite element parametric analysis were performed for the monosymmetric I-section overhanging beams and two-span continuous beams. The stability behaviors of these members were investigated by changing the section shapes, the section dimensions, the span lengths, the ratio of the span lengths, the load position and so on. It is observed that, the restraining actions between adjacent segments of the overhanging beams under concentrated loads acting at the bottom flange increase as the increase ofη(the ratio of overhanging length to span length of the simply segment) or the decrease of R (the ratio of the loads between the simply segment and the overhanging segment); the restraining actions between adjacent segments of the overhanging beams under concentrated loads acting at the top flange increase as the increase ofηwhen R is bigger, whereas the restraining actions between adjacent segments decrease as the increase ofηwhen R is smaller. The restraining actions between adjacent segments of the overhanging beams under the distributed loads increase as the increase ofη. The effect of the R is not as much asηwhen the overhanging beams carry distributed loads comparing with the concentrated loads. For the two-span continuous beams, the restraining actions between adjacent segments gradually decrease as the increase of the span length of the restraining segment.
     Taking the FEA results as the reference, the investigation about the ratio of the critical moments between the monosymmetric I-section overhang beams or two-span continuous beams under concentrated loads (or distributed loads) and the simply supported beams under the same conditions Mc/Mce (or Md/Mde) were conducted. It is found that the interrelation between the ratios of critical moments, Mc/Mce (or Md/Mde), and the coefficients of torsional stiffness of the dominative segment, K1, agree with the parabolic pattern, therefore the formulas for the critical moment of the monosymmetric I-section overhanging beams and two-span continuous beams can be obtained. The relation equations between the ultimate moment and critical moment are also obtained by using the regression analysis for the results of inelastically flexural-torsional buckling simulation.
     The studies about the effect of the residual stress on the overall stability capacity of the monosymmetric and double-symmetric I-section two-span and single-span beams were carried out. The influence of the loading type, the loading position, the monosymmetry section constant and the ratio of the distribution area between the tensile and the compress residual stress in the flange were all considered. The relation equations between the ultimate moment allowing for the residual stress and normalized slenderness have been proposed. It is shown that the ultimate bearing capacities of the beam with larger normalized slenderness may increase by the residual stress when the ratio of the distribution area between the tensile and the compress residual stress in the flange is greater than 1, and the increment should not be neglected. It is quite close to the test results of this paper.
