用户名: 密码: 验证码:
食源性致病菌适配体的筛选及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寡核苷酸适配体(又称适配体,aptamer)是由SELEX(systematic evolution of ligandsby exponential enrichment,指数富集的配体系统进化)技术筛选得到的能够与相应配体特异性紧密结合的一小段DNA或RNA分子。适配体具有靶标广泛、亲和力高、特异性好等优点,在基础研究、蛋白组学研究、临床诊断与治疗等方面应用广泛。但在食品安全检测领域的研究还比较少,本研究以食源性致病菌为研究对象,通过体外SELEX技术筛选得到其特异性结合适配体,并将其作为识别元件,结合磁分离富集技术、上转换荧光纳米标记技术、流式细胞术、免标记传感器等构建了一系列新颖、灵敏、快速的食源性致病菌检测新方法,为丰富和提高食品安全检测技术提供了新思路和新方法。
     首先,利用whole-bacteria SELEX技术,以食源性致病菌副溶血性弧菌为靶标,经历9轮的筛选富集,将产物进行克隆测序,并结合流式细胞术考察所得序列的亲和力和特异性,根据解离常数值分析比较得出亲和力高和特异性好的序列,得到了副溶血性弧菌的特异性适配体。基于相同原理和方法,筛选得到了鼠伤寒沙门氏菌的特异性适配体。同时,采取碱基逐个去除的方法分析了这两种适配体的保守序列。
     其次,以适配体为识别元件,以适配体功能化磁性纳米颗粒为捕获探针,适配体功能化的双色上转换纳米颗粒为显示探针,结合上转换激光诱导荧光技术,构建了一种可同时高灵敏检测金黄色葡萄球菌和沙门氏菌的新方法,该方法对两种目标菌均具有良好的线性响应,其中鼠伤寒沙门氏菌的线性检测范围为101~105cfu/mL,(线性方程y=169.66x-35.2,R~2=0.9964),检测限为5cfu/mL,金黄色葡萄球菌线性检测范围为101~105cfu/mL(线性方程y=118.5x+15.6,R~2=0.9936),检测限为8cfu/mL。该方法已成功应用于实际水样中两种目标菌的同时检测。
     第三,基于适配体的识别能力和量子点的荧光特性,制备了适配体功能化荧光量子点复合物,同时结合流式细胞术,构建了一种基于适配体识别和量子点标记技术的副溶血性弧菌和沙门氏菌同时检测新方法。该方法检测结果与平板计数法的检测结果无显著差异(其中副溶血性弧菌P<0.0001,R~2=0.9993;沙门氏菌P<0.0001,R~2=0.9995),可成功应用于实际虾肉样品的检测。这是首次将适配体识别技术与荧光量子点标记技术结合应用于流式细胞术检测细菌。
     第四,基于AccuBlue荧光染料在游离或是与单链DNA共存时,只显示微弱的荧光,与双链DNA共存时,其荧光信号显著增强并且不具有膜穿透性这一特性,分别以副溶血性弧菌和沙门氏菌为模式分析物,采用signal on和signal off两种检测模式,构建了一种新型食源性致病菌免标记荧光适配体传感器。所构建传感器分析性能优异,其中副溶血性弧菌的线性检测范围50~106cfu/mL,(线性方程y=197.23x+15.688,R~2=0.9956),检出限为35cfu/mL;沙门氏菌的线性检测范围50~106cfu/mL,(线性方程y=183.72x+30.79,R~2=0.9957),检测限为25cfu/mL。所建立方法已成功应用于实际虾肉样品和鸡肉样品的检测。
     最后,通过测定适配体与目标菌表面分子的结合力,研究了所筛选适配体与目标菌可能的结合机制。结果显示,细菌外膜蛋白和脂多糖是最有可能与适配体结合的表面分子,通过分离提取,将得到的外膜蛋白和脂多糖与其相应的适配体结合,利用荧光偏振技术分析二者与适配体的亲和力,检测结果显示两种菌适配体与其对应外膜蛋白的结合力均大于与脂多糖的结合力,从而可推断通过whole-bacteria SELEX技术筛选得到的副溶血性弧菌和鼠伤寒沙门氏菌适配体主要是与靶标的外膜蛋白发生了特异性结合。研究结果对于阐明适配体-目标菌结合机制具有积极意义。
     总之,本论文筛选得到了食源性致病菌新型分子识别元件-适配体,利用其与靶标的高亲和力、高特异性和易于标记等特性,结合上转换荧光纳米材料、荧光量子点、流式细胞术等技术,构建了一系列新颖灵敏快速的分析方法,并将其成功应用于检测食品中一种或多种食源性致病菌,为基于新型分子识别原理的食源性致病菌检测新技术和新产品的研发提供了良好的技术支持。
Aptamers are short, single-stranded RNA or DNA molecules that can bind with highaffinity and specificity to a target molecules. They are generated in an in vitro systematiciterative process, which is known as SELEX (systematic evolution of ligands by exponentialenrichment). Due to its high affinity and specificity, aptamers are widely used in basicresearch, proteomics research, diagnostic and therapeutic. However, there is few research onfood safety. In this study, high-affinity ssDNA aptamers binding to foodborn pathogenicbacteria were screened. As a recognition element, it was used to combine magneticnanoparticles separation and concentration, upconversion nanoparticals, flow cytometry andlabel-free aptasensor to establish a series of novel, sensitive and rapid detection methods forfoodborn pathogenic bacteria, which provide a new means for enriching and improvingtechnology of detection in food safety.
     Firstly, a whole-bacteria Systemic Evolution of Ligands by Exponential Enrichment(SELEX) method was applied to identify DNA aptamers demonstrating specific binding toVibrio parahaemolyticus. After nine rounds of selection, a highly enriched oligonucleotidepool was sequenced. The binding affinity and specificity assay were analysed by flowcytometry. The sequence, which presented high affinity and specificity with the target, wasthe aptamer of Vibrio parahaemolyticus. Based on the same principle and method, ahigh-affinity ssDNAaptamer binding to Salmonella typhimurium was obtained. Moreover, theconsensus sequence of the two aptamers were also analysed by removing base one by one.
