用户名: 密码: 验证码:
全数字式高分辨率SAR实时处理机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着DSP技术的飞速发展,加之高分辨率SAR实时成像技术在军事、国民经济和科学研究方面的有着重要地位,SAR实时处理机因而受到各国的重视。
     本研究组研制的基于CS算法的全数字式高分辨率SAR实时处理机可以在前斜视和正侧视模式下进行高分辨率条带式实时成像处理。本文的研究工作属于该处理机研制的一部分。在文中讨论了处理机设计中信号处理能力、数据通信等难点问题。对以下方面问题进行了研究:对SAR实时处理机的结构、组成、各处理模块的功能分配;矢量处理模块的设计,及其完成CS处理中FFT和复乘的方法,矢量处理模块的处理精度处理、处理速度;标量处理模块的并行处理时的任务分配;CORDIC处理模块在处理机中的应用;处理机的性能指标;并且对聚束式SAR的实时处理和SAR图像后处理问题进行了研究。
     利用高性能DSP(如ADSP2106x、BDSP9124/9320)和自定义多总线的模块化处理机结构,从而很好地解决了SAR实时处理中对处理速度和数据传输速度的要求。在处理算法上采用适合于并行或专用DSP完成的高精度CS算法,因而可以满足正侧视和前斜视成像处理的要求。
     矢量处理模块的主要处理芯片组为BDSP9124/9320,其处理速度和数据传输速度均优于通用DSP,可以进行CS成像算法中的FFT和复乘处理。矢量处理模块采用大容量、高速SARM进行数据存储,可以对1M点以内的复数数据进行处理。由i386Ex和FPGA对矢量处理模块上的资源进行控制,其编程比较方便。而且可以通过多模块扩展来提高处理性能。
     在对矢量处理模块处理性能和速度分析的基础上,进行CS成像处理时利用大基底两维FFT处理,从而提高了处理速度、节省了BDSP9124/9320的控制代码。分析了标量处理模块在进行计算时的性能指标和并行编程方法。在课题组各位成员的努力下,完成了处理机的设计工作,并给出了实时处理机的性能指标。
     由CORDIC可以快速进行极坐标和直角坐标之间的变换,我们利用FPGA完成了一个流水线结构的CORDIC处理模块。它可以用来完成标量处理中相位因子极坐标表示到直角坐标之间的转换,可以提高实时处理机的性能。
     最后对聚束式SAR实时处理问题和斑点噪声消除进行了一些研究
High and super-high resolution airborne Synthetic Aperture Radar (SAR) is an important research orientation. Currently, the advanced countries are trying their best to develop high-resolution airborne SAR systems. The research work of this paper goes with the development of real time SAR processor in our research group. A study of the special characteristics in the real time SAR processor is presented.
     I/Q error is the first problem faced to the SAR signal. I/Q amplitude and phase error can create an image response at the negative frequency, which cause serious disturbance to signal detection. The SAR echo studied here, the imaging algorithm is adopted to compress pulses, which is a two dimension matched filter. When the I/Q error is constant in an aperture, it will do nothing to the signal after the pulse compression. Considering the real time computation, in this SAR processor the I/Q correction is not considered.
     Motion compensation is an inseparable part to SAR. Combined with the real time SAR processor, a motion compensation realization is introduced in this paper. That includes the first order motion compensation, which is important and necessary, the second order motion compensation, whose phase is miner and has a large computation, in real time SAR processor, it is not be considered, autofocus is obtained by plug in. Furthermore, autofocus only can solve defocus problem, this paper introduces an idea to correct the image geometric distortion, this method uses the result of PGA, by which a phase multiplication corrects the geometry distortion. When the motion error of phase center passes over a range bin, resample should be taken into consideration, the resample inaccuracy within one range bin does not have impact on azimuth focus, but to the signal amplitude.
     This real time SAR processor has side-looking and squint modes. Two approaches are proposed to use the side-looking raw data to squint imaging. The first one is the direct transformation, which uses the data with a wide beam angle. The maximum of the E-SAR raw data squint angle is 7°. The second one is the indirect transformation, which is carried out by adding a platform velocity along slant range according to the required squint angle. Then the squint data is determined by the angle between the new forward velocity and LOS direction. The drift angle is less than 15°, the indirect transformation is showed acceptable.
     Squint imaging has some specialties, which are different under squint condition, compared four mainly squint imaging algorithms, a new extend Chirp-scaling algorithm is presented to eliminate the cubic phase error due to the slant range expanding to the cubic term under high squint angle.