引文
1 《钢结构设计规范》编制组.《钢结构设计规范》应用讲解. 中国计划出版社,2003:17~30 147-175
    2 崔佳,魏明钟等.钢结构设计规范理解与应用. 中国建筑工业出版社,2004:78-96
    3 吕烈武,沈世钊等. 钢结构构件稳定理论. 中国建筑工业出版社,1983: 168-191
    4 W. F. Chen, T. Atsuta. 梁柱分析与设计 第二卷空间问题特性及设计. 周绥平,刘西拉译. 人民交通出版社,1997:50-104
    5 R. Narayanan, ed. Beams and Beam Columns. Applied Science Publishers, 1983:1-71 135-206
    6 N. S. Trahair. Flexural-Torsional Buckling of Structures. E & FN Spon, 1993:117-204 245-296 306-309
    7 F. Bleich. 金属结构的屈曲强度. 同济大学钢木结构教研室译. 科学出版社,1965: 160-178 429-473
    8 S. P. Timoshenko, J. M. Gere. 弹性稳定理论. 张福范译. 第二版. 科学出版社, 1965: 269-290 339-457
    9 陈骥. 钢结构稳定理论与设计. 第二版. 科学出版社,2003: 314-507
    10 Y. -L. Pi, N. S. Trahair. Distortion and Warping at Beam Supports. Journal of Structural Engineering. 2000,126(11): 1279-1287
    11 J. M. Anderson, N. S. Trahair. Stability of Monosymmetric Beams and Cantilevers. Journal of the Structural Division. 1972,98(ST1): 269-286
    12 S. Kitipornchai, N. S. Trahair. Buckling Properties of Monosymmetric I-Beams. Journal of the Structural Division. 1980,106(ST5): 941-957
    13 S. Kitipornchai, C. M. Wang and N. S. Trahair. Buckling of Monosymmetric I-Beams under Moment Gradient. Journal of Structural Engineering. 1986,112(4): 781-799
    14 C. M. Wang, S. Kitipornchai. Buckling Capacities of Monosymmetric I-Beams. Journal of Structural Engineering. 1986,112(11): 2373-2391
    15 A. N. Sherbourne, M. D. Pandey. Elastic, Lateral-Tortional Stability Beams: Moment Modification Factor. Journal of Constructional Steel Research. 1989,13: 337-356
    16 T. A. Helwig, K. H. Frank and J. A. Yura. Lateral-Torsional Buckling of Singly Symmetric I-Beams. Journal of Structural Engineering. 1997,123(9): 1172-1179
    17 F. Mohri, A. Brouki and J. C. Roth. Theoretical and Numerical Stability Analyses of Unrestrained, Mono-Symmetric Thin-Walled Beams. Journal of Constructional Steel Research. 2003,59(1): 63-90
    18 T. M. Roberts, R. Narayanan. Strength of Laterally Unrestrained Monosymmetric Beams. Thin-Walled Structures. 1988,6: 305-319
    19 M. A. Bradford. Effect of Secondary Warping on Lateral Buckling. Engineering Structures. 1989,11(2): 112-118
    20 T. M. Roberts, M. Benchiha. Lateral Instability of Monosymmetric Beams with Initial Curvature. Thin-Walled Structures. 1987,5: 111-123
    21 Y. -L. Pi, N. S. Trahair. Prebuckling Deflections and Lateral Buckling. Ⅰ: Theory. Journal of Structural Engineering. 1992,118(11): 2949-2966
    22 Y. -L. Pi, N. S. Trahair. Prebuckling Deflections and Lateral Buckling. Ⅱ: Applications. Journal of Structural Engineering. 1992,118(11): 2967-2985
    23 N. S. Trahair. Laterally Unsupported Beams. Engineering Structures. 1996, 18(10): 759-768