     Secondly, a sensitive luminescent bioassay for the simultaneous detection of Salmonellatyphimurium and Staphylococcus aureus was developed using aptamer-conjugated magneticnanoparticles (MNPs) for both recognition and concentration elements and usingupconversion nanoparticles (UCNPs) as highly sensitive dual-color labels. The correlationbetween the concentration of Salmonella typhimurium and luminescent signal was found to belinear within the range of101~105cfu/mL (y=169.66X-35.2, R~2=0.9964), with the limits ofdetection5cfu/mL, and101~105cfu/mL (y=118.5X+15.6, R~2=0.9936) for Staphylococcusaureu, with the limits of detection8cfu/mL. The bioassay was successfully applied to detectSalmonella typhimurium and Staphylococcus aureus in real water samples.
     Thirdly, a dual functional platform was demonstrated for the simultaneous detection oftwo pathogenic bacteria using quantum dots as fluorescence markers coupled with aptamersas the molecular recognition element by flow cytometry. The results were compared with theexperimental results from plate-counting methods (for Vibrio parahaemolyticus P<0.0001,R~2=0.9993; for Salmonella typhimurium P<0.0001, R~2=0.9995). The bioassay wassuccessfully applied to detect Vibrio parahaemolyticus and Salmonella typhimurium in realshrimp samples. This is the first time for the application of aptamer-conjugated QDs in flowcytometry for bacteria determination.
     Fourthly, a fluorescence detection of foodbore pathogenic bacteria using a label-freeaptasensor was researched in this section. The fluorescence of AccuBlue reagent itself is veryweak, but it becomes highly fluorescent upon binding to dsDNA, while no significant fluorescence change can be observed with its binding to ssDNA and impermeable to cellmembranes. This unique phenomenon of AccuBlue has laid the foundation for thedevelopment of the label-free aptasensor herein. Two strategy of “signal on” and “signal off”was proposed to detect Vibrio parahaemolyticus and Salmonella typhimurium, respectively.The correlation between the concentration of Vibrio parahaemolyticus and luminescent signalwas found to be linear within the range of50~106cfu/mL (y=197.23x+15.688, R~2=0.9956),and the limits of detection was35cfu/mL. The correlation between the concentration ofSalmonella typhimurium and luminescent signal was found to be linear within the range of50~106cfu/mL (y=183.72x+30.79, R~2=0.9957), and the limits of detection was25cfu/mL.The proposed methods had the ability to effectively detect the real shimp sample and chickensample.
     Fifthly, the binding mechanism of aptamer and target molecules was preliminary studiedby detecting the affinity between aptamers and surface molecules of the bacteria. The bacteriaouter membrane proteins (OMPs) and lipopolysaccharide (LPS) was analysed to be the mostlikely surface molecules to aptamer. The OMPs and LPS were isolated and incubated withtheir corresponding aptamers, and the binding affinity was analysed using fluorescencepolarization. The results indicated that the affinity of Vibrio parahaemolyticus, or Salmonellatyphimurium aptamer and OMPs is higher than that of LPS. That is to say aptamers, generatedby whole-bacteria SELEX, bind to OMPs with specificity. The results had a positive value forclarifying the binding mechanism of aptamer and target molecules.
     In conclusion, aptamers targeted to foodborn pathogenic bacteria were selected as anovel recognition element. Benefit from its high affinity and specificity to targets and simplemodification, a series of novel, sensitive and rapid detection methods were established for oneor two bacteria determination combining with UCNPs, QDs, flow cytometry. That provides atechnical support for developing detection methods and relative products based on aptamersfor pathogenic bacteria.
引文
1.李羡筠.瘦肉精的毒性和致突变性研究进展[J].广西医科大学学报,2009,26(4):653-655.
    2.许一平,成炜,邵彦春,等.沙门菌、大肠杆菌和金黄色葡萄球菌的多重PCR检测[J].微生物学通报,2006,33(6):89-94.
    3. Kim J,Demeke T,Clear R M,et al. Simultaneous detection by PCR of Escherichia coli,Listeria monocytogenes and Salmonella typhimurium in artificially inoculated wheatgrainInternational. Journal of Food Microbiology,2006,111(1):21-25.
    4.刘仲敏,郑鸣,王永芬.食源性单增李斯特菌的实时定量PCR检测[J].食品与发酵工业,2007,33:100-104.
    5.蒋鲁岩,蔡潭溪,邵景东,等.应用双重real-time PCR同步定量检测食品中的副溶血性弧菌及金黄色葡萄球菌[J].中国食品卫生杂志,2006,18(3):205-209.
    6.周焕英,高志贤.免疫传感器在葡萄球菌肠毒素检测中的研究进展[J].中国卫生检验杂,2007,17(1):177-181.
    7.孙素霞,陈思强,罗海吉.自动酶联荧光免疫分析系统检测冻肉中李斯特氏菌[J].南方医科大学学报,2006,9:1325-1326.
    8. Watanabe K,Arakawa H,Maeda M. Simultaneous detection of two verotoxin genes usingdual-label time-resolved fluorescence immunoassay with duplex PCR. Luminescence,2002,17(2):123-129.
    9. Stamm W E,Cutter B E,Grootes-Reuvecamp GA. Enzyme immunoassay for detection ofantibody-coated bacteria. Journal of clinical microbiology,1981,13(1):42-45.
    10. Karsunke X Y Z,Niessner R,Seidel M. Development of a multichannel flow-throughchemiluminescence microarray chip for parallel calibration and detection of pathogenicbacteria. Analytical and Bioanalytical Chemistry,2009,395(6):1623-1630.
    11. Brigmon R L,Zam S G,Bitton G,et al. Detection of Salmonella enteritidis inenvironmental samples by monoclonal antibody-based ELISA. Journal of ImmunologicalMethods,1992,152(1):135-142.
