用户名: 密码: 验证码:
碳纤维增强压弯钢构件稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代建筑提倡使用绿色建筑材料,钢结构材料得以广泛利用。钢结构中大多存在压弯构件,此类构件的破坏形式有强度破坏或者失稳破坏,而后者一直备受人们关注。研究失稳破坏问题大多采用数值方法。对于截面相对比较简单,受力情况又不十分复杂的构件,则可以寻求解析方法求解。
     本文将基于计算压弯构件弹塑性失稳的解析求解思想,推导在轴压和弯矩共同作用下翼缘外表面粘贴碳纤维的H型钢构件和方矩形(空心)截面钢构件及表面全部粘贴碳纤维的圆形截面钢管构件增强前后绕强轴失稳时的极限荷载计算公式,同时给出了有限元数值分析结果。
     求解中分别对两端简支压弯钢构件失稳时截面受压侧屈服和受压受拉侧均屈服的两种情况进行了讨论。对于H型钢构件和方矩形(空心)截面钢构件来说,又可进一步分别考虑屈服区出现在翼缘和腹板内的情形。而对于圆形截面钢管构件来说,由于管壁较薄,不再考虑塑性区沿壁厚的变化。
     给出了翼缘外表面粘贴碳纤维且具有初始几何缺陷的压弯H型钢的极限承载力表达式。分析比较了碳纤维对具有初始几何缺陷的钢构件和完善构件增强效果。当两端给定不同弯矩值时,增强后具有初始缺陷的钢构件与未增强的完善构件极限承载力进行对比,获得碳纤维增强效果的结论。
     理论求解残余应力在稳定问题中的影响相对比较困难,故本文利用有限元软件模拟分析了两端简支具有初始残余应力压弯H型钢构件的失稳问题。详尽讨论了碳纤维增强前后H型钢构件在给定残余应力模式下,极限承载力随两端弯矩改变的变化规律,特别提出了复合材料在端弯矩较大时的增强作用。
     通过给出具有不同长细比压弯H型钢构件失稳时的极限承载力,截面弹性核高度等参数,得到与钢结构设计规范一致的弯矩与极限承载力相关曲线。做出相应的增强后压弯H型钢构件的极限承载力与弯矩相关曲线,并得到实用的极限承载力实用公式。分别列举其它截面尺寸增强前后H型钢构件极限承载力与弯矩相关曲线来验证简化公式的正确性,并为工程设计提供参考。
     对碳纤维增强前后就两端在不同弯矩作用下存在冲击荷载、循环荷载的H型钢构件进行了非线性动力屈曲分析,分别给出了增强前后钢构件的冲击后的极限屈曲荷载和循环水平极限荷载值,最后讨论了边界条件,碳纤维厚度和弹性模量对存在动力荷载作用下H型钢构件的影响。
Modern buildings advocate taking advantage of the green building materials, so the steel structural is used extensively. The failure modes of many members subjected to axial compressive forces and bending moments in steel structure are intensity or stability damage, the latter of which is the most interesting question concerned by people. Generally these problems are solved by some numerical methods. To deal with the above-mentioned problem, the analytical method will be sought when the section of component and force bearing status are both simple.
     Based on analytical ideas of computing elastic-plastic buckling of member under the axial compressive loads and bending moments, the analytical expressions of calculating the ultimate load of buckling about neutral axis with maximum moments of inertia for the H-shaped, the square/rectangular hollow section steel member with/without flange outsides wrapped by the carbon fibre and circular steel tube without/with outsides wrapped by the carbon fibre are derived in this paper. Furthermore, the results of the finite element are provided.
     In the calculating, the two situations of buckling in the compression side and in the both compression and tension sides of the steel member with pinned-pinned ends is discussed. Furthermore, the situation of yield region varying in the flanges or webs is considered respectively for the H-shaped, the square/rectangular hollow section steel member. For the thinness wall of the circular steel tube, the change of the plastic region along the wall thickness is no longer considered.
