用户名: 密码: 验证码:
肉桂酸衍生物基聚酯的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于日益严峻的资源和环境问题的解决及临床医学、生物医药等领域新材料的开发均具有重要意义,因而功能性可降解高分子的研究成为了当前的研究热点。在各种可降解高分子中,聚己内酯(PCL)及其共聚物是一类生物相容性优异、无毒且药物渗透性良好的生物可降解脂肪族聚酯,并逐渐成为了当前的研究热点。羟基肉桂酸是一类来源于植物的光敏性“植物性单体”,将二者通过不同形式的化学键键接在一起得到的光敏性聚酯可有效地对二者的性质进行互补,改善不足,发扬优点,通过对其结构、组成等的控制可实现对此类聚酯性能的调控。
     本文首先通过开环聚合法制备了不同分子量的PCL均聚物,进而利用自制的PCL和4-羟基肉桂酸(4HCA)通过熔融缩聚法合成了系列PCL-co-P4HCA共聚物。利用了FTIR和1H NMR对所制备的共聚物的结构进行了确认; GPC的结果表明:PCL-co-P4HCA的分子量介于8.7×10~4-10.1×10~4g/mol之间,且分子量越大,分子量分布越宽;PCL-co-P4HCA具有光敏性,在302nm的UV照射下,共聚物在306nm处的特征吸收峰的强度逐渐下降,并最终趋于稳定,此外共聚物中4HCA单元的含量越多,光响应速度越快,光照50min后的下降程度(交联度)也越大;PCL-co-P4HCA系列共聚物均具有荧光性,随着共聚物中4HCA组分含量的减少和紫外光照时间的增加,PCL-co-P4HCA在450nm处的荧光强度呈线性减弱;DSC和WXRD的结果表明PCL-co-P4HCA共聚物兼具有PCL和P4HCA均聚物的结晶性,随着共聚物中PCL组分含量的减少,PCL-co-P4HCA的结晶度会呈现出降低的趋势;PCL-co-P4HCA具有优异的热稳定性,紫外光照会使系列共聚物的热稳定性呈规律性下降;共聚物板材表面的水接触角会随着4HCA组分的减少和紫外光照时间的增加而增大;共聚物中4HCA单元含量的增加有利于聚合物的降解,碱性条件相对于中性条件具有更快的降解速度,紫外光照会增加板材的疏水性,从而使其水解速度下降。
     利用AB2型单体3,4-二羟基肉桂酸(DHCA)与自制的PCL通过聚合反应,合成了支化型的PCL-co-PDHCA共聚物,在确定了其结构后,进一步利用1H NMR对聚合物的支化度进行了分析表征, GPC和FTIR的结果表明共聚物在形成的过程中发生了酯交换反应。PCL-co-PDHCA共聚物具有光敏性,在302nm的UV光照75min后的光交联程度可达到30%左右,且DHCA单元含量越多,光交联程度越大;PCL-co-PDHCA共聚物的荧光性会受到支化度的影响,当聚合物的支化度较低时,荧光强度随DHCA组分含量的增加而增加,当支化度较高时会引起荧光猝灭的发生,从而导致荧光强度下降;DSC和WXRD的结果表明PCL-co-PDHCA共聚物的结晶性主要受到PCL的影响,随着DHCA组分含量的增加,共聚物的熔点和结晶度随下降;PCL-co-PDHCA共聚物具有优异的热稳定性,聚合物的组成、支化度和紫外光照均会对其热稳定性造成影响;PCL组分含量的增加和UV光照均会降低共聚物板材的亲水性,进而减缓水解速度。
     利用无水磷酸钠作为催化剂,按照同样的投料比分别制备了直链形的P4HCA和PCL-co-P4HCA及支化型的PDHCA和PCL-co-PDHCA系列聚合物,通过FTIR和1HNMR对两种聚合物的结构进行了分析。1H NMR和GPC的结果表明AB2型单体DHCA的反应活性相对优于4HCA;在55min的UV光照后,支化型的PCL-co-PDHCA相对于直链形的PCL-co-P4HCA具有更高的光交联程度,而直链形聚合物由于分子链活动能力更强因而更容易发生顺反异构化反应;直链形的P4HCA和PCL-co-P4HCA相对于同样组成的PDHCA和PCL-co-PDHCA具有更强的荧光强度;支化型结构及更强的π-π堆叠作用使支化型的PDHCA和PCL-co-PDHCA相对于直链形聚合物具有更好的热稳定性;WXRD结果表明PCL-co-P4HCA具有更强的结晶性,这一性质使P4HCA和PCL-co-P4HCA具有相对缓慢的降解速度。
     利用不同分子量的聚乙二醇(PEG)引发己内酯(CL)进行开环聚合反应制备了聚己内酯-b-聚乙二醇-b-聚己内酯(PECL)三嵌段共聚物,进而将乙酰化的4HCA(4ACA)键接到PECL的两端,制备了光敏性PECL-4ACA共聚物。DSC的结果表明PECL-4ACA共聚物具有结晶性,且PECL-4ACA的熔点随着PCL组分的增加而升高,4ACA端基抑制了PECL-4ACA中PCL链段的热分解作用,因而明显增强了PECL-4ACA的热稳定性;在302和254nm的UV照射下PECL-4ACA共聚物表现出了可逆的光敏性;PECL中PEG链段对接触角的影响占主要作用,当在PECL末端引入4ACA后,PECL-4ACA板材表面的接触角呈现出下降的趋势;共聚物的降解速度和水接触角存在对应关系,水接触角的减小会增加共聚物的降解速度。
Researches and developments of functional biodegradable polymers which play a goodrole not only in the increasingly serious problems of resources and environment but also inthe development of new materials of the clinical medicine, biomedical and other fields havebecome a current research focus. In a variety of degradable polymers, Polymers based onpolycaprolactone (PCL) have been paid more attention owing to the characteristics ofexcellent biocompatibility, biodegradability, drug permeability and nontoxicity. Hydroycinnamic acid which derived from plants is a kind of photoreactive “plant monomer”. Thephotoreactive polyesters obtained from the two monomers by different forms of chemicalbond have the concentrated properties of both the two monomers, the weakness can beimproved and the advantages can be promoted. Regulation of such polyester performance canbe achieved through the control of their structure, composition. The regulation of theproperties of these kinds of polyesters can be achieved through the control of their structuresand compositions.