    24 J. Valentino, N. S. Trahair. Torsional Restraint Against Elastic Lateral Buckling. Journal of Structural Engineering. 1998,124(10): 1217-1225
    25 B. Gosowski. Spatial Buckling of Thin-Walled Steel-Construction Beam-Columns with Discrete Bracings. Journal of Constructional Steel Research. 1999,52(3): 293-317
    26 B. Gosowski. Spatial Stability of Braced Thin-Walled Members of Steel Structures. Journal of Constructional Steel Research. 2003,59(7): 839-865
    27 J. Valentino, Y. -L. Pi and N. S. Trahair. Inelastic Buckling of Steel Beams with Central Torsional Restraints. Journal of Structural Engineering. 1997,123(9): 1180-1186
    28 T. V. Galambos. Inelastic Lateral Buckling of Beams. Journal of the Structural Division. 1963,89(ST5): 217-242
    29 N. S. Trahair, S. Kitipornchai. Buckling of Inelastic I-Beams Under Uniform Moment. Journal of the Structural Division. 1972,98(ST11): 2551-2566
    30 D. A. Nethercot. Residual Stress and Their Influence Upon the Lateral Buckling of Rolled Steel Beams. The Structural Engineer. 1974,52(3): 89-96
    31 D. A. Nethercot. Inelastic Buckling of Steel Beams under Non-uniform Moment. The Structural Engineer. 1975,53(2): 73-78
    32 H. Yoshida, K. Maegawa. Lateral Instability of I-Beams with Imperfections. Journal of Structural Engineering. 1984,110(8): 1875-1892
    33 D. A. Nethercot, N. S. Trahair. Inelastic Lateral Buckling of Determinate Beams. Journal of the Structural Division. 1976,102(ST4): 701-717
    34 D. A. Nethercot. Inelastic Buckling of Monosymmetric I-Beams. Journal of the Structural Division. 1973,99(ST7): 1696-1701
    35 S. Kitipornchai, A. D. Wong-Chung. Inelastic Buckling of Welded Monosymmetric I-Beams. Journal of Structural Engineering. 1987,113(4): 740-756
    36 S. Bild, G. Chen and N. S. Trahair. Out-of-Plane Strengths of Steel Beams. Journal of Structural Engineering. 1992,118(8): 1987-2003
    37 Y. -L. Pi, N. S. Trahair. Inelastic Bending and Torsion of Steel I-Beams. Journal of Structural Engineering. 1994,120(12): 3397-3417
    38 C. J. Earls. On the Inelastic Failure of High Strength Steel I-Shaped Beams. Journal of Constructional Steel Research. 1999,49 (1): 1-24
    39 N. S. Trahair, G. J. Hancock. Steel Member Strength by Inelastic Lateral Buckling. Journal of Structural Engineering. 2004,130(1): 64-69
    40 H. A. Sawyer. Post-Elastic Behavior of Wide-Flange Steel Beams. Journal ofthe Structural Division. 1961,87(ST8): 43-71
    41 Y. Fukumoto, Y. Itoh. Statistical Study of Experiments on Welded Beams. Journal of the Structural Division. 1981,107(ST1): 89-103
    42 S. Kitipornchai, N. S. Trahair. Buckling of Inelastic I-Beams Under Moment Gradient. Journal of the Structural Division. 1975,101(ST5): 991-1004
    43 S. Kitipornchai, N. S. Trahair. Inelastic Buckling of Simply Supported Steel I-Beams. Journal of the Structural Division. 1975,101(ST7): 1333-1347
    44 P. F. Dux, S. Kitipornchai. Inelastic Beam Buckling Experiments. Journal of Constructional Steel Research. 1983,3(1): 3-9