    12. Hochel I,Viochna D,Skvor J,et al. Development of an indirect competitive ELISAfordetection of Campylobacter jejuni subsp jejuni0:23in foods. Folia Microbiologica,2004,49(5):579-586.
    13. Magliulo M,Simoni P,Guardigli M,et al. A rapid multiplexed chemiluminescentimmunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica,salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal ofAgricultural and Food Chemistry,2007,55(13):4933-4939.
    14. Sinikka J,Harri H,Mika T,et al. Sensitive Listeria spp. immunoassay based oneuropium(III) nanoparticulate labels using time-resolved fluorescence. InternationalJournal of Food Microbiology,2007,114(3):288-294.
    15. Qiu J M,Zhou Y,Chen H,et al. Immunomagnetic separation and rapid detection ofbacteria using bioluminescence and microfluidics. Talanta,2009,79(3):787-795.
    16. Zhao Y,Ye M Q,Chao Q G,et al. Simultaneous Detection of Multifood-BornePathogenic Bacteria Based on Functionalized Quantum Dots Coupled withImmunomagnetic Separation in Food Samples. Journal of Agricultural and FoodChemistry,2009,57:517-524.
    17. Erhan T, smail H B,U ur T,et al. A highly sensitive detection platform based onsurface-enhanced Raman scattering for Escherichia coli enumeration. Analytical andBioanalytical Chemistry,2010,397(4):1595-1604.
    18. Yeo W H,Liu S,Chung J H,et al. Rapid detection of Mycobacterium tuberculosis cellsby using microtip-based immunoassay. Analytical and Bioanalytical Chemistry,2009,393(6-7):1593-1600.
    19.黄岭芳.快速检测大肠杆菌O157:H7胶体金免疫层析方法的建立[D]:[硕士学位论文].南昌:南昌大学食品科学系,2011.
    20. Tuerk C,Gold L.Systematic evolution of ligands by exponential enrichment RNA ligandsto bacteriophage T4DNA polymerase.Science,1990,249:505-510.
    21. Ellington A D,Szostak J W.In vitro selection of RNA molecules that bind specificligands.Nature,1990,346:818-822.
    22. Osborne S E,Matsumura I,Ellington A D. Aptamers as therapeutic and diagnosticreagents: problems and prospects. Current Opinion in Chemical Biology,1997,1(1):5-9.
    23.孟庆玲,陈创夫. SELEX技术及其应用前景[J].塔里木大学学报,2008,20(3):44-49.
    24. Cruz-aguado J A,C Penner G. Determination of Ochratoxin A with a DNA Aptamer.Journal of Agriculture and Food Chemistry,2008,56(22):10456-10461.
    25. Jenison R D,Gill S C,Barry P,et al. High resolution molecular discrimination by RNA.Science,1994,263:1425-1429.
    26. Tang Z W,Shangguan D H,Wang K M,et al. Selection of Aptamers for MolecularRecognition and Characterization of Cancer Cells. Anal. Chem,2007,79:4900-4907.
    27. Cao X X,Li S H,Chen L C,et al. Combining use of a panel of ssDNA aptamers in thedetection of Staphylococcus aureus. Nucleic Acids Research,2009,37:4621-4628.
    28. Hijiri H,Koji S,Kazunori I. Selection of DNA aptamers against VEGF165using a proteincompetitor and the aptamer blotting method. Biotechnol Lett,2008,30:829-834.
    29. Liu X M,Zhang D J,Cao G J,et al. RNA aptamers specific for bovine thrombin. J. Mol.Recognit,2003,16:23-27.
    30. Mendonsa S D,Bowser M T. In Vitro Selection of High-Affinity DNA Ligands forHuman IgE Using Capillary Electrophoresis. Anal. Chem,2004,76:5387-5392.
    31. Mosing R K,Mendonsa S D,Bowser M T. Capillary Electrophoresis-SELEX Selection ofAptamers with Affinity for HIV-1Reverse Transcriptase. Anal. Chem,2005,77:6107-6112.
    32. Mann D,Reinemann C,Stoltenburg R,et al. In vitro selection of DNAaptamers bindingethanolamine. Biochemical and Biophysical Research Communications,2005,338:1928-1934.
    33. Stoltenburg R,Reinemann C,Strehlitz B. FluMag-SELEX as an advantageous method forDNAaptamer selection. Analytical and Bioanalytical Chemistry,2005,38(1):83-91.
    34. Tang J J,Yu T,Guo L,et al. In vitro selection of DNA aptamer against abrin toxin andaptamer-based abrin direct detection. Biosensors and Bioelectronics,2007,22:2456-2463.
    35. Park J W,Tatavarty R,Kim D W,et al. Immobilization-free screening of aptamersassisted by graphene oxide. Chem. Commun,2012,48:2071-2073.
    36. Willner I,Shlyahovsky B,Zayats M,et al. DNAzymes for sensing, nanobiotechnologyand logic gate applications. Chemical Society Reviews,2008,37(6):1153-1165.
    37. Li L D,Zhao H T,Chen Z B,et al. Aptamer-based electrochemical approach to thedetection of thrombin by modification of gold nanoparticles. Anal Bioanal Chem,2010,398:563-570.
    38. Zhang D W,Zhang F T,Cui Y R,et al. A label-free aptasensor for the sensitive andspecific detection of cocaine using supramolecular aptamer fragments/target complex byelectrochemical impedance spectroscopy. Talanta,2012,92:65-71.
    39. Dong H F,Gao W C,Yan F,et al. Fluorescence Resonance Energy Transfer betweenQuantum Dots and Graphene Oxide for Sensing Biomolecules. Anal. Chem,2010,82:5511-5517.
    40. Song K M,Cho M,Jo H,et al. Gold nanoparticle-based colorimetric detection ofkanamycin using a DNA aptamer. Analytical Biochemistry,2011,415(2):175-181.
    41. Polonschii C,David S,Tombelli S,et al. A novel low-cost and easy to developfunctionalization platform. Case study: Aptamer-based detection of thrombin by surfaceplasmon resonance. Talanta,2010,80(5):2157-2164.