     In this paper, PCL homo-polymers with different molecular weight were synthesized bya ring-opening polymerization method, and then series of PCL-co-P4HCA copolymers werealso synthesized via a thermal polycondensation method using PCL and4HCA monomers.The structures of the copolymers have been confirmed by FTIR and1H NMR. The results ofGPC showed that the molecular weights of PCL-co-P4HCA were between8.7×104-10.1×104g/mol, and the molecular weight distribution would much wider when the molecularweight was higher. PCL-co-P4HCA copolymers were photoreactive, and the absorption ofthe cinnamoyl group at306nm decreased rapidly and then decreased gradually withincreasing time of302nm UV irradiation. Moreover, PCL-co-P4HCA copolymers withhigher4HCA compositions showed greater photoreactivity rates and the decline degree after50min. PCL-co-P4HCA copolymers have fluorescence properties, the maximum emissionpeak intensity at450nm of these polymers decreased linearly with a decrease in4HCAcontent and the increase time of UV irradiation. The results of DSC and WXRD showedPCL-co-P4HCA copolymers were crystalline of PCL and P4HCA homo-polymers, thecrystallinity would decrease with a decrease of PCL composition. PCL-co-P4HCAcopolymers have excellent thermal stabilities which decrease regularly when irradiated withUV rays. The water contact angles of the PCL-co-P4HCA sheets increased with a decrease in4HCA content and the increase time of UV irradiation. The hydrolysis rate of thePCL-co-P4HCA sheets increased with an increase in4HCA content, and the rates ofhydrolysis were significantly higher under alkaline conditions than under neutral conditions.The degradation rates of the copolymers after UV irradiation were slightly slower due to the higher surface hydrophobicity.
     Hyprebranched PCL-co-PDHCA copolymers were obtained by thermalmelt-polycondensation of PCL and AB2type DHCA monomer. The structures and thebranching degree were identified by1H NMR, and transesterification during thepolymerization might also occur from the results of FTIR and GPC. PCL-co-PDHCAcopolymers were photoreactive, and the crosslinking degree after75min UV irradiationwhich increased with an increase of DHCA composition might achieve about30%. Thefluorescence properties of PCL-co-PDHCA will be influenced by branching degree. Theemission intensity increased with increasing of the DHCA composition under the lowerbranching degree, a high branching degree will cause the fluorescent quenched and induce adecline of the emission intensity. The results of DSC and WXRD showed the crystallinity ofPCL-co-PDHCA copolymers reflected the PCL chain mainly, and the melt point andcrystallinity would decrease with an increase of DHCA composition. PCL-co-PDHCAcopolymers have excellent thermal stabilities which will influence by polymer component,branching degree and UV irradiation. The degradation rates of copolymers sheets would slowdown by increasing the PCL composition and UV irradiation.
     Linear P4HCA, PCL-co-P4HCA and hyperbranched PDHCA, PCL-co-PDHCApolymers were obtained using anhydrous sodium phosphate as a catalyst. The structures ofthe polymers have been confirmed by FTIR and1H NMR. The reactivity of AB2type DHCAis higher than4HCA. The photocrosslinking degrees of hyperbranched polymers are higherthan the one of linear polymers after55min UV irradiation. However, the linear architectureis more prone to carry out the cis-trans isomerization, and the linear polymers have strongerfluorescence intensity. Hyperbranched architectures cause the better thermal stability of thepolymers due to the stronger π-π stacking. The result of WXRD and accelerated degradationtest showed the stronger crystalline of PCL-co-P4HCA lead to the slower degradation rate.
     PECL-4ACA triblock copolymers were obtained from PECL synthesized byring-opening polymerization and4ACC. The results of DSC showed the copolymers werecrystalline, and the melting point increased with the increasing of the PCL chain composition.The thermal stability of the copolymers has been enhanced owing to the4ACA terminalgroups which restrain thermal decomposition of the aliphatic polyester PCL segment.PECL-4ACA copolymers display a reversible photosensitivity under302and254nm UVirradiation. PEG chains play a dominant role in the contact angle which express declinetendency as the introduction of4ACA terminal groups. The polymers which were muchhydrophilic had the faster degradation rate.
引文
[1]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2002.
    [2]朱魁.稀土催化缩聚合成芳香-脂肪族共聚酯和功能化聚酯及性能研究[D]:[博士学位论文].杭州:浙江大学,2010.
    [3]高翠丽.聚乳酸及其共聚酯的合成及表征[D]:[博士学位论文]青岛:青岛大学,2006.
    [4]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003.
    [5] Ki H C, Park O O. Synthesis, characterization and biodegradability of the biodegradablealiphatic-aromatic random copolyesters [J]. Polymer,2001,42(5):1849-1861.
    [6] Raghavan D. Characterization of biodegradable plastics [J]. Polym Plast Technol Eng,1995,34(1):41-63.
    [7]方少明,闫春绵,李亚东等.生物及光降解高分子材料的研究开发动向[J].材料导报,1998,12(1):51-53.
    [8]王身国.可生物降解的高分子类型、合成和应用[J].化学通报,1997,2:45-48.
    [9] Scott G.‘Green’ polymers [J]. Polym Degrad Stabil,2000,68(1):1-7.
    [10] Tasaka F, Ohya Y, Ouchi T. Synthesis of novel comb-type polylactide and its biodegradability [J].Macromolecules,2001,34(16):5494-5500.
    [11] Hirano S, Zhang M, Nakagawa M et al. Wet spun chitosan-collagen fibers, their chemicalN-modifications, and blood compatibility [J]. Biomaterials,2000,21(10):997-1003.
    [12] Mochizuki M, Mukai K, Yamada K et al. Structural effects enzymatic hydrolysis of poly(butylenesuccinate-co-ethylene succinate)s [J]. Macromolecules,1997,30(24):7403-7407.
    [13] Kolitz M, Cohen-Arazi N, Hagag I et al. Biodegradable polyesters derived from amino acids [J].Macromolecules,2009,42(13),4520-4530.
    [14]堵国成,陈坚,高海军等.真养产碱杆菌积累聚-β-羟基丁酸发酵条件的研究[J].生物工程学报,2000,16(1):103-107.
    [15]赵强. PHB/PEG多嵌段共聚物的制备、结构、特性及其作为分子印迹材料的研究[D]:[博士学位论文]天津:天津大学,2006.
    [16]陈银广,陈坚,堵国成等.生物可降解塑料PHB提取的研究进展[J].化工进展,1998,1:41-45.