引文
[1]胡广书,数字信号处理-理论、算法与实现,北京:清华大学出版社,1997。
    [2]董绍平陈世耕王洋,数字信号处理基础,哈尔滨:哈尔滨工业大学出版社,1996。
    [3] A.V.奥本海姆,数字信号处理,北京:科学出版社,1980。
    [4]苏涛吴顺君廖晓群,高性能数字信号处理器与高速实时信号处理,西安:西安电子科技大学出版社,2000。
    [5] Thomas Einstein, Realtime SAR processing on the RACE multicomputer,USA: Mercury computer systems Inc., 1995.
    [6]屈玉贵梁晓雯,并行处理系统结构,合肥:中国科学技术大学出版社,1999。
    [7] Kai Hwang著,王鼎兴沈美明郑纬民温冬蝉,高等计算机系统结构:并行性可扩展性可编程性,北京:清华大学出版社,1995。
    [8] Kai Hwang,Zhiwei Xu,Scalable parallel computers for real-time signal processing,Signal processing magazine,1996 July.50-65.
    [9]陈光禹,VXI总线测试平台技术,成都:电子科技大学出版社,1996。
    [10] GEMINI:Dual stage vector processing board for the VME bus, USA:Catalina research incorporated,1998.
    [11] Embedded systems for realtime airborne applications, USA:Mercury compersystems Inc.,1997.
    [12] The DSP product catalog,Canada:Spectrum signal processing Inc,1998.
    [13] The DSP catalogue,UK:Loughborough sound image Inc.,1997.
    [14] VME product catalog, Canada:DY4 systems Inc.,1997.
    [15] UltraDSP wideband DSP processor, USA:Valley Technologies Inc.,1996.
    [16] John Marsh, Fast input fast processing fast output viper-5, USA:Texas memory systems Inc.,1997.
    [17] John,C. Curlander,et al.,Synthetic Aperture Radar System and Signal Processing, John Wiley &Sons Inc.,1991.
    [18] Carl A. Wiley, Synthetic Aperture Radars,IEEE Trans. on AES, May 1985, 21(3):440-443.
    [19] Dale A. Ausherman, et al., Developments in Radar Imaging, IEEE Trans. on AES, July1984, 20(4): 363-381.
    [20] Donald R. Wehner, High Resolution Radar, Artech House, 1987.
    [21]刘永坦等著,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999年。
    [22]张澄波,合成孔径雷达原理、系统分析与应用,北京:科学出版社,1989。
    [23] Wu C., et al., SEASAT Synthetic Aperture Radar Data Reduction Using Parallel Programmble Array Processors, IEEE Trans. on GE, July 1982, 20(3): 352-358.
    [24] E. R. Stofan, et al., Overview of Results of Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(Sir-C/X-SAR), IEEE Trans. on GE., 1995, 33(4).
    [25]王小谟等,雷达与探测-现代战争的火眼金睛,北京:国防工业出版社,2000年。
    [26] Duc Guyenne, et al., ERS-1 A New Tool for Global Environmental Monitoring in the 1990’s, European Space Agency, 1989.
    [27] K. C. Jezek, et al., The Radarsat Antarctic Mapping Project, IGARSS’98: 2462-2464.
    [28] Way J., et al., The Evolution of Synthetic Aperture Radar System and Their Progression to the EOS SAR, IEEE Tans.on Geosci.Remote Sensing.Nov. 1991, 29(6): 962-985.
    [29] Masanobo Shimada, et al., JERS-1 SAR Mosaics over the Southeast Asia, IGARSS’2000:1-3.
    [30] Y. Kim et al., NASA/JPL Airborne Three-frequency Polarimetric/Interferometric SAR System, IGARSS’96: 1612-1614.
    [31] Sullivan R., et al., Polarimetric X/L/C-band SAR, Proc. of 1988 IEEE Radar Conference, 1988: 11-16.
    [32] Jorgen Dall, et al., The Danish Real-time SAR Processor: First Results, IGARSS’93:1401-1404.
    [33] Ralf Horn, The DLR airborne SAR Project E-SAR, IGARSS’96: 1624-1629.
    [34] U. Hahn, et al., Wideband Digital Waveform Generator for On-board SAR Applications, EUSAR2000, May 2000, Munich, Germany, 285-288.
    [35] M. Suess, et al., Efficient and Scalable On-board SAR Processor Architecture, EUSAR2000, May 2000, Munich, Germany, 289-292.
    [36] N.J.S.Stacy, M.P.Burgess, J.J.Douglass, M.R.Muller and M.Robinson, A real time processor for the Australian Synthetic Aperture Radar, ICASSP-94, Adelaide,south Australia,1994.
    [37]郭华东,对地观测系统与应用,北京:科学出版社,2001。
    [38] D.A.Ausherman,et al.,Digital image-formation processing of spotlight SAR data, 25thannual tri-service radar symposium, Sept. 1979.