    42. Liss M,Petersen B,Wolf H,et al. An Aptamer-Based Quartz Crystal Protein Biosensor.Anal. Chem,2002,74:4488-4495.
    43. Shi H,He X X,Wang K M,et al. Activatable aptamer probe for contrast-enhanced in vivocancer imaging based on cell membrane protein-triggered conformation alteration.Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2011,108(10):3900-3905.
    44. Yin M L, Li Z H, Liu Z, et al. Photosensitizer-incorporated G-quadruplexDNA-functionalized magenetofluorescent nanoparticles for targeted magneticresonance/fluorescence multimodal imaging and subsequent photodynamic therapy ofcancer. Chemical Communications,2012,48(52):6556-6558.
    45. Bagalkot V,Zhang L,Levy-Nissenbaum E,et al. Quantum Dot-Aptamer Conjugates forSynchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based onBi-Fluorescence Resonance Energy Transfer. Nano Lett,2007,7:3065-3070.
    46. Yang C,Wang Y,Marty J L,et al. Aptamer-based colorimetric biosensing of OchratoxinAusing unmodified gold nanoparticles indicator. Biosensors&Bioelectronics,2011,26(5):2724-2727.
    47. Barthelmebs L,Hayat A,Limiadi A W,et al. Electrochemical DNA aptamer-basedbiosensor for OTA detection, using superparamagnetic nanoparticles. Sensors andActuators B-Chemical,2011,156(2):932-937.
    48. Duan N,Wu S J,Wang Z P. Gold nanoparticles fluorescence resonance energy transferaptasensor for Ochratoxin Adetection. Analytical Letter,2012,45(7):714-723.
    49. Duan N,Wu S J,Wang Z P. An aptamer-based fluorescence assay for Ochratoxin A. ChinJAnal Chem,2011,39(3):300-304.
    50. Wu S J,Duan N,Ma X Y,Xia Y,et al. Multiplexed Fluorescence Resonance EnergyTransfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for theSimultaneous Determination of Mycotoxins. Analytical Chemistry,2012,84:6263-6270.
    51. Wu S J,Duan N,Wang Z P,et al. Aptamer-functionalized magnetic nanoparticle-basedbioassay for the detection of ochratoxin a using upconversion nanoparticles as labels.Analyst,2011,136:2306-2314.
    52. Feynman R P. Caltech’s Engineering and Science.1960,4:23-36.
    53.稽天浩,孙家跃,杜海燕.分散性无机纳米粒子-制备、组装和应用[M].北京:科学出版社,2009.
    54.陈翌庆,石瑛.纳米材料学基础[M].长沙:中南大学出版社,2009
    55. Jun YW,Choi J S,Cheon J. Shape control of semiconductor and metal oxide nanocrystalsthrough nonhydrolytic colloidal routes. Angew Chem Int Ed,2006,45:3414-3439
    56.姜忠义,成国祥.纳米生物技术[M].北京:化学工业出版社,2003
    57. Yong K T,Roy I,Swihart M T,et al. Multifunctional nanoparticles as biocompatibletargeted probes for human cancer diagnosis and therapy. J Mater Chem,2009,19:4655-4672
    58. Algar W R,Massey M,Krull U J. The application of quantum dots, gold nanoparticles andmolecular switches to optical nucleic-acid diagnostics. Trac Trend Anal Chem,2009,28:292-306
    59. Chan W C W,Nie S M.Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science,1998,281(5385):2016-2018.
    60. Gao X,Zhang H,Li Y,et al. Mn-doped ZnSe d-dots-based α-methylacyl-CoAracemaseprobe for human prostate cancer cell imaging. Analytical and Bioanalytical Chemistry,2012,402(5):1871-1877.
    61. Yuan Q,Hein S,Misra R D K. New generation of chitosan-encapsulated ZnO quantumdots loaded with drug: Synthesis, characterization and in vitro drug delivery response.Acta Biomaterialia,2010,6(7):2732-2739
    62. Samia A C S,Chen X B,Burda C. Semiconductor Quantum Dots for PhotodynamicTherapy. Journal of theAmerican Chemical Society,2003,125(51):15736-15737.
    63. Jie G J,Li L L,Chen C,et al. Enhanced electrochemiluminescence of CdSe quantum dotscomposited with CNTs and PDDA for sensitive immunoassay. Biosensors andBioelectronics,2009,24(11):3352-3358.
    64. Goldman E R,Clapp AR,Anderson G P,et al. Multiplexed Toxin Analysis Using FourColors of Quantum Dot Fluororeagents. Anal. Chem,2004,76(3):684-688.
    65. Tang B,Cao L H,Xu K H,et al. ANew Nanobiosensor for Glucose with High Sensitivityand Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET)between CdTe Quantum Dots and Au Nanoparticles. Chemistry-A European Journal,2008,14(12):3637-3644.
    66. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev,2004,104(1):139-17.
    67. Gamelin D R,Gudel H U. Upconversion processes in transition metal and rare earth metalsystems. Top Curr Chem,2001,214:1-56.
    68. Gamelin D R,Gudel H U. Design of luminescent inorganic materials: New photophysicalprocesses studied by optical spectroscopy. Acc Chem Res,2000,33(4):235-242.
    69. Joubert M F. Photon avalanche upconversion in rare earth laser materials. Opt Mater,1999,11(2-3):181-203.
    70. Morgan C G,Mitchell A C. Prospects for applications of lanthanide-based upconvertingsurfaces to bioassay and detection. Biosensors&Bioelectronics,2007,22(8):1769-1775.
    71. Lin M,Zhao Y,Wang S Q,et al. Recent advances in synthesis and surface modificationof lanthanide-doped upconversion nanoparticles for biomedical applications.BiotechnologyAdvances,2012,30(6):1551-1561.
    72. Ang LY,Lim M E,Ong L C,et al. Applications of upconversion nanoparticles in imaging,detection and therapy. Nanomedicine,2011,6(7):1273-1288.
    73. Bechet D,Couleaud P,Frochot C,et al. Nanoparticles as vehicles for delivery ofphotodynamic therapy agents. Trends in Biotechnology,2008,26(11):612-621.