     Subsequently the analytical expressions of calculating the ultimate load of buckling about neutral axis with maximum moments of inertia for the H-shaped steel member with the initial geometrical defects whose flange outsides wrapped by the carbon fibre, subjected the axial compressive loads and bending moments, are formulated. The reinforcing effect of the member with the initial geometric defects and the perfect member by the carbon fibre is investigated. Given the both ends the different bending moments, the comparison study of the ultimate load of the member wrapped by the carbon fibre with initial geometrical defects and perfect member is presented.
     It is difficult to get the analytical solution of stability problem with the effect of the initial residual stress. By using the finite element method to solve the buckling of the H-shaped steel member with the pined-pined ends and with the initial residual stress, the discipline of the bending moments change with the ultimate load is discussed. Specially, the reinforced effect of the composite material with the larger bending moments is presented.
     By giving some parameters such as the ultimate load and the thickness of the elastic core, the curves of the bending moments versus the ultimate loads for buckling of the H-shaped steel member with the different slenderness ratios are in good agreement with the results obtained by the steel structural design codes. Then, the corresponding relationship curves of the bending moments versus the ultimate loads for the H-shaped steel member wrapped by carbon fibre are presented, and practical simplified formula of the ultimate load is obtained. To prove the simplified formula accuracy and provide the reference for the engineering design, the relationship curves of the bending moments versus the ultimate loads for the H-shaped steel member wrapped by carbon fibre before and after with the different sections size are enumerated respectively.
     Under the different ends bending moments, the nonlinear dynamic buckling analysis of the H-shaped steel member reinforced by the carbon fibre before and after, subjected by impact load and cyclic load, is given. Then, the ultimate load of the member under impact load and the cyclic horizontal ultimate load under cyclic load are obtained respectively. Finally, the effects of the boundary condition, the thickness of the carbon fibre and the Elastic modulus on the H-shaped steel member under dynamic load is discussed.
引文
[1]刘洪波,谢礼立,邵永松.工字梁与H型钢柱腹板连接节点性能分析.工程力学,2006,23(12):80-85.
    [2]李四平,聂建国,霍达,黄玉盈,方钢管砼偏压柱压溃荷载的近似计算.工程力学,1996,13(4):20-27.
    [3]韦建刚,陈宝春,吴庆雄.钢管混凝土压弯拱非线性临界荷载计算的等效梁柱法.工程力学,2010,27(10):104~109.
    [4]高压钢管试验研究组.埋藏式高压钢管到实验研究综述.水利学报,1965(5):24-39.
    [5]金春福,阎石,钮鹏,张玲玲.新管幕肋梁结构体系结点受力性能非线性分析.武汉理工大学学报,2010,32(9):226-300.
    [6]李丽君,金先龙,李渊印,李根国.薄壳结构失稳临界载荷的并行计算.航空动力学报,2004,19(3):310-313.
    [7]孙景屿.结构失稳后的变形分析.北京石油化工学院学报,1997,5(1):53-56.
    [8]陈绍蕃.钢结构稳定设计指南.北京:中国建筑工业出版社,1996.
    [9]陈骥.美国哈特福德城体育馆网架结构失稳事故分析.钢结构,1997,12(4):20-25.
    [10]邬涛,严慧.考虑节点约束影响的网架极限承载力分析.第五届空间结构学术交流会议文集,兰州
    [11]Edberg W, Mertz D, Gillespie Jr J. Rehabilitation of steel beams using composite materials. Proceedings of the Materials Engineering Conference, Materials for the New Millennium. ASCE,New York,1996,502-508.
    [12]侯发亮.建筑结构粘贴加固的理论与实践.武汉:武汉大学出版社,2003.
    [13]Patnaik A K,Bauer CL. Strengthening of steel beams with carbon FRP laminates. Advanced Composite Materials in Bridges and Structures. Calgary,Alberta.2004.
    [14]Rajan Sen,Larry Liby,Gray Mulins. Strengthening steel bridge section using CFRP laminates. Composite:Part B,2001,32:309-322.
    [15]Tavakkolizadeh M, Saadatmanesh H. Strengthening of steel-concrete composite girders using carbon fiber reinforced polymers sheets. Journal of Structural Engineering,2003,129 (1):30-40.