    [39] Alberto Moreira,Real time synthetic Aperture Radar(SAR) processing with a new subaperture approach, IEEE Trans. On GE, Vol.30.No.4 July 1992.
    [40] S. I. Tsunoda, et al., Lynx: A High-resolution Synthetic Aperture Radar, SPIE Aerosense 1999, Vol. 3704: 1-8.
    [41]贾洪江,机载合成孔径雷达成像算法研究与实现,硕士论文,北京航空航天大学,1998。
    [42] Jin M.Y. and Wu C.. A SAR Correlation Algorithm with Accommodates Large-range Migration, IEEE Tans.on Geosci.Remote Sensing. Nov. 1984, 22(6): 592-597.
    [43] Jasper M. Horell, An Extension to Range-Doppler SAR Processing to Accommodate Severe Range Curvature, IGARSS’99: 535-538.
    [44] Richard Bamler, A comparison of Range-Doppler and Wavenumber domain SAR focusing algorithms, IEEE Tans.on Geosci.Remote Sensing. July 1992 Vol.30. No.4.
    [45] R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, and Frank H. Wong, Precision SAR Processing Using Chirp Scaling, IEEE Trans. on GE. July 1994, 35(4): 786-798.
    [46] Alberto Moreira, Yonghong Huang, Airborne SAR Processing of Highly Squint Data Using a Chirp Scaling Approach with Integrated Motion Compensation, IEEE Trans. on GE. Sept.1994, 32(5): 1029-1040.
    [47] Alberto Moreira, Josef Mittermayer, and Rolf Scheiber, Extened Chirp Scaling Algirithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes, IEEE Trans. on GE. September 1996, 34(5): 1123-1136.
    [48] Alberto Moreira, Josef Mittermayer and Rolf Scheiber, Processing of SAR and ScanSAR Imaging Modes Using the Extended Chirp Scaling Algorithm, International Radar Symposium 98, Munich, Germany, 1998: 1361-1367.
    [49] Alberto Moreira, Josef Mittermayer and Rolf Scheiber, Extended Chirp Scaling SAR Data Processing in Stripmap ScanSAR and Spotlight Imaging Modes, EUSAR2000, Munich,Germany, March 2000: 749-752.
    [50] Josef Mittermayer, Alberto Moreira, A Generic Formulation of the Extended Chirp-scaling Algorithm(ECS) for Phase Preserving Scansar and SpotSAR Processor, IGARSS’2000.
    [51] J. Mittermayer, et al., Data Processing of an Innovative Foeward Looking SAR System for Enhanced Vision, EUSAR2000, Munich, Germany, May 2000: 733-736.
    [52] HEWLETT PACKARD,HP VXI系统集成及应用指南,1998。
    [53] BDSP9124 User's Guide, USA: Butterfly DSP Eletronics Corporation,1997.
    [54] BDSP9320 User's Guide, USA:Butterfly DSP Eletronics Corporation,1997.
    [55]曾涛李眈龙腾,高速实时数字信号处理器SHARC的原理及应用,北京:北京理工大学出版社,2000。
    [56]任丽香马淑芳李方慧,TMS320C6000系列DSPs的原理与应用,北京:电子工业出版社,2000。
    [57]合成孔径雷达数字信号处理机体系结构研究,北京航空航天大学电子工程系203研究室内部研究报告,1998。
    [58]荣向军,合成孔径雷达实时信号处理机研究,博士论文,北京航空航天大学,2001。
    [59]钟睿王月忠,高速A/D模块的设计与实现,中国航空学会信号与信息处理专业第三届学术会议,1999,5:471-476。
    [60]钟睿,预处理模块设计研究,北京航空航天大学电子工程系203研究室内部研究报告,1998。
    [61]王俊毛士艺刘祥林,高速矢量处理机的设计与实现,航空学报,May 2001 22(3):212-216。
    [62]李旭东,SAR信号处理机的研究及标量处理机的研制,硕士论文,北京航空航天大学,2000。
    [63]廖汉程,图像后处理设计研究,北京航空航天大学电子工程系203研究室内部研究报告,2000。
    [64]曾东,合成孔径雷达实时信号处理机数据记录和回放技术研究,硕士论文,北京航空航天大学,2000。
    [65] DSP24 users guide, USA: DSP Architectures Inc., 2000.
    [66] ADSP21160 SHARC technical specification, USA: Analog Devices Inc., 1998.
    [67]王俊,机载高分辨率微波成像矢量处理机研究,硕士论文,北京航空航天大学,1998。
    [68] Intel I386Ex embedded microprocessor user’s Manual, USA: Intel Inc, 1995.