    74. Dev K C,Zhang Y. Upconverting nanoparticles as nanotransducers for photodynamictherapy in cancer cells. Nanomedicine,2008,3(1):73-82.
    75. Song Z,Anissimov Y G,Zhao J B,et al. Background free imaging of upconversionnanoparticle distribution in human skin. Journal of Biomedical Optics,2013,13(6): DOI:
    10.1117/1.JBO.18.6.061215.
    76. Li L L,Zhang R B,Yin L L,et al. Biomimetic surface engineering of lanthanide-dopedupconversion nanoparticles as versatile bioprobes. Angewandte Chemie-internationaledition,2012,51(25):6121-6125.
    77. Ferguson R,Matthew M, Kevin R,et al. Optimizing magnetite nanoparticles for masssensitivity in magnetic particle imaging. Medical Physics,2011,38(3):1619-1626.
    78. Foy S P,Manthe R L,Foy S T,et al. Optical imaging and magnetic field targeting ofmagnetic nanoparticles in tumors. ACS NANO,2010,4(9):5217-5224.
    79. Joshi A,Solanki S,Chaudhari R,et al. Multifunctional alginate microspheres forbiosensing, drug delivery and magnetic resonance imaging. Acta Biomaterialia,2011,7(11):3955-3963.
    80. Nikolaev B P,Marchenko YY,Yakovleva LY,et al. Magnetic epidermal growth factorconjugate for targeted delivery to grafted tumor in mouse model. IEEE Transactions onMagnetics,2013,49(1):429-435.
    81. Yavuz C T,Prakash A,Mayo J T,et al. Magnetic separations: From steel plants tobiotechnology. Chemical Engineering Science,2009,64(10):2510-2521.
    82. Ramadan Q,Samper V,Poenar D,et al. Magnetic-based microfluidic platform forbiomolecular separation. Biomedical Microdevices,2006,8(2):151-158.
    83. Primo F L,Michieleto L,Rodrigues M A M,et al. Magnetic nanoemulsions as drugdelivery system for Foscan (R): Skin permeation and retention in vitro assays for topicalapplication in photodynamic therapy (PDT) of skin cancer. Journal of Magnetism andMagnetic Materials,2007,311(1):354-357.
    84. Fei B W,Wang H S,Meyers J D,et al. High-field magnetic resonance imaging of theresponse of human prostate cancer to pc4-based photodynamic therapy in an animalmodel. Lasers in Surgery and Medicine,2007,39(9):723-730.
    85. Yeung P S,Boor K J. Epidemiology, pathogenesis, and prevention of foodborne Vibrioparahaemolyticus infections. Foodborne Pathog. Dis,2004,1:74-88.
    86. DePaola A,Nordstrom J L,Bowers J C,et al. Seasonal abundance of total and pathogenicVibrio parahaemolyticus in Alabama oysters. Appl. Environ. Microbiol,2003,69:1521-1526.
    87. Lozano-Leon A,Torres J,Osorio C R,et al. Identification of TDH-positive Vibrioparahaemolyticus from an outbreak associated with raw oyster consumption in Spain.FEMS Microbiol. Lett,2003,226:281-284.
    88. Liston J. Microbial hazards of seafood consumption. Food Technology,1990,44:56-62.
    89. Su Y C,Liu C C. Vibrio parahaemolyticus: a concern of seafood safety. FoodMicrobiology,2007,24:549-558.
    90. Kiiyukia C,Venkateswaran K,Navarro M,et al. Seasonal distribution of Vibrioparahaemolyticus serotypes along the oyster beds in Hiroshima coast. J. Fac. Appl. Biol.Sci,1989,28:49-61.
    91. Yano Y,Kaneniwa M,Satomi M. Occurrence and density of Vibrio parahaemolyticus inlive edible crustaceans from markets in China. J. Food Protect,2006,69:2742-2746.
    92.刘秀梅,陈艳,王晓英,等.1992年-2001年食源性疾病爆发资料分析-国家食源性疾病监测网[J].卫生研究,2004,33(6):725-727.
    93.刘仲敏,郑鸣,王永芬.食源性单增李斯特菌的实时定量PCR检测[J].食品与发酵工业,2007,33:100-104.
    94.蒋鲁岩,蔡潭溪,邵景东,等.应用双重real-time PCR同步定量检测食品中的副溶血性弧菌及金黄色葡萄球菌[J].中国食品卫生杂志,2006,18(3):205-209
    95. Hochel I,Viochna D,Skvor J,et al. Development of an indirect competitive ELISAfordetection of Campylobacter jejuni subsp jejuni0:23in foods. Folia Microbiologica,2004,49(5):579-586.
    96. Shigeko U,Yoshihiro K. Evaluation of an Enzyme-Linked Fluorescent Assay for theDetection of Listeria monocytogenes from Food. Biocontrol Science,2010,15(3):91-95.
    97. Sinikka J,Harri H,Mika T,et al. Sensitive Listeria spp. immunoassay based oneuropium(III) nanoparticulate labels using time-resolved fluorescence. InternationalJournal of Food Microbiology,2007,114(3):288-294
    98. Mathew F P,Alagesan D,Alocilja E C. Chemiluminescence detection of Escherichia coliin fresh produce obtained from different sources. Luminescence,2004,19(4):193-198.
    99. Osborne S E,Matsumura I,Ellington A D. Aptamers as therapeutic and diagnosticreagents: problems and prospects. Curr. Opin. Chem. Biol,1997,1:5-9.
    100. Famulok M,Hartig J S,Mayer G. Functional aptamers and aptazymes in biotechnology,diagnostics, and therapy. Chem. Rev,2007,107:3715-3743.
    101. Tuerk C,Gold L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase. Science,1990,249:505-510.
    102. Ellington A D,Szostak J W. In vitro selection of RNA that bind specific ligands.Nature,1990,346:818-822.
    103. Symensma T L,Giver L,Zapp M,et al. RNA aptamers selected to bind humanimmunodeficiency virus type1Rev in vitro are Rev responsive in vivo. J. virol,1996,70:179-187.