    [16]A-Saidy Abdullah, Klaiber F W, Wipf T J. Structural Behavior Composite Steel Beams Strengthened Repaired with Carbon Fiber Reinforced Polymer Plates.(Doctor Thesis).Iowa:Iowa State University,2001.
    [17]Galambos T V. Inelastic lateral buckling of beams. ASCEJ Struct Div,1993;89(5):217-242
    [18]何晶昌.压杆弹塑性失稳的ANSYS分析.黑龙江科技信息,2007,(22):48-49.
    [19]Hechtrnan R A,Hattrup J S. Lateral buckling of rolled steel beams. Trans ASCE,1957,122:823-843.
    [20]Lee G C,Galambos TV.Post-buckling strength with flange beams.Proc ASCE,1962,98:59~70.
    [21]Sawyer H A. Post-static behavior of wide-flang steel beams. ASCE Struct Div,1961,87(8):43-71.
    [22]Dibley J E.Lateral torisional buckling of I-section in grade 55 steel.Proc ICE,1969,43:599-627.
    [23]Fukumoto Y,Itoh Y, Kubo M. Strength variation of laterally unsupported beams. ASCE Struct Div, 1980,106(1):165-181.
    [24]潘志.组合梁考虑滑移的弹性分析及压弯构件弹塑性计算(硕士学位论文).昆明:昆明理工大学,2007.
    [25]周立军,郭建刚,曹天捷,等.轴力和弯矩作用下矩形梁几何中轴的曲率方程及应用.太原理工大学学报,2002,33(5):561-565.
    [26]刘好增,赵喜来,刘洁.圆柱壳结构外压弹塑性稳定性问题的半解析有限元法.现代制造工程,2007(7):8-13.
    [27]薛莘.用弯矩法、挠度法分析铜压弯杆承载力.西南交通大学学报,1983,(4):83-90.
    [28]王江,邱秀梅.压弯柱极限承载力研究.山东农业大学学报(自然科学版),2007,38(1):86-90.
    [29]中红伙,顾强.楔形变截面压弯构件平面内极限承载力.西安建筑科技大学学报(自然科学版),2002,34(4):400-406.
    [30]Shen Z Y, Lu LW. Analysis of initially crooked, end restrained steel columns. Journal of Constructional Steel Research,1983.3(1):10-18.
    [31]陈骥.圆管截面钢压杆稳定计算.西安建筑科技大学学报(自然科学版),1982,(3):1-12.
    [32]Hollaway L C. The evolution of and the way forward for advanced polymer composites in the civil in frastructure. Proceedings of the international conference on frp composites in civil engineering, Hong Kong. Elsevier Science Ltd.2001:27-40.
    [33]叶列平,冯鹏.FRP在工程结构中的应用与发展.土木工程学报,2006,39(3):24-36.
    [34]Nezamian A and Setunge S, A Case study of application of FRP composites in strengthening of the reinforced headstock of a bridge structure. Proceedings of the 2nd International conference on FRP composites in Civil engineering,2004:939-946.
    [35]梅利芳.钢筋混凝土梁碳纤维加固抗剪承载力分析.福建建材,2008,(2):24-25.
    [36]邬晓光,张柳煜,郝毅.碳纤维加固钢筋混凝土梁的受弯全过程分析.长安大学学报(自然科学版)2008,28(2):53-57.
    [37]赵建国.施工质量事故加固修复的工程实例.高科技纤维与应用,2008,33(1):28-30.
    [38]薛安顺,张鹏.碳纤维加固混凝土板承载规律试验研究.公路交通科技,2008(3):8-11.
    [39]Tavakkolizadeh M, Saadatmanesh H. Strengthening of Steel-Concrete Composite Girders Using Carbon Fiber Reinforced polymers Sheets. Journal of Structural Engineering, ASCE,2003,129(1):30-40.
    [40]Alfarabi S G J,AI-Sulaimani I A. Strengthening of Initially Loaded Reinforced Concrete Beams Using FRP Plates.ACI Structural Journal,1994,91:160-168.
    [41]Chajes M, Thomson T A, Januszka T F, et al.. Flexural Strengthening of Concrete Beams using Externally Bonded Composite Materials. Construction and Building Materials,1994,8(3):191-201.