    [17] Lee I Y, Kim M K, Park Y H et al. Regulatory effects of cellular nicotinamide nucleotide andenzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli [J].Biotechnol Bioeng,1996,52(6):707-712.
    [18] Okada M. Chemical syntheses of biodegradable polymers [J]. Prog Polym Sci,2002,27(1),87-133.
    [19] M lberg S, H glund A, Albertsson A-C. Macromolecular design of aliphatic polyesters withmaintained mechanical properties and a rapid, customized degradation profile [J].Biomacromolecules,2011,12(6),2382-2388.
    [20] Yu Y C, Kang H U, Youk J H. Synthesis and micellar characterization of thermosensitiveamphiphilic poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) block copolymers [J]. Colloid PolymSci,2012,290(12),1107-1113.
    [21] Gui Z Y, Wang H R, Gao Y et al. Morphology and melt rheology of biodegradable poly(lacticacid)/poly(butylene succinate adipate) blends: effect of blend compositions [J]. Iran Polym J,2012,21(2):81-89.
    [22] Cai J, Zhang L N, Zhou J P et al. Multifilament fibers based on dissolution of cellulose inNaOH/Urea aqueous solution: structure and properties [J]. Adv Mater,2007,19(6):821-825.
    [23] Li G X, Li W Z, Deng H B et al. Structure and properties of chitin/alginate blend membranes fromNaOH/urea aqueous solution [J]. Int J Biol Macromol,2012,51(5),1121-1126.
    [24] Pillai C K S, Paul W, Sharma C P. Chitin and chitosan polymers: chemistry, solubility and fiberformation [J]. Prog Polym Sci,2009,34(7):641-678.
    [25] Rinaudo M. Chitin and chitosan: Properties and applications [J]. Prog Polym Sci,2006,31(7):603-632.
    [26] Fink H-P, Weigel P, Purz H J et al. Structure formation of regenerated cellulose materials fromNMMO-solutions [J]. Prog Polym Sci,2001,26(9):1473-1524.
    [27]谈利承.熔融酯交换制备可生物降解共聚酯和抗菌性聚酯及其纳米复合材料[D]:[博士学位论文]南昌:南昌大学,2012.
    [28] Albertsson A-C. Microbial and oxidative effects in degradation of polyethene [J]. J Appl Polym Sci,1980,25(8):1655-1671.
    [29] Gilan I, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by astrain of Rhodococcus rubber [J]. Appl Microbiol Biot,2004,65(1):97-104.
    [30] Shah A A, Hasan F, Hameed A et al. Isolation and characterization ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBVdepolymerase from newly isolated Bacillus sp. AF3[J]. Int Biodeter Biodegr,2007,60(2):109-115.
    [31] Bonhomme S, Cuer A, Delort A M et al. Environmental biodegradation of polyethylene [J]. PolymDegrad Stabil,2003,81(3):441-452.
    [32] Yamada-Onodera K, Mukumoto H, Katsuyaya Y et al. Degradation of polyethylene by a fungus,Penicillium simplicissimum YK [J]. Polym Degrad Stabil,2001,72(2):323-327.
    [33] EI-Shafei H, EI-Nasser N H A, Kansoh A L et al. Biodegradation of disposable polyethylene byfungi and Streptomyces species [J]. Polym Degrad Stabil,1998,62(2):361-365.
    [34] Haines J R, Alexander M. Microbial degradation of polyethylene glycol [J]. Appl Microbiol,1975,29(5):621-625.
    [35] Otal E, Lebrato J. Anaerobic degradation of polyethylene glycol mixtures [J]. J Chem TechnolBiotechnol,2003,78(10):1075-1081.
    [36] Schink B, Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gramnegative, nonspore forming bacterium, Pelobacter venetianus sp. Nov [J]. Appl Environ Microbiol,1983,45(6):1905-1913.
    [37] Dwyer D F, Tiedje J M. Degradation of ethylene glycol and polyethylene glycol by methanogenicconsortia [J]. Appl Environ Microbiol,1983,46(1):185-190.
    [38] Obradors N, Aguilar J. Efficient biodegradation of high-molecular-weight polyethylene glycols bypure cultures of Pseudomonas stutzeri [J]. Appl Environ Microbiol,1991,57(8):2383-2388.
    [39] Saha S P, Patra A, Paul A K. Studies on intracellular degradation of polyhydroxyalkanoicacid-polyethylene glycol copolymer accumulated by Azotobacter chroococcum MAL-201[J]. JBiotechnol,2007,132(3):325-330.
    [40] Vert M, Li S M, Spenlehauer G et al. Bioresorbability and biocompatibility of aliphatic polyesters[J]. J Mater Sci Mater Med,1992,3(6):432-446.
    [41] Lam C X F, Hutmacher D W, Schantz J-T et al. Evaluation of polycaprolactone scaffold degradationfor6months in vitro and in vivo [J]. J Biomed Mater Res Part A,2008,90A(3):906-919.
    [42] Huang M H, Li S M, Hutmacher D W et al. Degradation characteristics ofpoly(epsilon-caprolactone)-based copolymers and blends [J]. J Appl Polym Sci,2006,102(2):1681-1867.
    [43] Liu L, Li S, Garreau H et al. Selective enzymatic degradations of Poly(L-lactide) andpoly(ε-caprolactone) blend films [J]. Biomacromolecules,2000,1(3):350-359.
    [44] Tsuji H, Tezuka Y, Yamada K. Alkaline and enzymatic degradation of L-lactide copolymers. II.Crystallized films of poly(L-lactide-co-D-lactide) and poly(L-lactide) with similar crystallinities [J].J Polym Sci Part B: Polym Phys,2005,43(9):1064-1075.
    [45] Noomhorm C, Tokiwa Y. Effect of poly(dioxalane) as compatibilizer inpoly(ε-caprolactone)/tapioca starch blends [J]. J Polym Environ,2006,14(2):149-156.
    [46] Dubois P, Narayan R. Biodegradable compositions by reactive processing of aliphaticpolyester/polysaccharide blends [J]. Macromol Symp,2003,198(1):233-243.
    [47]冯静,施庆珊,欧阳友生等.几种高分子材料的生物降解研究进展[J].塑料科技,2011,39(2):94-99.
    [48] Su J-F, Huang Z, Liu K et al. Mechanical properties, biodegradation and water vapor permeabilityof blend films of soy protein isolate and poly(vinyl alcohol) compatibilized by glycerol [J]. PolymBull,2007,58(5-6):913-921.