    45 S. Cherry. The Stability of Beams with Buckled Compression Flanges. The Structural Engineer. 1960,38(9): 277-285
    46 S. T. Wang, M. I. Yost and Y. L. Tien. Lateral Buckling of Locally Buckled Beams Using Finite Element Techniques. Computers and structures. 1977,7(7): 469-475
    47 M. A. Bradford, G. J. Hancock. Elastic Interaction of Local and Lateral Buckling in Beams. Thin-Walled Structures. 1984,2(1): 1-25
    48 T. M. Roberts, P. S. Jhita. Lateral, Local and Distortional Buckling of I-Beams. Thin-Walled Structures. 1983,1(4): 289-308
    49 K. Masahiro, F. Yuhshi. Lateral-Torsional Buckling of Thin-Walled I-Beams. Journal of Structural Engineering. 1988,114(4): 841-855
    50 C. M. Menken, W. J. Groot and G. A. J. Stallenberg. Interactive Buckling of Beams in Bending. Thin-Walled Structures. 1991,12: 415-434
    51 G. J. Hancock, M. A. Bradford and N. S. Trahair. Web Distortion and Flexural-Torsional Buckling. Journal of the Structural Division. 1980,106(ST7): 1557-1571
    52 M. A. Bradford, N. S. Trahair. Distortional Buckling of I-Beams. Journal of the Structural Division. 1981,107(ST2): 355-370
    53 M. A. Bradford. Distortional Buckling of Monosymmetric I-Beams. Journal of Constructional Steel Research. 1985,5: 123-136
    54 M. A. Bradford, S. W. Waters. Distortional Instability of Fabricated Monosymmetric I-Beams. Computers and structures. 1988,29(4): 715-724
    55 M. A. Bradford. Inelastic Distortional Buckling of I-Beams. Computers and structures. 1986,24(6): 923-933
    56 M. A. Bradford. Buckling Strength of Deformable Monosymmetric I-Beams. Engineering Structures. 1988,10(7): 167-173
    57 M. A. Bradford. Buckling of Elastically Restrained Beams with Web Distortions. Thin-Walled Structures. 1988,6(3): 287-304
    58 M. A. Bradford. Distortional Buckling Strength of Elastically Restrained Monosymmetric I-Beams. Thin-Walled Structures. 1990,9: 339-350
    59 M. A. Bradford. Lateral-Distortional Buckling of Steel I-Section Members. Journal of Constructional Steel Research. 1992,23(1): 97-116
    60 M. Ma, O. Hughes. Lateral Distortional Buckling of Monosymmetric I-Beams under Distributed Vertical Load. Thin-Walled Structures. 1996,26(2): 123-145
    61 O. Hughes, M. Ma. Lateral Distortional Buckling of Monosymmetric Beams under Point Load. Journal of Structural Engineering. 1996,122(10): 1022-1029
    62 M. A. Bradford. Distortional Buckling of Elastically Restrained Cantilevers. Journal of Constructional Steel Research. 1998,47(1-2): 3-18
    63 M. A. Bradford, H. R. Ronagh. Generalized Elastic Buckling of Restrained I-Beams by FEM. Journal of Structural Engineering. 1997,123(12): 1631-1637
    64 M. A. Bradford. Elastic Distortional Buckling of Tee-Section Cantilevers. Thin-Walled Structures. 1999,33(1): 3-17
    65 A. Samanta, A. Kumar. Distortional Buckling in Monosymmetric I-Beams. Thin-Walled Structures. 2006,44(1): 51-56