    [42]Chajes M J. Bond and Force Transfer of Composite Material Plates Bonded to Concrete. ACI Structural Journal,1996,93(2):208-217.
    [43]Mitsubishi Chemical Corporation. New Material for Coming Era. Replark Technical Data and Product Information Manual.1996:116-123.
    [44]Hiroyuki Y, Zhishen W. Experimental Study on Crack Behavior of RC Tensile Members Strengthened with Carbon Fiber Sheets.东京:日本土木学会论文集,1999,612-615.
    [45]Fukuzawa K, Numao T, Mitsui M. Compressive Behavior of Concrete Laterally-Reinforced with Carbon or Aramid Fiber.尔京:日本土木学会论文集,1998,599-603.
    [46]赵启林,胡业平,金广谦,等.利用碳纤维提高军用桥梁承载力的数值分析.解放军理工大学学报,2002,3(4):46-49.
    [47]赵启林,王景全,金广谦.碳纤维加固的“反拱预应力技术”及其提高钢结构承载能力的分析.钢结构,2002,17(59):51-54.
    [48]彭福明,郝际平,岳清瑞.碳纤维增强复合材料(CFRP);加固修复损伤钢结构.工业建筑,2003,33(9):7-10.
    [49]彭福明,郝际平,岳清瑞,等.FRP加固修复钢结构的荷载传递效果分析.工业建筑,2005,35(8):26-30.
    [50]彭福明,郝际平,杨勇新.CFRP加固钢梁的有限元分析.西安建筑科技大学学报(自然科学版),2006,38(1):18-22.
    [51]彭福明,郝际平,岳清瑞等.FRP加固钢结构轴心受压构件的弹性稳定分析.钢结构,2005,3(20):18-21.
    [52]Vinson J R, Sierakowski R L. The Behavior of Structures Composed of Composite Materials, Kluwer Academic Pub,1997.
    [53]郑云,叶列平,岳清瑞.FRP加固钢结构的研究进展.工业建筑,2006,8(35):20-25.
    [54]郑云,叶列平,岳清瑞.CFRP加固疲劳损伤钢结构的断裂力学分析.工业建筑,35(10):79-82.
    [55]江克斌,许特,赵启林.采用预应力碳纤维技术提高钢结构承载力的分析.解放军理工大学学报(自然科学版),2003,4(4):58-60.
    [56]杨勇新,岳清瑞,彭福明.碳纤维布加固钢结构的黏结性能研究.土木工程学报,2006,39(10):1-5.
    [57]张宁,岳清瑞,佟晓利,等.碳纤维布加固修复钢结构粘结界面受力性能试验研究.工业建筑,2003,33(5):71-73.
    [58]Edberg W, Mertz D, Gillespis Jr J. Rehabilitation of Steel Beams Using Composite Materials. Proceedings of the Materials Engineering Conference, Materials for the New Millenium. ASCE,New York, 1996.502-508.
    [59]Abushaggur M, El Damatty A A. Testing of Steel Sections Retrofitted Using FRP Sheets.Annual Conference of the Canadian Society for Civil Engineering. Moncton, Nouveau Brunswick Canada.2003
    [60]侯发亮.建筑结构粘贴加固的理论与实践.武汉:武汉大学出版社,2003.
    [61]Miller T C,Chajjes M J, Mertz D R, et al. Strengthning of a Steel Bridge Girder Using CFRP Plates. Journal of Bridge Engineering, ASCE,2001,6(6):514~522
    [62]Rajan Sen,Larry liby,Gray Mullins. Strengthning of Steel Bridge Sections Using CFRP Laminates. Composites:Part B,2001,32.309-322.
    [63]马建勋,宋松林,赖志生.粘贴碳纤维布加固钢构件受拉承载力试验研究.工业建筑,2003.33(2):1-4.
    [64]Shaat A, Fam A. Strengthening of Short HSS Steel Columns Using FRP Sheets. Advanced Composite Materials in Bridges and Structures. Calgary,Alberta:2004
    [65]Karbhati V M, Shulley S B, Use of composites of rehabilitation of steel structures determination of bond durability. Materials in Civil Engineering,1995,7(4):239-245.