    [49] Portaccio M, Stellato S, Rossi S et al. Galactose competitive inhibition of β-galactosidase(Aspergillus oryzae) immobilized on chitosan and nylon supports [J]. Enzyme Microb Tech,1998,23(1-2):101-106.
    [50] Raghavan D. Characterization of biodegradable plasties [J]. Polym Plast Technol Eng,1995,34(1):41-63.
    [51] Singh B, Sharma N. Mechanistic implications of plastic degradation [J]. Polym Degrad Stabil,2008,93(3):561-584.
    [52] Barkay T, Navon-Venezia S, Ron E Z et al. Enhancement of solubilization and biodegradation ofpolyaromatic hydrocarbons by the bioemulsifier alasan [J]. Appl Environ Microbiol,1999,65(6):2697-2702.
    [53] Murata K, Hirano Y, Sakata Y et al. Basic study on a continuous flow reactor for thermaldegradation of polymers [J]. J Anal Appl Pyrolysis,2002,65(1):71-90.
    [54] Nagai Y, Ogawa T, Nishimoto Y et al. Analysis of weathering of a thermoplastic polyester elastomerII. Factors affecting weathering of a polyetherepolyester elastomer [J]. Polym Degrad Stab,1999,65(2):217-224.
    [55] Qiu K, Netravali A N. Fabrication and characterization of biodegradable composites based onmicrofibrillated cellulose and polyvinyl alcohol [J]. Compos Sci Technol,2012,72(13):1588-1594.
    [56] Ramis X, Cadenato A, Salla J M et al. Thermal degradation of polypropylene/starch-based materialswith enhanced biodegradability [J]. Polym Degrad Stab,2004,86(3):483-491.
    [57] Guo W, Leu W T, Hsiao S H et al. Thermal degradation behaviour of aromatic poly(ester-amide)with pendant phosphorus groups investigated by pyrolysis-GC/MS [J]. Polym Degrad Stab,2006,91(1):21-30.
    [58] Wool R P, Raghavan D, Wagner G C et al. Biodegradation dynamics of polymerestarch composites[J]. J Appl Polym Sci,2000,77(8):1643-1657.
    [59] Chandra R, Rustgi R. Biodegradable polymers [J]. Prog Polym Sci,1998,23(7):1273-1335.
    [60] Ouchi T, Kontani T, Ohya Y. Modification of polylactide upon physical properties by solution-castblends from polylactide and polylactide-grafted dextran [J]. Polymer,2003,44(14):3927-3933.
    [61] Zanetti M, Bracco P, Costa L. Thermal degradation behaviour of PE/clay nanocomposites [J].Polym Degrad Stab,2004,85(1):657-665.
    [62] Gugumus F. Re-examination of the role of hydroperoxides in polyethylene and polypropylene:chemical and physical aspects of hydroperoxides in polyethylene [J]. Polym Degrad Stab,1995,49(1):29-50.
    [63] Peterson J D, Vyazovkin S, Wight C A. Kinetics of the thermal and thermo-oxidative degradation ofpolystyrene, polyethylene and poly(propylene)[J]. Macromol Chem Phys,2001,202(6):775-784.
    [64] Holland B J, Hay J N. The effect of polymerisation conditions on the kinetics and mechanisms ofthermal degradation of PMMA [J]. Polym Degrad Stab,2002,77(3):435-439.
    [65] Hu Y-H, Chen C-Y. The effect of end groups on the thermal degradation of poly(methylmethacrylate)[J]. Polym Degrad Stab,2003,82(1):81-88.
    [66] Thongpin C, Santavitee O, Sombatsompop N. Degradation mechanism and mechanical propertiesof PVC in PVC-PE melt blends: effects of molecular architecture, content, and MFI of PE [J]. JVinyl Addit Techn,2006,12(3):115-123.
    [67] Starnes Jr W H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Prog Polym Sci,2002,27(10):2133-2170.
    [68] Penczek S, CyPryk M, Duda A et al. Living ring-opening polymerizations of heterocyclicmonomers [J]. Prog Polym Sci,2007,32(2):247-282.
    [69] Albertsson A C, Varma I K. Aliphatic polyesters: synthesis, and applications [J]. Adv Polym Sci,2002,157:1-40.
    [70] Kricheldorf H R. Syntheses and application of polylactides [J]. Chemospere,2001,43(1):49-54.
    [71] S derg rd A, Stolt M. Properties of lactic acid based polymers and their correlation withcomposition [J]. Prog Polym Sci,2002,27(6):1123-1163.
    [72] Gupta A P, Kumar V. New emerging trends in synthetic biodegradable polymers-polylactide: Acritique [J]. Eur Polym J,2007,43(10):4053-4074.
    [73] Garlotta D. A Literature Review of Poly(Lactic Acid)[J]. J Polym Environ,2001,9(2):63-84.
    [74]李孝红,袁明龙,熊成东等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子通报,1999,3:24-32.
    [75] Drumright R E, Gruber P R, Henton D E. Polylactic acid technology [J]. Adv Mater,2000,12(23):1841-1846.
    [76]王炳涛.可降解PLA-PBT共聚酯的合成及改性[D]:[博士学位论文]杭州:浙江大学,2010.
    [77] Gross R A, Kalra B. Biodegradable polymers for the environment [J]. Science,2002,297(5582):803-807.
    [78] Reeve M S, McCarthy S P, Downey M J et al. Polylactide stereochemistry: effect on enzymaticdegradability [J]. Macromolecules,1994,27(3):825-831.
    [79] Christopher P R, Gregory L B, Milton R S. Stereoselective Polymerization of a Racemic Monomerwith a Racemic Catalyst: Direct Preparation of the Polylactic Acid Stereocomplex from RacemicLactide [J]. J Am Chem Soc,2000,122(7):1552-1553.
    [80] Ovitt T M, Coates G W. Stereochemistry of lactide polymerization with chiral catalysts: newopportunities for stereocontrol using polymer exchange mechanisms [J]. J Am Chem Soc,2002,124(7):1316-1326.
    [81] Cam D, Marucci M. Influence of residual monomers and metals on poly D,L-(lactide) thermalstability [J]. Polymer,1999,38(8):1879-1884.