    104. Brody E N,Willis M C,Smith J D,et al. The use of aptamers in large arrays formolecular diagnostics. Molecular diagnosis: a journal devoted to the understanding ofhuman disease through the clinical application of molecular biology,1999,4:381-388.
    105. Bruno J G. In vitro selection of DNA to chloroaromatics using magneticmicrobead-based affinity separation and fluorescence detection. Biochemical andBiophysical Research Communication,1997,234:117-120.
    106. Tuerk C. Methods in Molecular Biology, In: White, B. A.(Ed.), PCR Cloning Protocols:From Molecular Cloning to Genetic Engineering. Humana Press Inc., Totowa, NJ,1996,pp:219-229.
    107. Cruz-aguado J A,C Penner G. Determination of Ochratoxin A with a DNA Aptamer.Journal of Agriculture and Food Chemistry,2008,56(22):10456-10461.
    108. El-Gazzar F E,Marth E H. Salmonellae, Salmonellosis, and Dairy Foods: A Review.Journal of Dairy Science,1992,75(9):2327-2343.
    109. White B. Further studies of the Salmonella group. Med. Res. Coune Spec Rep Ser,1926,103:3-160.
    110. Skerman V B,McGowan V,Sneath P H. Approved list of bacterial names. Int J SystBacteriol,1980,30:225-420.
    111. Baker R C,Goff J P,Timoney J F. Prevalence of salmonellae on eggs from poultryfarms in New York State. Poultry science,1980,59(2):289-292
    112. Mateo J J,Mateo R,Hionjo M J,et al. Liquid chromatographic determination oftoxigenic secondary metabolites produced by Fusarium strains. Chromatogr A,2002,955(2):245-256.
    113. Rosenberg E,Krska R,Wissiack R,et al. HPLC-APCI-MS as a new tool for thedetermination of the mycotoxin zearalenone in food and feed. Chromatogr A,1998,819(1/2):277-288.
    114. Jones B D,Ghori N,Falkow S. Salmonella Typhimurium initiates murine infection bypenetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J. exp.Med,1994,180:15-23.
    115. Le M,Veron M,Popoff M. Taxonomic des Salmonella.Ann Microbiol,1982,133B:223-243.
    116. Wolffs P F G,Glencross K,Thibaudeau R. Direct quantitation and detection ofsalmonellae in biological samples without enrichment, using two-step filtration andreal-time PCR. Applied and Environmental Microbiology,2006,72(6):3896-3900.
    117. Kraemer N,Lofstrom C,Vigre H. A novel strategy to obtain quantitative data formodelling: Combined enrichment and real-time PCR for enumeration of salmonellae frompig carcasses. International Journal of Food Microbiology,2011,145(S1): S86-S95.
    118. Hochel I,Jenikova G,Dursi C F. Application of mouse antibodies to somatic antigen fordetection of Salmonella enteritidis by competitive ELISA. Food and AgriculturalImmunology,2001,13(2):115-126.
    119. Kumar R,Surendran P K,Thampuran N. Evaluation of culture, ELISAand PCR assaysfor the detection of Salmonella in seafood. Preventive Veterinary Medicine,2005,68(2-4):165-179.
    120. Brown A,Hormaeche C E. The antibody response to salmonellae in mice and humansstudied by immunoblots and ELISA. Microbial pathogenesis,1989,6(6):445-454
    121. Liu Y C,Che Y H,Li Y B. Rapid detection of Salmonella typhimurium usingimmunomagnetic separation and immune-optical sensing method. Sensors and ActuatorsB-Chemical,2001,72(3):214-218.
    122. Wang Z P,Xu H,Wu Jia. Sensitive detection of Salmonella with fluorescentbioconjugated nanoparticles probe. Food Chemistry,2011,125(2):779-784.
    123. Yang L J,Li Y B. Quantum dots as fluorescent labels for quantitative detection ofSalmonella typhimurium in chicken carcass wash water. Journal of Food Protection,2005,68(6):1241-1245.
    124. Wang L Y,Bao J,Wang L,et al. One-pot synthesis and bioapplication ofamine-functionalized magnetite nanoparticles and hollow nanospheres. Chem. Eur. J,2006,12:6341–6347.
    125. Ye Z Q,Tan M Q,Wang G,et al. Preparation, characterization, and time-resolvedfluorometric application of silica-coated terbium(ill) fluorescent nanoparticles. Anal.Chem,2004,76:513–518.
    126. Su X L,Li Y. A QCM immunosensor for Salmonella detection with simultaneousmeasurements of resonant frequency and motional resistance. Biosens. Bioelectron,2005,21(6):840–848.
    127. Varshney M,Li Y. Interdigitated array microelectrode based impedance biosensorcoupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coliO157: H7in food samples. Biosens. Bioelectron,2007,22(11):2408-2414.
    128. Muramatsu H,Kajiwara K,Tamiya E,et al. Anal. Chim. Acta,1986,188:257-261.
    129. Xue X H,Pan J,Xie H M,et al. Fluorescence detection of total count of Escherichia coliand Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria.Talanta,2009,77:1808-1813.
    130. Fu X,Huang K L,Liu S Q. A rapid and universal bacteria-counting approach usingCdSe/ZnS/SiO2composite nanoparticles as fluorescence probe. Anal. Bioanal. Chem,2010,396(4):1397-1404.
    131. Shen Z Q,Wang J F,Qiu Z G,et al. QCM immunosensor detection of Escherichia coliO157:H7based on beacon immunomagnetic nanoparticles and catalytic growth of colloidalgold. Biosens. Bioelectron,2011,26:3376-3381.
    132. Nagatoishi S,Nojima T,Galezowska E,et al. Fluorescence energy transfer probes basedon the guanine quadruplex formation for the fluorometric detection of potassium ion. Anal.Chim. Acta,2007,581(1):125-131.
    133. Liu J W,Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a generalsensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed,2006,45(1):90-94.