    [66]Brown A R G. The Corrosion of CFRP to metal couples in saline environments. Proceedings of the 2nd international Conference of Carbon Fibers. London,England:1974,18-20.
    [67]Xiangdong L,Antonio N,Pedro F S, Roger A L. Rehabilitation of Steel Bridge Columns with FRP Composite Materials.10th international Conference & Exhibition:2003.
    [68]郑宏,顾强.结构钢弹塑性各向异性损伤本构模型.第四届陕西省青年科学家论坛文集.西安:世界图书出版社.1999.297-302.
    [69]张宁.碳纤维增强复合材料(CFRP)加固修复损伤钢结构静力与疲劳应用试验研究:(硕士学位论文).北京:中冶集团建筑研究总院,2003.
    [70]郑云,叶列平,岳清瑞,等.CFRP加固含疲劳裂纹钢板的有限元参数分析.工业建筑,2006,36(6):99-103.
    [71]Liu X, Silva P F, Nanni A. Rehabilitation of Streel Bridge Members with FRP Composite Materials, Proc,CCC2001,Composites in Construction, Potto.Portgal:2001.
    [72]Al-Saidy A H, Klaiber F W,Wipf T J. Repair of steel composite beams with carbon fiber-reinforced polymer plates. Composite for Construction,2004,8(2):163-172.
    [73]Miller T C, Chaies M, Mertz D R, et al, Strengthening of Steel Bridge Girder Using CFRP Plates. Bridge Engineering,2001,6(6):514-522.
    [74]Bassetti A, Liechti P, Nussbaumer A. Fatigue Resistance and Repairs of Riveted Bridge Members. Fatigue Design'98.Espoo,Finland:1998.
    [75]Ben H Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Elsevier Science Publishers,1990.231-234.
    [76]Lindberg H E. Dynamic response and buckling failure measured for structures with bounded and random imperfections. J Applied Mechianics,1991,58:1092-1095.
    [77]叶军,赵阳,俞激.初始几何缺陷对仓壁柱承钢筒仓稳定性能的影响.工程力学,2006,23(12)100-105.
    [78]朱学军,孙国正.具有局部几何缺陷的轴心受压箱形构件的承载能力研究.武汉交通科技大学学报.1998,22(1):33-22.
    [79]易壮鹏,赵跃宇,朱克兆,等.几何缺陷对拱结构动力稳定性的影响.地震工程与工程振动,200929(2):29-34.
    [80]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响.土木工程学报.2002,35(1):11-15.
    [81]姜稚清.初始几何缺陷对薄圆环板弹塑性稳定性的影响.应用数学和力学,1983,4(4):517-526.
    [82]Kitipornchai S, Trahair N S. Buckling of inelastic I-beams under uniform moment. ASCE Struct
    [83]Nethercot D A. Residual stress and their influence upon the buckling of rolled steel beams. Struct Eng,1974;(3):89-91.
    [84]于思荣,何镇明.纤维增强金属基复合材料残余应力及其在拉伸时的行为.吉林工业大学自然科学学报,2000,30(1):79-82.
    [85]闫月梅.多高层钢结构框架的整体稳定分析.西安科技学院学报,2003,23(4):382-385.
    [86]欧阳斌,张华.残余应力岁轴心受压杆件的影响探讨.南昌水专学报,2004,23(3):4245.
    [87]吕烈武,沈世钊,沈祖炎,等.钢结构构件稳定理论.北京:中国建筑工业出版社,1983.
    [88]Lip H T, Murray J C, Plastic-zone analysis of 3D steel frames using beam elemens.Journal of Structral Engineering(ASCE),1999,125:1328-1337.
    [89]Avery P, Mahendran M, Distributed plasticity analysis of steel frame structures comprising non-compact sections. Engineering Structures,2000,22:901-919.
    [90]Chen W F. Structural stability:From theory to practice, Engineering structures.2000,22:116-122.
    [91]赵峰.用有效面积法计算残余应力对薄壁型钢轴心压杆整体稳定的影响.工程建设与设计,2003,(5):9-11.