    [82] Moon S I, Lee C W, Miyamoto M et al. Melt polycondensation of L-lactic acid with Sn(Ⅱ)catalysts activated by various proton acids: A direct manufacturing route to high molecular weightpoly(L-lactic acid)[J]. J Polym Sci Part A: Polym Chem,2000,38(9):1673-1679.
    [83] Moon S I, Lee C W, Taniguchi I et al. Melt/solid polycondensation of L-lactic acid: an alternativeroute to poly(L-lactic acid) with high molecular weight [J]. Polymer,2001,42(11):5059-5062.
    [84] Gupta A P, Kumar V. New emerging trends in synthetic biodegradable polymers-Polylactide: Acritique [J]. Eur Polym J,2007,43(10):4053-4074.
    [85] Penczek S, Cypryk M, Duda A et al. Living ring-opening polymerizations of heterocyclicmonomers [J]. Prog Polym Sci,2007,32(2):247-282.
    [86] Kricheldorf H R, Saunders I K. Polylactones,19. Anionic polymerization of L-lactide in solution [J].Die Makromol Chem,1990,191(5):1057-1066.
    [87] Kricheldorf H R, Dunsing R. Polylactones.8. Mechanism of the cationic polymerization ofL,L-dilactide [J]. Makromol Chem,1986,187(7):1611-1625.
    [88] Wang C, Li H, Zhao X. Ring opening polymerization of L-lactide initiated by creatinine [J].Biomaterials,2004,25(27):5797-5801.
    [89] Stolt M, Marcro A S. Use of monocarboxylic iron derivatives in the ring opening polymerization ofL-lactide [J]. Macromolecules,1999,32(20):6412-6417.
    [90] Barakat I, Dubois P, Grandfils C et al. Poly(ε-caprolactone-b-glycolide) andpoly(D,L-lactide-b-glycolide) diblock copolyesters: controlled synthesis, characterization, andcolloidal dispersions [J]. J Polym Sci Part A: Polym Chem,2000,39(2):294-306.
    [91] Jansen J, Melchels F P W, Grijpma D W et al. Fumaric acid monoethyl ester-functionalizedpoly(d,l-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds bystereolithography [J]. Biomacromolecules,2009,10(2):214-220.
    [92] Jain J P, Kumar N. Self assembly of amphiphilic (PEG)3-PLA copolymer as polymersomes:preparation, characterization, and their evaluation as drug carrier [J]. Biomacromolecules,2010,11(4):1027-1035.
    [93] Ko N R, Yao K, Tang C et al. Synthesis and thiol-responsive degradation of polylactide-based blockcopolymers having disulfide junctions using ATRP and ROP [J]. J Polym Sci Part A: Polym Chem,2012, DOI:10.1002/pola.26335.
    [94] Wang Z, Yu L, Ding M et al. Preparation and rapid degradation of nontoxic biodegradablepolyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysinediisocyanate [J]. Polym Chem,2011,2(3):601-607.
    [95] Wang Z, Wan P, Ding M et al. Synthesis and micellization of new biodegradablephosphorylcholine-capped polyurethane [J]. J Polym Sci Part A: Polym Chem,2011,49(9):2033-2042.
    [96] Woodruff M A, Hutmacher D W. The return of a forgotten polymer-Polycaprolactone in the21stcentury [J]. Prog Polym Sci,2010,35(10):1217-1256.
    [97] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials [J]. Prog Polym Sci,2007,32(8-9):762-798.
    [98] Lee K H, Kim H Y, Khil M S et al. Characterization of nano-structured poly(epsilon-caprolactone)nonwoven mats via electrospinning [J]. Polymer,2003,44(4):1287-1294.
    [99]王蓓蕾,涂松,邱永兵等.星型两亲性聚己内酯-b-聚甲基丙烯酸(2-羟乙酯)嵌段共聚物的合成和表征[J].高分子学报,2011,10:1151-1156.
    [100] Jonte J M, Dunsing R, Kricheldorf H R. Polylactones.4. Cationic polymerization of lactones bymeans of alkylsulfonates [J]. J Macrol Sci: Chem,1986, A23(4):495-514.
    [101] Nomura N, Taira A, Tomioka T et al. A catalytic approach for cationic living polymerization:Sc(OTf)3-catalyzed ring-opening polymerization of lactones [J]. Macromolecules,2000,33(5):1497-1499.
    [102]魏志勇.生物可降解脂肪族聚酯的制备、表征与性能研究[D]:[博士学位论文]大连:大连理工大学,2008.
    [103] Kricheldorf H R, Kreiser-Saunders I, Boettcher C. Polylactones31. Sn(Ⅱ)octoate-initiatedpolymerization of l-lactide: a mechanistic study [J]. Polymer,1995,36(6):1253-1259.
    [104] Kowalski A, Duda A, Penczek S et al. Mechanism of cyelic ester polymerization initiated withTin(Ⅱ) oetoate2. Macromolecules fitted with Tin(Ⅱ) Alkoxide species observed directly inMALDI-TOF spectra [J]. Macromolecules,2000,33(3):689-695.
    [105] Storey R F, Sherman J W. Kinetics and mechanism of the stannous octoate-catalyzed bulk ofε-caprolactone [J]. Macromolecules,2002,35(5):1504-1512.
    [106] Pitt C G, Gratzl M M, Kimmel G L et al. Aliphatic polyesters2. The degradation of poly-D,Llactide poly-epsilon caprolactone and their co polymers in-vivo [J]. Biomaterials,1981,2(4):215-220.
    [107] Zhou J, Wang L, Ma J et al. Temperature-and pH-responsive star amphiphilic block copolymerprepared by a combining strategy of ring-opening polymerization and reversibleaddition-fragmentation transfer polymerization [J]. Eur Polym J,2010,46(6):1288-1298.
    [108] Yu Y C, Kang H U, Youk J H. Synthesis and micellar characterization of thermosensitiveamphiphilic poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) block copolymers [J]. Colloid PolymSci,2012,290(12):1107-1113.
    [109] Ajioka M, Suizu H, Higuehi C et al. Aliphatic polyesters and their copolymers synthesizedthrough direct condensation polymerization [J]. Polym Degrad Stab,1998,59(1-3):137-143.
    [110] Stoyanova N, Mincheva R, Paneva D et al. Electrospun non-woven mats from stereocomplexbetween high molar mass poly(L-lactide) and poly(D-lactide)-block-poly(butylene succinate)copoly(ester urethane)s [J]. Eur Polym J,2012,48(12):1965-1975.