    66 A. J. Hartmann. Elastic Lateral Buckling of Continuous Beams. Journal of the Structural Division. 1967,93(ST4): 11-26
    67 G. Powell, R. Klinger. Elastic Lateral Buckling of Steel Beams. Journal ofthe Structural Division. 1970,96(ST9): 1919-1932
    68 P. F. Dux, S. Kitipornchai. Elastic Buckling of Laterally Continuous I-Beams. Journal of the Structural Division. 1982,108(ST9): 2099-2016
    69 N. S. Trahair. Elastic Stability of Continuous Beams. Journal of the Structural Division. 1969,95(6): 1295-1311
    70 P. E. Cuk, N. S. Trahair. Buckling of Beams with Concentrated Moments. Journal of Structural Engineering. 1983,109(6): 1387-1401
    71 Y. C. Wang, D. A. Nethercot. Bracing Requirements for Laterally Unrestrained Beams. Journal of Constructional Steel Research. 1990,17: 305-315
    72 J. S. Park, J. M. Stallings and Y. J. Kang. Lateral-Torsional Buckling of Prismatic Beams with Continuous Top-Flange Bracing. Journal of Constructional Steel Research. 2004,60(2): 147-160
    73 D. A. Nethercot, N. S. Trahair. Lateral Buckling Approximations for Elastic Beams. The Structural Engineer. 1976,54(6): 197-204
    74 H. S. Essa, D. J. L. Kennedy. Design of Steel Beam in Cantilever-Suspended-Span Construction. Journal of Structural Engineering. 1995,121(11): 1667-1673
    75 K. M. ?zdemir, C. Topkaya. Lateral Buckling of Overhanging Crane Trolley Monorails. Engineering Structures. 2006,28(8): 1162-1172
    76 张显杰,夏志斌. 钢梁侧扭屈曲的归一化研究.钢结构研究论文报告选集 (第二册). 全国钢结构标准技术委员会,1983:58-77
    77 张显杰,夏志斌. 钢梁屈曲试验的计算机模拟.钢结构研究论文报告选集 (第二册). 全国钢结构标准技术委员会,1983:78-95
    78 卢献荣,夏志斌. 验算钢梁整体稳定的简化方法.钢结构研究论文报告选集 (第二册). 全国钢结构标准技术委员会,1983:96-119
    79 陈其石,潘有昌,夏志斌. 有初缺陷工字形钢梁的整体稳定极限承载力. 浙江大学学报. 1986, 20(5): 41-54
    80 郭耀杰,方山峰. 钢结构构件弯扭屈曲问题的计算和分析. 建筑结构学报. 1990, 11 (3): 38-43
    81 郭耀杰,方山峰. 论 Timoshenko 总势能的不完备性. 力学与实践. 1999, 21 (2): 56-58
    82 陈士林,方山峰. 钢结构构件非线性屈曲问题的样条有限条分析. 建筑结构. 1995, 25 (5): 9-13
    83 童根树,张磊. 薄壁钢梁稳定性计算的争议及其解决. 建筑结构学报. 2002, 23 (3): 44-51
    84 童根树,张磊. 薄壁钢梁中的横向应力及其对强度和稳定性的影响. 土木工程学报. 2003, 36 (4): 59-64
    85 张磊,童根树. 薄壁构件弯扭失稳的一般理论. 建筑结构学报. 2003, 24 (3): 16-24
    86 方山峰. 单轴对称工字形截面薄壁钢梁弯扭屈曲的受力特点. 建筑结构增刊. 2004: 304-308
    87 郭耀杰,周明,朱爱珠. 不同 C3 取值冷弯薄壁型钢梁整体稳定系数的比较. 建筑结构增刊. 2004: 301-303
    88 郭耀杰,陈尚建,方山峰. 平面内弯曲变形对构件弯扭屈曲的影响. 钢结构. 2000, 15(49): 28-30
    89 韩邦飞.钢梁整体稳定性的试验研究. 石家庄铁道学院学报. 1992, 5 (3): 57-64
    90 夏建国. 工字形钢梁整体稳定性能的研究. 上海铁道大学学报. 1999, 20 (2): 17-21
    91 王全凤,李华煜. 薄壁杆件侧向稳定的近似闭合解. 工程力学. 1996, 13 (2): 24-33
    92 杜咏. 工字钢梁弯扭屈曲的计算模型和屈曲方程的求解. 南京建筑工程学院学报. 1997, 3: 30-34
    93 王俊平,苏庆田. 国产轧制 H 型钢梁整体稳定性能的研究. 工业建筑. 2000, 30(8): 56-58
    94 辛克贵,姜美兰. 薄壁杆件稳定分析的样条有限杆元法. 清华大学学报(自然科学版). 2001, 41 (4/5): 235-239
    95 吴秀水,辛克贵,姜美兰. 横向荷载作用下薄壁杆件稳定分析的有限杆元法. 工程力学. 2001,18 (1): 47-55
    96 童根树,林南昌. 端部加缀板工字梁的抗扭性能分析. 工业建筑. 2002, 32 (9): 14-17
    97 戴国欣,王浩科,刘海鑫等. 国产轧制 H 型钢整体稳定几何控制条件. 钢结构. 2004, 19 (73): 62-64
    98 高丽亚. 国产 H 型钢梁整体稳定性能的理论与试验研究. 西安建筑科技大学硕士论文. 2003: 8-64