    [92]张俊峰,郝际平,王连坤,等.基于ANSYS的某拱形刚架极限承载力研究.西安建筑科技大学学报(自然科学版),2008,40(1):71-75.
    [93]刘殿忠.在不等端弯矩作用下钢管混凝土偏压构件稳定承载力的计算.1986,(1):18-25.
    [94]Erdogan F, Atin K. A standwich plate with a part-through and a debonding crack. Eng, Frature Mech., 1972,4(3):449-4586.
    [95]Arin K. A plate with a crack stiffened by a partially debonded stringer. Eng. Frature Mech.,1974,16 (1):133-1407.
    [96]Ratwani M M.Analysis of cracked adhesively bonded laminated structures. AIAA.Journal,1979,17 (7):988-994.
    [97]周立军,郭建刚,曹天捷,等.轴力和弯矩作用下矩形梁几何中轴的曲率方程及应用.太原理工大学学报,2002,33(5):561-565.
    [98]杨刚,王海滨,张爱锋,等.碳纤维增强压弯构件弹塑性失稳解析解.工程力学,2007,24(5):53-57.
    [99]陈骥.钢结构稳定理论与设计(第二版).北京:科学出版社.2003.
    [100]Niu Peng, Yang Gang, Gong Benqi, Jin Chunfu. Analytical solution of elastic-plastic buckling of a H-shaped steel column under axial compressive load and bending moment.Key Engineering Material, 2010,417-418:857-860.
    [101]钮鹏,杨刚,金春福,范颍芳,宫本奇.碳纤维增强的H型压弯钢柱弹塑性失稳分析.工程力学,2009,27(S1):85-89.
    [102]Niu Peng, Yang Gang, Jin Chunfu. Analytical solution of elastic-plastic buckling of a square steel tube column under axial compressive load and bending moment. Key Engineering Material,2010,452-453: 485-488.
    [103]钮鹏,杨刚,金春福,王兴蕊.碳纤维增强矩形截面钢管梁的稳定分析.大连海事大学学报,2011,37(1):131-135.
    [104]Sebastian W M. Nonlinear proportionality of shear-bond stress to shear force in partially plastic regions of asymmetric FRC-laminated steel members. International Journal of Solids and Structures,2003, 40(1):25-46.
    [105]Timoshenko S P,Goodier J N. Theory of Elasticity. New York:Mac Graw-Hill,1970.
    [106]诸德超,邢誉峰.厚度效应对梁冲击响应的影响.力学学报,2004,36(2):184-190.
    [107]邢誉峰.梁结构线弹性碰撞的解析解.北京航空航天大学学报,1998,24(6):633-637.
    [108]邢誉峰,诸德超.两杆纵向非线性弹性碰撞的瞬间响.北京航空航天大学学报,1998,24(1):39-42.
    [109]邢誉峰,诸德超.用模态法识别结构弹性碰撞载荷的可行性.力学学报,1995,27(5):560-566.
    [110]李敏,诸德超.球杆碰撞问题的数值分析和实验研究.北京航空航天大学学报,2001,27(1):62-65.
    [111]张继业,曾京,舒仲周.杆的纵向冲击振动.振动与冲击,1999,18(3):57-61.
    [112]吴家强,王宏志.杆的纵向冲击问题全过程分析.振动与冲击,2004,23(1):101-108.
    [113]Melo F J Q,Carneiro J A O, Camanho P P, et al. The simulation of impact loads on beam-type structure using a pseudo-dynamic procedure. Strain,2004,40(1):12~23.
    [114]So W, Francis F C. Dynamic finite element analysis of solid propellant impact test. Journal of Space craft and rockets,1991,28(6):658-662.
    [115]黄金桥.钢结构弹塑性动力学及抗震设计理论研究(博士学位论文).浙江:浙江大学,2005.
    [116]郑宏,顾强.高层钢结构梁构件考虑损伤的弹塑性稳定分析.钢结构,2001,16(2):32-34.
    [117]剧锦三,张云鹏,蒋秀根.梁受到球碰撞时的弹性冲击荷载初探.中国农业大学学报,2007,12(3):93-95.