    [111] Nikolic M S, Djonlagic J. Synthesis and characterization of biodegradable Poly(butylenessuccinate-co-butylene adipate)s [J]. Polym Degrad Stab,2001,74(2):263-270.
    [112] Mei X, Tian C, Dong Q et al. Influencing factors and process on in situ degradation ofpoly(butylene succinate) film by strain bionectria ochroleuca BFM-X1in soil [J]. J Environ Prot,2012,3(6):523-532.
    [113] Gigli M, Negroni A, Soccio M et al. Influence of chemical and architectural modifications on theenzymatic hydrolysis of poly(butylene succinate)[J]. Green Chem,2012,14(10):2885-2893.
    [114] Zeng J-B, Huang C-L, Jiao L et al. Synthesis and properties of biodegradable poly(butylenesuccinate-co-diethylene glycol succinate) copolymers [J]. Ind Eng Chem Res,2012,51(38):12258-12265.
    [115] Marten E, Muller R J, Deckwer W D. Studies on the enzymatic hydrolysis of polyesters. Ⅱ.aliphatic-aromatic copolyesters [J]. Polym Degrad Stab,2005,88(3):371-381.
    [116] Jaisankar V, Nanthini R, Ravi A et al. A study on biodegradation of aliphatic-aromatic randomcopolyesters [J]. J Polym Mater,2009,26(2):157-166.
    [117] Chen Y W, Jia H, Schaper A et al. Hydrolytic and enzymatic degradation of liquid-crystallinearomatic/aliphatic copolyesters [J]. Biomacromolecules,2004,5(1):11-16.
    [118]王晓慧.脂肪族-芳香族共聚酯的合成新工艺及性能研究[D]:[博士学位论文]北京:北京化工大学,2011.
    [119]王连才,孙勇,冯增国.可生物降解脂肪-芳香族共聚聚酯的研究进展[J].中国塑料,2003,17(8):1-8.
    [120] Olewnik E, Czerwiński W, Nowaczyk J et al. Synthesis and structural study of copolymers ofL-lactic acid and bis(2-hydroxyethyl terephthalate)[J]. Eur Polym J,2007,43(3):1009-1019.
    [121] Olewnik E, Czerwiński W, Nowaczyk J. Hydrolytic degradation of copolymers based on L-lacticacid and bis-2-hydroxyethyl terephthalate [J]. Polym Degrad Stab,2007,92(1):24-31.
    [122] Acar I, Pozan G S, zgümü S. Thermal oxidative degradation kinetics and thermal properties ofpoly(ethylene terephthalate) modified with poly(lactic acid)[J]. J Appl Polym Sci,2008,109(5):2747-2755.
    [123] Mantia F P L, Bottal M, Morreale M et al. Effect of small amounts of poly(lactic acid) on therecycling of poly(ethylene terephthalate) bottles [J]. Polym Degrad Stab,2012,97(1):21-24.
    [124] Kumar K S, Selvaraj V, Alagar M. Synthesis of PET-PLA/Drug nanoparticles and their effectwith gold nanoparticles for controlled drug release in cancer chemotherapy [J]. Res LettNanotechnol,2008,389512:1-4.
    [125] Sikorska W, Dacko P, Kaczmarczyk B et al. Synthesis and physicochemical properties of new(bio)degradable poly(ester-urethane)s containing polylactide and poly[(1,4-butyleneterephthalate)-co-(1,4-butylene adipate)] segments [J]. Polymer,2011,52(21):4676-4685.
    [126] Tokiwa Y, Suzuki T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks bylipase [J]. J Appl Polym Sci,1981,26(2):441-448.
    [127]祝桂香,陈伟,黄凤兴等.生物可降解脂肪族-芳香族共聚酯的研究进展[J].石油化工,2005,34(10):998-1003.
    [128] Ma D, Xu X, Luo X. Transesterification and ringed spherulites in blends of butyleneterephthalate-ε-caprolactone copolyester with poly(ε-caprolactone)[J]. Polymer,1997,38(5):1131-1138.
    [129] Ma D, Zhang G, Huang Z et al. Synthesis and chain structure of ethyleneterephthalate-ε-caprolactone copolyester [J]. J Polym Sci, Part A: Polym Chem,1998,36(2):2961-2969.
    [130]程晓敏,马德柱,罗莜烈.对苯二甲酸丁二酯-ε-己内酯多嵌段共聚物中硬链段的受限结晶[J].化学物理学报,2001,14(2):251-256.
    [131] Lim K Y, Kim B C, Yoon K J. Structural and physical properties of biodegradable copolyestersfrom poly(ethylene terephthalate) and polycaprolactone blends [J]. J Appl Polym Sci,2003,88(1):131-138.
    [132] Tokiwa Y, Ando T, Suzuki T. Biodegradation of synthetic polymers containing ester bonds [J].Polym Mater Sci Eng,1990,62:988-992.
    [133] Coleman D. Thermoplastic poly(ester-imide)s derived from anhydride-terminated polyesterprepolymer and diisocyanate [J]. Polym Sei,1954,14(16):15-26.
    [134] Gilding D K, Reed A M. Biodegradable polymers for use in surgery-poly(ethlene.oxide)poly(ethylene terephthalate)(PEO/PET) copolymers [J]. Polymer,1979,20(11):1454-145.
    [135]王连才.可降解脂肪/芳香族聚醚酯弹性体的合成表征与生物学评价[D]:[博士学位论文]北京:北京理工大学,2006.
    [136] Mohan T P, George A P, Kanny K. Combined effect of isophthalic acid and polyethylene glycolin polyethylene terephthalate polymer on thermal, mechanical, and gas transport properties [J]. JAppl Polym Sci,2012,126(2):536-543.
    [137] Dong B, Jiang H, Manolache S et al. Plasma-mediated grafting of poly(ethylene glycol) onpolyamide and polyester surfaces and evaluation of antifouling ability of modified substrates [J].Langmuir,2007,23(13):7306-7313.
    [138] Wang B, Zhang Y, Guo Z et al. Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effectof poly(ethylene glycol) on physical properties and degradation behavior [J]. J Polym Res,2011,18(2):187-196.
    [139] Papenburg B J, Rodrigues E D, Wessling M et al. Insights into the role of material surfacetopography and wettability on cell-material interactions [J]. Soft Matter,2010,6(18):4377-4388.