    99 高丽亚,邓长根,郝际平. 国产轧制 H 型钢整体稳定性能研究——稳定系数计算原理对国产热轧 H 型钢梁的适用性分析. 工业建筑. 2006, 36 (10): 75-78
    100 张壮南,张耀春. 双跨连续工字形梁的弹性屈曲分析. 钢结构增刊. 2004: 112-116
    101 张壮南,张耀春. 悬伸梁和双跨连续梁的整体稳定性能分析. 建筑结构. 2007, 37 (1): 15-19
    102 张磊,童根树. 两跨连续梁的弹性稳定. 钢结构增刊. 2004: 310-322
    103 张磊. 薄壁构件稳定新理论及其应用. 浙江大学博士论文. 2005: 180-207
    104 Zhang Lei, Tong Gengshu. Elastic Stability of Two-Span Continuous Beams under Moveing Loads. Advances in Structural Engineering. 2005,8(2): 157-172
    105 刘华峰,朱冰冰,曹平周. 两跨连续梁整体稳定承载力计算分析. 钢结构增刊. 2006: 345-349
    106 署恒木. 工字形截面外伸梁的侧向屈曲. 佳木斯大学学报. 1999, 17 (4): 392-396
    107 王正中,申永康,李宗利. 双悬臂对称工字形钢梁弹性稳定性计算. 长江科学院院报. 2002, 19 (6): 25-28
    108 罗高作,刘明虹. 外伸梁屈曲方程及机械工程应用. 机床与液压. 2003, (1): 207-208
    109 李昆,郭耀杰. 单伸臂钢梁整体稳定分析中等效计算长度系数的确定.长春工程学院学报(自然科学版). 2004,5(2): 22-26
    110 李昆,郭耀杰. 双伸臂钢梁等效计算长度系数的确定及稳定设计. 三峡大学学报(自然科学版). 2004,26(5): 416-419
    111 吴亚舸,张其林. 铝合金梁弯扭稳定系数的试验研究及数值分析. 建筑结构学报. 2006,27(5): 1-8
    112 张银龙,沈庆,陈徐均. 焊接铝合金梁的稳定临界荷载计算方法. 扬州大学学报(自然科学版). 2006,9(1): 66-69
    113 Y. Fukumoto, Y. Itoh and R. Hattori. Lateral Buckling Tests on Welded Continuous Beams. Journal of the Structural Division. 1982,108(ST10): 2245-2262
    114 S. Kitipornchai, P. F. Dux and N. J. Richter. Buckling and Bracing of Cantilevers. Journal of Structural Engineering. 1984,110(9): 2250-2262
    115 P. Mandal, C. R. Calladine. Lateral-torsional Buckling of Beams and the Southwell Plot. International Journal of Mechanical Sciences. 2002,44(12): 2557-2571
    116 GB/T228-2002 金属材料-室温拉伸试验方法
    117 Y. Fukumoto, Y. Itoh and M. Kubo. Strength Variation of Laterally Unsupported Beams. Journal of the Structural Division. 1980,106(ST1): 165-181
    118 H. Takabatake, S. Kusumoto and T. Inoue. Lateral Buckling Behavior of I Beams Stiffened with Stiffeners. Journal of Structural Engineering. 1991,117(11): 3203-3215
    119 N. S. Trahair. Deformations of Geometrically Imperfect Beams. Journal of the Structural Division. 1969,95(ST7): 1475-1496
    120 D. A. Nethercot. The Effective Lengths of Cantilevers as Governed by Lateral Buckling. The Structural Engineer. 1973,51(5): 161-168
    121 G. C. Lee, D. S. Fine, W. R. Hastreiter. Inelastic Torsional Buckling of H-Column. Journal of the Structural Division. 1967,93(ST5): 295-307
    122 J. Szalai, F. Papp. A New Residual Stress Distribution for Hot-Rolled I-Shaped Sections. Journal of Constructional Steel Research. 2005,61(6): 845-861
    123 近藤明雅, 彭月新. 关于焊接工形截面杆件推算残余应力的研究. 世界桥梁. 1980,3: 1-14
    124 P. O’hEachteirn, D. A. Nethercot. Lateral Buckling Tests on Monosymmetric Plate Girders. Journal of Constructional Steel Research. 1988,11(4): 241-259
    125 龙丽华, 蒋建. 残余应力对等截面 H 型钢梁相关屈曲的影响分析. 钢结构. 2006,21(1): 49-53
    126 朱援祥, 王勤, 赵学荣等. 基于 ANSYS 平台的焊接残余应力模拟. 武汉理工大学学报. 2004,26(2): 69-72
    127 陈丽敏, 陈思作. 基于 ANSYS 软件的焊接工字型截面梁残余应力的有限元分析. 钢结构. 2003,18(2): 45-47
    128 刘华琛, 赵峰. 模拟冷弯残余应力及其在稳定分析中的应用. 国外建材科技. 2005,26(2): 52-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700