    [69]侯伯亨顾新,VHDL硬件描述语言与数字逻辑电路设计,西安:西安电子科技大学出版社,1997。
    [70]王小军,VHDL简明教程,北京:清华大学出版社,1997。
    [71]宋万杰罗丰吴顺君,CPLD技术及其应用,西安:西安电子科技大学出版社,1999。
    [72] [美] Thon Hogan著计帆译,PC软硬件技术资料大全,北京:清华大学出版社,1990。
    [73] SHARP application notes, Japan: SHARP Electronics Corporation Microelectronics Group,1994.
    [74] D.E.达吉恩, R.M.默塞里奥,多维数字信号处理,北京:科学出版社,1991。
    [75] SAR软件工程化,北京航空航天大学电子工程系203研究室内部研究报告,1999。
    [76] ADSP-21K optimized DSP library user’s manual, Canada: Wideband Computers Inc,1998.
    [77] Volder J. The CORDIC trigonometric computing technique, IRE Transactions on Electronic Computers, 1959,EC-8(3):330-4.
    [78] Walther JS., In A unified algorithm for elementary functions, AFIPS Spring Joint Computer Conference, 1971:379-85.
    [79] Mayank Katiyar, K.M.M. Prabhu, Angle recoding cordic-based systolic arrays for DFTand DHT of prime length, Computers and Electrical Engineering 25,1999:181-193.
    [80] Yu Hen Hu, On the convergence of the CORDIC adaptive lattice filtering (CALF) algorithm, IEEE tran. on signal processing, July 1998, 46(7):1861-1871.
    [81]李滔,流水线CORDIC算法及其应用,博士论文,北京理工大学,1999。
    [82] Dhananjay S.P., Double step branching CORDIC: a new algorithm for Fast sine and cosine generation, IEEE Tran. on computers. May 1998,47(5):587-602.
    [83] ?Walker, Jack L., Range-Doppler Imaging of Rotating Objects, IEEE Trans. On AES, Jan. 1980,16(1):. pp23051????????
    [84] G.Carrara,R.S.Goodman,and R.M.Majewski, Spotlight Synthetic Aperture Radar:Signal Processing Algorithms, Artech House,1995.
    [85] D.C.Munson, J.D.O’Brien, and W.K.Jenkins, A Tomographic Formulation of Spotlight-Mode Synthetic Aperture Radar, Processing of the IEEE, August 1983,72(8):917-925.
    [86] M.D. Desai,and W.K. Jenkins, Convolutional Backprojection Image Reconstruction forSpotlight Mode Synthetic Aperture Radar, IEEE Transactions on Image Processing, October 1992,1(4):505-517.
    [87] Ali F.Yegulalp, Fast Backprojection Algorithm for SAR, Radar Conference, 1999:60-65.
    [88] V.K.Madisetti, A Fast Spotlight-Mode Synthetic Aperture Radar Imaging System, IEEETran. on Communications, February 1994,42(2):873-876.
    [89] Dauck,J.L., and W.K. Jenkins, Tomographic Processing of Spotlight Mode Synthetic Aperture Radar Signals with Compensation for Wavefront Curvature, IEEE 1988 International Confrence on Acoustics Speech and Signal Processing, New York, NY, April 1988:11-14.
    [90] Crochiere R.E., Rabiner L.R., Multirate Digital Signal Processing. Englewood Cliffs, NJ:Prentice Hall,1983.
    [91] Virtuoso user guide:book3 for version4.2 File and ConfigurationInformation,Eonic systems Inc.,2000.
    [92] Virtuoso user guide:book5 for version4.2 ATLAS1-S,Eonic systems Inc.,2000.
    [93] Virtuoso user guide:book1 for version4.2 Introduction to Virtuoso: Development tools Virtuoso programming crash course, ATLAS1-S,Eonic systems Inc.,2000.
    [94] Virtuoso user guide:book4 for version4.2 Processor supplement ADSP-2106x,Eonic systems Inc.,2000.
    [95] Virtuoso user guide:book2 for version4.2 Application programming reference,Eonic systems Inc.,2000.
    [96] Yunhan Dong, Anthony K Milne, and Bruce C Forster, A review of SAR speckle filters: texture restoration and preservation, Processing of IGARSS 2000: 633-635.
    [97] J.M.Park,W.J.Song and W.A.Peariman, Speckle filtering of SAR images based on adaptive windowing, IEE Proc. Image signal process, August 1999,146(4):191-197.
    [98] Martin F.J.,Turener R.W., SAR speckle reduction by weighting filter, Int.J. Remotesens, 1993,14(9):1759-1774.
    [99] Lee J.S. ,Digital image enhancement and noise filtering by use of local statistics, IEEE Trans.on Pattern anal.mach.intell., 1980 PAMI-1(2):165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700