    [140]扈蓉.光响应和光交联型多糖基水凝胶的研究[D]:[博士学位论文]广州:中山大学,2010.
    [141] Lewis F D, Quillen S L, Hale P D et al. Lewis acid catalysis of photochemical reactions.7.Photodimerization and cross-cycloadditon of cinnamic esters [J]. J Am Chem Soc,1988,110(4):1261-1267.
    [142] Kaneko T. High-performance functional ecopolymers based on flora and fauna [J]. The ChemicalRecord,2007,7(4):210-219.
    [143] Tanaka Y, Tanabe T, Shimura Y et al. Solid-state polycondensation of p-hydroxy-trans-cinnamicacid under high pressure [J]. Polymer Letters Edition,1975,13(4):235-242.
    [144] Thi T H, Matsusaki M, Shi D J et al. Synthesis and properties of coumaric acid derivativehomo-polymers [J]. J Biomater Sci Polymer Edn,2008,19(1):75-85.
    [145] Kaneko T, Matsusaki M, Thi T H et al. Thermotropic liquid-crystalline polymer derived fromnatural cinnamoyl biomonomers [J]. Macromol Rapid Commun,2004,25(5):673-677.
    [146] Yasaki K, Suzuki T, Yazawa K et al. Effects of Double Photoreactions on PolycoumaratePhotomechanics [J]. J Polym Sci Part A: Polym Chem,2011,49(5):1112-1118.
    [147] Jin X, Carfagna C, Nicolais L et al. Synthesis, characterization, and in vitro degradation of anovel thermotropic ternary copolyester based on p-hydroxybenzoic acid, glycolic acid, andp-hydroxycinnamic acid [J]. Macromolecules,1995,28(14):4785-4794.
    [148] Stumpe J, Ziegler A. Photoreactive cholesteric polyesters derived from4-carboxycinnamic acidand novel chiral spacers [J]. Macromolecules,1995,28(15):5306-5311.
    [149] Sapich B, Stumpe J. New polymer syntheses.95. Photosetting cholesteric polyesters derivedfrom4-hydroxycinnamic acid and isosorbide [J]. Macromolecules,1998,31(4):1016-1023.
    [150] Matsusaki M, Kishida A, Stainton N et al. Synthesis and characterization of novel biodegradablepolymers composed of hydroxycinnamic acid and D,L-lactic acid [J]. J Appl Polym Sci,2001,82(10):2357-2364.
    [151] Kaneko T, Thi T H, Matsusaki M et al. Biodegradable LC oligomers with cranked branchingpoints form highly oriented fibrous scaffold for cytoskeletal orientation [J]. Chem Mater,2006,18(26):6220-6226.
    [152] Kan K, Kaneko D, Kaneko T. Polarized emission of wholly aromatic bio-based copolyesters of aliquid crystalline nature [J]. Polymers,2011,3(2):861-874.
    [153] Kaneko T, Thi T H, Shi D J et al. Environmentally degradable, high-performance thermoplasticsfrom phenolic phytomonomers [J]. Nature Mater,2006,5(12):966-970.
    [154] Shi D J, Kaneko T, Akashi M. Particulation of hyperbranched aromatic biopolyestersself-organized by solvent transformation in ionic liquids [J]. Langmuir,2007,23(7):3485-3488.
    [155] Shi D J, Matsusaki M, Akashi M. Photo-tunable protein release from biodegradablenanoparticles composed of cinnamic acid derivatives [J]. J Controlled Release,2011,149(2):182-189.
    [156] Shi D J, Matsusaki M, Kaneko T et al. Photo-cross-linking and cleavage induced reversible sizechange of bio-based nanoparticles [J]. Macromolecules,2008,41(21):8167-8172.
    [157] Shi D J, Matsusaki M, Akashi M. Photo-cross-linking induces size change and stealth propertiesof water-dispersible cinnamic acid derivative nanoparticles [J]. Bioconjugate Chem,2009,20(10):1917-1923.
    [158] Shi D J, Matsusaki M, Akashi M. Unique size-change behavior of photo-crosslinked cinnamicacid derivative nanoparticles during hydrolytic degradation [J]. Macromol Biosci,2009,9(3):248-255.
    [159]徐亚鹏,李英,倪忠斌等.新型PDHCA-b-PEG聚酯的合成与性能[J].功能高分子学报,2009,3:253-258.
    [160]徐亚鹏,李继航,陈明清等.可生物降解聚酯P(DHCA-co-LA)的合成与表征[J].高分子学报,2009,1(3):300-307.
    [161]徐亚鹏,倪忠斌,李继航等.一种新型可生物降解聚酯的合成与性能研究[J].应用化工,2009,38(6):795-798.
    [162] Dong W, Li H, Chen M et al. Biodegradable bio-based polyesters with controllablephoto-crosslinkability, thermal and hydrolytic stability [J]. J Polym Res,2011,18(6):1239-1247.
    [163] Dong W, Xu Y, Ren J et al. Synthesis and characterization of biodegradable polymers composedof3,4-dihydroxycinnamic acid and poly(ethylene glycol)[J]. J Appl Polym Sci,2012,125(3):1657-1662.
    [164] Dong W, Ren J, Lin L et al. Novel photocrosslinkable and biodegradable polyester frombio-renewable resource [J]. Polym Degrad Stabil,2012,97(4):578-583.
    [165]李会玲,李继航,东为富等.光敏性咖啡酸基三元聚酯的制备与自组装[J].功能材料,2011,4:726-729.
    [166]任静娇,东为富,施冬健等.全生物基脂肪/芳香族不饱和共聚酯的合成及其性能研究[J].石油化工,2012,3:30-334.
    [167] Thi T H, Matsusaki M, Akashi M. Thermally stable and photoreactive polylactides by theterminal conjugation of bio-based caffeic acid [J]. Chem Commun,2008,33:3918-3920.
    [168] Thi T H, Matsusaki M, Akashi M. Photoreactive polylactide nanoparticles by the terminalconjugation of biobased caffeic acid [J]. Langmuir,2009,25(18):10567-10574.
    [169] Thi T H, Matsusaki M, Akashi M. Development of photoreactive degradable branched polyesterswith high thermal and mechanical properties [J]. Biomacromolecules,2009,10(4):766-772.
    [170] Thi T H, Matsusaki M, Hirano H et al. Mechanism of high thermal stability of commercialpolyesters and polyethers conjugated with bio-based caffeic acid [J]. J Polym Sci Part A: PolymChem,2011,49(14):3152-3162.