    [118]剧锦三,杨蔚彪,蒋秀根.刚体撞击弹塑性直杆时冲击荷载之数值解.工程力学,2007,24(6):49-53.
    [119]剧锦三,杨蔚彪,蒋秀根.受刚体碰撞方管柱考虑局部屈曲时的弹塑性冲击荷载.工程力学,2008,25(7):190-195.
    [120]Ballio G, Calado L. Steel bent section under cyclic loads. Experiments and Numerical Approaches, 1986,(1):1-23.
    [121]Ballio G,Perotti F.Cyclic behaviour of axially loaded members:Numerical Simulation and experimental verification. Constr. SteelRes,1987,(7):110-119.
    [122]Chen C C, Wu L L. Buckling and Fracture in Cyclically loaded Truss Girders. New York:CRC Press,1992.113-122.
    [123]Ohi K I, Takanashi K. Multi-spring Joint Model for Inelastic Behavior of Steel Members with Local Buckling. NewYork:CRC Press,1992.123-132.
    [124]Watanabe E. Modelling of hysteretic behavior of thin-walled box members. NewYork:CRC Press,1992,133-143.
    [125]Uetani K. Cyclic Plastic Collapse of Steel Planar Frames. NewYork:CRC Press,1992.152-167.
    [126]钟炜辉.冲击荷载作用下轴心受压构件动力屈曲研究(博士学位论文).西安:西安建筑科技大学,2009.
    [127]章毅,陈力,李杰,李映春.薄壁壳在外部承受冲击荷载作用下的动力响应分析.工业建筑,2010,40(4):46~50.
    [128]戴春军,贾君.冲击荷载作用后的钢框架结构抗火承载力研究.黑龙江科技信息,2009(13):315.
    [129]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析.土木工程学报,2001,34(6):8-10.
    [130]Jafari A A,.khalili S M R, Azarafza R.. Transient dynamic response of composite circular cylindrical shells under radial Impulse load and axial compressive loads. Thin-Walled Structures,2005,43(11):1763-1786.
    [131]顾红军,范伏生,吴云泉.超薄钢管动力屈曲实验研究.第十一届全国结构工程学术会议论文集第Ⅱ卷2002,434-437.
    [132]康建功,石少卿,刘颖芳,等.两端固支泡沫铝夹芯梁在冲击荷载作用下的动力响应.振动与冲击,2010,29(4):130-134.
    [133]王心田,洪善桃,翁智远.在冲击荷载作用下弹塑性薄板的非线性动力响应.固体力学学报.,1985,281-295.
    [134]李振国,姜黎黎.碳纤维增强钢构件的动力稳定性分析.低温建筑技术,2009(9):54-55.
    [135]姜黎黎,李振国,杨刚.碳纤维增强钢构件的滞回性能分析钢结构.2008,12(113):19-22.
    [136]欧阳可庆.钢结构.北京:中国建筑工业出版社,1991.
    [137]吕烈武.钢结构构件稳定理论.北京:中国建筑工业出版社,1983.
    [138]徐海峰,朱召泉.数值积分法在压弯构件弹塑性弯扭屈曲荷载分析中的应用.常州工学院学报,2005,18:45-49.
    [139]陈骥.受轴压、双向弯曲和扭矩作用的两端简支工形截面压弯构件的稳定设计.建筑钢结构进展,2010,12(3):7-13.
    [140]郭彦林,潘勇.变截面工形柱平面内稳定极限承载力研究.土木工程学院,2004,37(1):13-19.
    [141]张铮,张其林.H型铝合金压弯构件平面外稳定承载力试验及理论研究.建筑结构2010,40(6):110-102.
    [142]钱冬生.钢压杆的承载力.北京:人民铁道出版社,1980.
    [143]尹一平,方秦汉.箱形杆件压溃荷载近似计算.华中科技大学学报(城市科学版).2008,25(3):128-131.
    [144]热轧H型钢尺寸、外形、重量及允许偏差GB111263-89.
    [145]薛晓敏,张陵,张劲波.不同截面钢柱轴压稳定性对比研究.工业建筑,2007,37:604-607.