    134. Wang Z P,Duan N,Hun X,et al. Electrochemiluminescent aptamer biosensor for thedetermination of ochratoxin A at a gold-nanoparticles-modified gold electrode usingN-(aminobutyl)-N-ethylisoluminol as a luminescent label. Anal. Bioanal. Chem,2011,398(5):2125-2132.
    135. Lin M,Zhao Y,Wang S Q,et al. Recent advances in synthesis and surface modificationof lanthanide-doped upconversion nanoparticles for biomedical applications.BiotechnologyAdvances,2012,30(6):1551-1561.
    136. Ang L Y,Lim M E,Ong L C,et al. Applications of upconversion nanoparticles inimaging, detection and therapy. Nanomedicine,2011,6(7):1273-1288.
    137. Foy S P,Manthe R L,Foy S T,et al. Optical imaging and magnetic field targeting ofmagnetic nanoparticles in tumors. ACS NANO,2010,4(9):5217-5224.
    138. Joshi A,Solanki S,Chaudhari R,et al. Multifunctional alginate microspheres forbiosensing, drug delivery and magnetic resonance imaging. Acta Biomaterialia,2011,7(11):3955-3963.
    139. Joshi R, Janagama H,Dwivedi H P,et al. Selection, characterization, and applicationof DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol.Cell.Probes,2009,23(1):20-28.
    140. Cao X X,Li S H,Chen L C,et al. Combining use of a panel of ssDNAaptamers in thedetection of Staphylococcus aureus. Nucl. Acids Res,2009,37(14):4621-4628.
    141. Wu S J,Duan N,Wang Z P,et al. Aptamer-functionalized magnetic nanoparticle-basedbioassay for the detection of ochratoxin a using upconversion nanoparticles as labels.Analyst,2011,136(11):2306-2314.
    142. Wu S J,Duan N,Zhu C Q,et al. Magnetic nanobead-based immunoassay for thesimultaneous detection of aflatoxin B1and ochratoxin A using upconversion nanoparticlesas multicolor labels. Biosens. Bioelectron,2011,30(1):35-42.
    143. St ber W,Fink A. J. Colloid Interface Sci,1968,26:62-69.
    144. Wang L Y,Wang L,Zhang F,et al. One-pot synthesis and bioapplication ofamine-functionalized magnetite nanoparticles and hollow nanospheres. Chem. Eur. J,2006,12(24):6341-6347.
    145. Greve B,Valet G,Humpe A,et al. Flow cytometry in transfusion medicine:Development, strategies and applications. Transfusion Medicine and Hemotherapy,2004,31(3):152-161.
    146. Moriarty A T,Wiersema L,Snyder W,et al. Immunophenotyping of cytologicspecimens by flow-cytometry. Diagnostic Cytopathology,1993,9(3):252-258.
    147. Mullaney P F,Van Dilla M A,Coulter J R,et al. Cell sizing: a light scatteringphotometer for rapid volume determination. Rev. Sci. Instrum,1969,40(8):1029-1032.
    148. Hulett H R,Bonner W A,Barrett J,et al. Cell sorting: automated separation ofmammalian cells as a function of intracellular fluorescence. Science,1969,166(3906):747-749.
    149. Bonner W A,Hulett H R,Sweet R G,et al. Fluorescence activated cell sorting. Rev. Sci.Instrum,1972,43(3):404-409.
    150. Hulett H R,Bonner W A,Sweet R G,et al. Development and application of a rapid cellsorter. Clin. Chem,1973,19(8):813-816.
    151. Steinkamp J A,Crissman H A. Resolution of fluorescence signals from cells labeledwith fluorochromes having different lifetimes by phase-sensitive flow-cytometry.Cytometry,1993,14(2):210-216.
    152. Houston J P,Naivar M A,Freyer J P. Digital Analysis and Sorting of FluorescenceLifetime by Flow Cytometry. Cytom. Part A,2010,77(9):861-872.
    153. Engelhard H H,Krupka J L,Bauer K D. Simultaneous quantification of c-myconcoprotein, total cellular protein, and dna content using multiparameter flow-cytometry.Cytometry,1991,12(1):68-76.
    154. Shapiro H M. Practical Flow Cytometry,2nd ed. New York: Alan R. Liss, Inc,1988.
    155. Hibi K,Abe A,Ohashi E,et al. Combination of immunomagnetic separation with flowcytometry for detection of Listeria monocytogenes. Anal. Chim. Acta,2006,573(S1):158-163.
    156. Yamaguchi N,Sasada M,Yamanaka M,et al. Rapid detection of respiring Escherichiacoli O157: H7in apple juice, milk, and ground beef by flow cytometry. Cytom. Part A,2003,54(1):27-35.
    157. Telford W G,Moss M W,Morseman J P,et al. Cryptomonad algal phycobiliproteins asfluorochromes for extracellular and intracellular antigen detection by flow cytometry.Cytometry,2001,44(1):16-23.
    158. Isailovic D,Sultana I,Phillips G J,et al. Formation of fluorescent proteins by theattachment of phycoerythrobilin to R-phycoerythrin alpha and beta apo-subunits. Anal.Biochem,2006,358(1):38-50.
    159. Solange D,Gerald G,France V W,et al. A method for analysing phosphatase activityin aquatic bacteria at the single cell level using flow cytometry. J. Microbiol. Meth,2008,75(2):269-278.
    160. Yang L L,Wu L N,Zhu S B,et al. Rapid, Absolute, and Simultaneous Quantificationof Specific Pathogenic Strain and Total Bacterial Cells Using an Ultrasensitive Dual-ColorFlow Cytometer. Anal. Chem,2010,82(3):1109-1116.
    161. Bruchez M,Moronne M,Gin P,et al. Semiconductor nanocrystals as fluorescentbiological labels. Science,1998,281(5385):2013-2016.
    162. Chan W C W,Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science,1998,281(5385):2016-2018.
    163. Zhelev Z,Ohba H,Bakalova R,et al. Fabrication of quantum dot-lectin conjugates asnovel fluorescent probes for microscopic and flow cytometric identification of leukemiacells from normal lymphocytes. Chem. Comm,2005,15:1980-1982.