    [171] Shi D, Liu X, Xiang F et al. Studies on preparation and fluorescent properties of a novelphoto-sensitive nanoparticle composed of europium ion and cinnamic acid derivative [J]. MacromolChem Phys,2009,210(23):2063-2069.
    [172] Nagata M, Hizakae S. Synthesis and characterization of photocrosslinkable biodegradablepolymers derived from4-hydroxycinnamic acid [J]. Macromol Biosci,2003,3(8):412-419.
    [173] Nagata M, Sato Y. Photocurable biodegradable polyesters from poly(L-lactide) diols [J]. PolymInt,2005,54(2):386-391.
    [174] Nagata M, Sato Y. Biodegradable elastic photocured polyesters based on adipic acid,4-hydroxycinnamic acid and poly(ε-caprolactone) diols [J]. Polymer,2004,45(1):87-93.
    [175] Nagata M, Kitazima I. Photocurable biodegradable poly(ε-caprolactone)/poly(ethylene glycol)multiblock copolymers showing shape-memory properties [J]. Colloid Polym Sci,2006,284(4):380-386.
    [176] Nagata M, Ioka E. Synthesis and degradation of novel photocrosslinkable aromaticcopolyanhydrides [J]. Eur Polym J,2006,42(10):2617-2622.
    [177] Nagata M, Ioka E. Photocrosslinkable degradable copolyanhydries made from sebacic acid and4-hydroxycinnamic acid [J]. Reactive Functional Polym,2005,63(3):163-170.
    [178]王传栋,王晶,王勤等.脂肪族聚酯类生物材料亲水性改性的研究进展[J].生物医学工程研究,2009,28(3):226-231.
    [179]周弟,朱秀林,胡丽华等.荧光高分子材料研究进展[J].化学工程师,2007,7:39-41.
    [180] Hoff W D, Dux P, Hard K et al. Thiol ester-linked p-coumaric acid as a new photoactiveprosthetic group in a protein with rhodopsin-like nphotochemistry [J]. Biochemistry,1994,33(47):13959-13962.
    [181]赵宁,卢晓英,张晓艳等.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871.
    [182] Devanathan S, Genick U K, Getzoff E D et al. Preparation and properties of a3,4-dihydroxycinnamic acid chromophore variant of the photoactive yellow protein [J]. Archives ofBiochemistry and Biophysics,1997,340(1):83-89.
    [183] Wang S Q, Tateyama S J, Kaneko D et al. Synthesis of well-defined hyperbranched polymersbio-based on multifunctional phenolic acids and their structureethermal property relationships [J].Polym Degrad Stabil,2011,96(12):2048-2054.
    [184] Devaux J, Godard P, Mercier J P. Bisphenol-a polycarbonate-poly(butylene terephthalate)transesterification. Ⅱ. Structure analysis of the reaction products by IR andlH and13C NMR [J]. JPolym Sci: Polym Phys Edi,1982,20(10):1881-1894.
    [185] Allo B A, Rizkalla A S, Mequanint K. Synthesis and Electrospinning ofε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol Gel Process [J]. Langmuir,2010,26(23):18340-18348.
    [186] Nanaki, S. G.; Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization of novelpoly(ε-caprolactone)-block-poly(propylene adipate) copolymers [J]. J Therm Anal Calorim,2012,108(2):633-645.
    [187] Papadimitriou S A, Papageorgiou G Z, Bikiaris D N. Crystallization and enzymatic degradationof novel poly(ε-caprolactone-co-propylene succinate) copolymers [J]. Eur Polym J,2008,44(7):2356-2366.
    [188] Kim Y H, Webster O W. Hyperbranched polyphenylenes [J]. Polym Prepr,1988,29(2):310-311.
    [189]王秀霞.超支化聚醋的合成与应用研究[D]:[博士学位论文]杭州:浙江大学,2006.
    [190]肖文清,程万里,胡剑青等.超支化聚酯的研究现状[J].材料导报,2008,22(4):62-64.
    [191]宁萌,黄鹏程.超支化高分子研究进展[J].高分子材料科学与工程,2002,11(6):11-15.
    [192]王永亮,易国斌,康正等.聚己内酯的合成与应用研究进展[J].化学与生物工程,2006,23(3):1-9.
    [193] Wan X, Liu T, Liu S. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblockcopolymers via ring-opening polymerization directly initiating from cyclic precursors and theirapplication as drug nanocarriers [J]. Biomacromolecules,2011,12(4):1146-1154.
    [194] Hua C, Dong C-M, Wei Y. Versatile strategy for the synthesis of dendronlikepolypeptide/linear poly(ε-caprolactone) block copolymers via click chemistry [J].Biomacromolecules,2009,10(5):1140-1148.
    [195] Calandrelli L, Calarco A, Laurienzo P et al. Compatibilized polymer blends based onPDLLA and PCL for application in bioartificial liver [J]. Biomacromolecules,2008,9(6):1527-1534.
    [196]王身国,邱波,高家武等.聚己内酯-聚乙二醇嵌段共聚物Ⅱ.组成、结晶性同降解性间关系[J].高分子学报,1995,5:560-565.
    [197] Liu C B, Gong C Y, Huang M J et al. Thermoreversible gel-sol behavior of biodegradablePCL-PEG-PCL triblock copolymer in aqueous solutions [J]. J Biomed Mater Res Part B: ApplBiomaterials,2007,84B(1):165-175.
    [198] Kang J, Beers K J. Macromolecular transport through nanostructured and porous hydrogelssynthesized using the amphiphilic copolymer, PCL-b-PEO-b-PCL [J]. Eur Polym J,2009,45(11):3004-3009.
    [199] Xie Z, Lu C, Chen X et al. A facile approach to biodegradablepoly(ε-caprolactone)-poly(ethylene glycol)-based polyurethanes containing pendant aminogroups [J]. Eur Polym J,2007,43(5):2080-2087.
    [200] Abe H, Takahashi N, Kim K J et al. Effects of residual zinc compounds and chain-end structureon thermal degradation of poly(ε-caprolactone)[J]. Biomacromolecules,2004,5(4):1480-1488.
    [201] Abe H, Takahashi N, Kim K J et al. Thermal degradation processes of end-cappedpoly(L-lactide)s in the presence and absence of residual zinc catalyst [J]. Biomacromolecules,2004,5(4):1606-1604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700