    [146]钢结构设计规范GB 50017-2003.
    [147]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术.天津:天津大学出版社,2001.
    [148]姜黎黎.碳纤维增强钢构件的稳定性分析(硕士学位论文).沈阳:沈阳建筑大学,2005.
    [149]王江,周晖,宋雪峰.变截面工形柱平面内弹塑性极限承载力研究.四川建筑科学研究,2008,34(1):57-59.
    [150]http://www.studa.net/constructs/060315/14485338.html.
    [151]ENV 1993-1-6.Eurocode 3:Design of steel structures, part 1-6:General rules:Supplementary rules for shell structures. European Committee for Standardisation,Brussels,1999.
    [152]钱鹏,叶列平,冯鹏.轴心受压CFRP-铝合金组合管弹塑性屈曲性能分析.工程力学,2006,23(S2):210-216.
    [153]崔克清.安全工程大辞典.北京:化学工业出版社出版,1995.
    [154]汤夕春,贺晓川,李维伟.残余应力峰值对H型钢柱极限承载力的影响研究.国外建材科技,2006.27(6):52-57.
    [155]高丽亚,邓长根,郝际平.国产轧制H型钢梁整体稳定性能研究-稳定系数计算原理对国产热轧H型钢梁的适用性分析.工业建筑,2006.36(10):75-78.
    [156]谈燕.轧制H型钢悬臂梁的整体稳定性能研究(硕士学位论文).昆明:昆明理工大学,2008.
    [157]蔡春声,王国周.双向偏心受压H型截面构件弯扭屈曲稳定极限承载力研究.土木工程学报,1991,24(2):37-47.
    [158]张壮南,张耀春.残余应力对单轴对称工字梁稳定承载力的影响.哈尔滨工业大学学报,2007,39(12):1864-1868.
    [159]杨娜,龙丽华,杨庆山.H型钢楔形薄壁梁相关屈曲性能分析.工业建筑,2007,37(1):96-100.
    [160]A.W.Huber,L.S.Beedle. Residual stress and the compressive strength of steel weld.J,1954,33:589-624.
    [161]Kitiponchai S S, Wang C M, Trahar N S. Buckling of monosymmetric Ⅰ-beams under moment gradient. ASCE J Struct Div,1986,112:781-799.
    [162]European Convention for Const ructional Steelwork. Ultimate limit state calculation of sway frames with rigid joints. Technical Committee 82St ructural Stability Technical Working Group 8.22 System. Publication No.33.1984.
    [163]史金星.碳纤维增强有残余应力压弯构件弹塑性失稳分析(硕士学位论文).大连:大连海事大学,2008.
    [164]周正杰.焊接工字钢偏心受压杆件考虑残余应力的弯扭屈曲(硕士学位论文).北京:清华大学,1987.
    [165]蔡春声,王国周.初始缺陷对钢压弯构件稳定极限荷载的影响.郑州工学院学报,1989,10(4):29-37.
    [166]潘汉明,郭彦林,梁硕,等.大直径薄壁钢管压弯构件的稳定分析.土木工程学报,2007,40(3):11-17.
    [167]戴国欣,王浩科,刘海鑫.国产轧制H型钢梁整体稳定几何控制条件.钢结构,2004,19(4):62-64.
    [168]顾强.腹板宽厚比超限值时工形截面偏压杆平面内的承载能力(博士学位论文).西安:西安冶金建
    筑学院,1988.
    [169]沈祖炎.压弯构件在弯矩作用平面内的稳定性计算.钢结构,1991,(2):39-45.
    [170]赵稼祥,T1000超高强碳纤维及其复合材料.化工新型材料,1988,(6):22-25.
    [171]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1996.
    [172]唐友刚.结构动力学.天津:天津大学出版社,2002.
    [173]沈聚敏周锡元高小旺,等.抗震工程学.北京:中国建筑工业出版社,2000.
    [174]赵经文,王宏钰.结构有限元分析.北京:科学出版,2001.
    [175]中国建筑科学研究院.JGJ 101-96建筑抗震试验方法规程.北京:中国建筑工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700