    164. Zahavy E, Heleg-Shabtai V, Zafrani Y, et al. Application of FluorescentNanocrystals (q-dots) for the Detection of Pathogenic Bacteria by Flow-Cytometry. J.Fluoresc,2010,20(1):389-399.
    165. Hahn M A,Keng P C,Krauss T D. Flow cytometric analysis to detect pathogens inbacterial cell mixtures using semiconductor quantum dots. Anal. Chem,2008,80(3):864-872.
    166. Dubertret B,Skourides P,Norris D J,et al. In vivo imaging of quantum dotsencapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762.
    167. Chen F,Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term,nontoxic imaging and nuclear targeting in living cells. Nano Lett,2004,4(10):1827-1832.
    168. Schulz-Drost C,Sgobba V,M. Guldi D. Zero-versus one-dimensional water-solubleCdTe nanocrystalss synthesis and photophysical characterization. J. Phys. Chem. C,2007,111:9694-9703.
    169. Tuerk C,Gold L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase. Science,1990,249:505-510.
    170. Ellington A D,Szostak J W. In vitro selection of RNA that bind specific ligands.Nature,1990,346:818-822.
    171. Song S P,Wang L H,Li J,et al. Aptamer-based biosensors. Trac-trends in AnalyticalChemistry,2008,27(2):108-117.
    172. Citartan M,Gopinath S C B,Tominaga J,et al. Assays for aptamer-based platforms.Biosensors&Bioelectronics,2012,34(1):1-11.
    173. Lu Y,Zhu N N,Yu P,et al. Aptamer-based electrochemical sensors that are not based onthe target binding-induced conformational change of aptamers. Analyst,2008,133(9):1256-1260.
    174. Zhang J,Chen P P,Wu X Y,et al. A signal-on electrochemiluminescence aptamerbiosensor for the detection of ultratrace thrombin based on junction-probe. Biosensors&Bioelectronics,2011,26(5):2645-2650.
    175. Cai Q H,Chen L F,Luo F,et al. Determination of cocaine on banknotes through anaptamer-based electrochemiluminescence biosensor. Analytical and BioanalyticalChemistry,2011,400(1):289-294.
    176. Pavlov V,Shlyahovsky B,Willner I. Fluorescence detection of DNA by the catalyticactivation of an aptamer/thrombin complex. Journal of the American Chemical Society,2005,127(18):6522-6523.
    177. Cheng Alan K H,Su H P,Wang A,et al. Aptamer-based detection of epithelial tumormarker mucin1with quantum dot-based fluorescence readout. Analytical Chemistry,2009,81(15):6130-6139.
    178. Wu S J,Duan N,Ma X Y,et al. Multiplexed fluorescence resonance energy transferaptasensor between upconversion nanoparticles and graphene oxide for the simultaneousdetermination of mycotoxins. Analytical Chemistry,2012,84(14):6263-6270.
    179. Wu S J,Duan N,Wang Z P,et al. Aptamer-functionalized magnetic nanoparticle-basedbioassay for the detection of ochratoxin a using upconversion nanoparticles as labels.Analyst,2011,136(11):2306-2314.
    180. Liu X Q,Freeman R,Golub E,et al. Chemiluminescence and chemiluminescenceresonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes.ACS Nano,2011,5(9):7648-7655.
    181. Li Y,Ji X T,Liu B W. Chemiluminescence aptasensor for cocaine based ondouble-functionalized gold nanoprobes and functionalized magnetic microbeads. Analyticaland Bioanalytical Chemistry,2011,401(1):213-219.
    182. Wang J,Liu B. Fluorescence resonance energy transfer between an anionic conjugatedpolymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. ChemicalCommunications,2009,17:2284-2286.
    183. Guo Z J,Ren J T,Wang J H. Single-walled carbon nanotubes based quenching of freeFAM-aptamer for selective determination of ochratoxin A. Talanta,2011,85(5):2517-2521.
    184. Chang H X,Tang L H,Wang Y,et al. Graphene fluorescence resonance energy transferaptasensor for the thrombin detection. Analytical Chemistry,2010,82(6):2341-2346.
    185. Wang Y H,Bao L,Liu Z H,et al. Aptamer biosensor based on fluorescence resonanceenergy transfer from upconverting phosphors to carbon nanoparticles for thrombindetection in human plasma. Analytical Chemistry,2011,83(21):8130-8137.
    186. Choi M S,Yoon M J,Baeg J O,et al. Label-free dual assay of DNA sequences andpotassium ions using an aptamer probe and a molecular light switch complex. ChemicalCommunications,2009,47:7419-7421.
    187. Pu F,Huang Z Z,Hu D,et al. Sensitive, selective and label-free protein detection usinga smart polymeric transducer and aptamer/ligand system. Chemical Communications,2009,47:7357-7359.
    188. Lv Z Z,Liu J C,Zhou Y,et al. Highly sensitive fluorescent detection of small molecules,ions, and proteins using a universal label-free aptasensor. Chemical Communications,2013,49(48):5465-5467.
    189. Kong L,Xu J,Xu Y Y,et al. A universal and label-free aptasensor for fluorescentdetection ofATP and thrombin based on SYBR Green I dye. Biosensors&Bioelectronics,2013,42:193-197.
    190.董明盛,贾英明.食品微生物学[M].北京:中国轻工业出版社,2006.23-26.
    191.萨姆布鲁克,D.W.拉塞尔,黄培堂.分子克隆实验指南[M]:第3版.北京:科学出版社,2002.1720-1721.
    192.鱼艳荣,刘希成.革兰氏阴性菌外膜蛋白研究进展[J].动物医学进展,2000,21(2):35-39.
    193.徐先栋,谢珍玉,王世锋,等.脂多糖快速银染检测方法的改良[J].生物技术通报,2009,3:95-97.
    194.朱广华,郑洪,鞠熀先.荧光偏振免疫分析技术的研究进展[J].分析化学,2004,
    32(1):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700