用户名: 密码: 验证码:
多源信息耦合的成矿预测新模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代矿产勘查过程中会产生地质、地球物理、地球化学、遥感等大量专题信息,因此,多源信息成矿预测方法在成矿预测中占据重要地位。如何将地质理论和数学处理方法有机结合,充分挖掘多源信息中隐含的成矿信息,建立成矿预测综合模型,一直是地学界的研究热点和难点。皖南石台地区位于江南过渡带西段和长江中下游铜-铁-硫-金成矿带南侧,具有沿江铜-铁-硫-金成矿带和皖南多金属成矿带的过渡性特征,具有较好的成矿前景。但一直以来,该区地质勘查和研究程度较低,已发现的矿点和矿化点较少,给成矿预测带来困难。基于此,从地质、物探、化探和遥感等多源信息角度对该区的铜多金属矿进行预测研究,对指导该区的地质找矿具有重要的实际意义。
     论文结合安徽省省级地质勘查专项(AHGTT2006-4),选取皖南石台地区,以铜多金属矿预测为例,进行多源信息耦合的成矿预测研究。针对模型各自的特点,采用多种传统预测模型(综合信息找矿模型、专家证据权重法、信息量法、BP人工神经网络法)进行成矿预测研究,并进行预测结果比较;随后,以前述模型为基础,率先应用两种能处理复杂变量关系的新型模型(投影寻踪模型、支持向量回归机模型)进行成矿预测,并进行比较以检验两种新模型的适用性和先进性。
     论文主要研究内容和取得的成果如下:
     1、综合研究区域地质、地球物理、地球化学等多源信息资料,分析已有矿点(矿化点)的成矿规律特征,构建该区铜多金属矿的综合信息找矿模型。选取7个预测变量(地层、断裂、岩浆岩、围岩、航磁、化探、遥感),制作上述专题图层,根据专家知识设定变量图层权重,利用GIS得到综合信息成矿潜力。根据数据特征,划分四级成矿有利区,圈定找矿靶区,得到成矿预测专题图。经过对圈定靶区的成矿有利程度分析,结果表明该方法是一种简便、有效的预测方法,其预测结果是适用的和有效的,可以为进一步的勘探工作提供依据。
     2、采用上述综合信息找矿模型所用数据,使用DPIS软件,应用专家证据权重法进行成矿预测。该法可以克服数据驱动型证据权重法对数据量要求多的不足。制作上述各变量的shp格式文件,生成单元格网,根据专家知识设定权重(同综合信息模型权重),得到后验概率,依累积后验概率分布特征划分四级成矿有利区,圈定靶区,得到专题图。分析结果表明:该法所得结果与综合信息找矿模型所得结果基本是一致的。
     3、采用客观成矿预测模型-信息量法进行预测以避免专家的主观因素对成矿预测的影响。信息量法的计算表明:对成矿贡献从大到小的顺序为:化探、地层、岩浆岩、断裂、遥感、围岩、航磁。根据单元格信息量的分布特征,划分四级成矿有利区,圈定靶区,得到专题图。结果显示信息量法的预测结果与综合信息找矿模型、专家证据权重法模型的预测结果基本是一致的。
     4、本文提出了一种新的成矿预测方法:信息量-专家证据权重耦合的预测方法。为充分吸收来自主、客观方面的知识,该法利用信息量法获得的客观权重和来自专家的主观权重,采用D-S证据理论进行权重的融合,获得新的综合权重,以此权重为基础,使用专家证据权重法进行成矿预测。预测结果表明该法可以获得更为满意的预测效果。
     5、采用处理非线性能力强的人工神经网络方法进行预测。依据上述数据,根据信息量法的计算结果,并参考综合信息找矿模型中权重的赋值情况,构建了训练BP人工神经网络所需的128个样本。训练样本采用1、0两种类型数据,分别表示单元内某个地质条件的存在和不存在。采用MATLAB软件,编制程序实现BP人工神经网络的训练和预测。根据预测数据特征,划分四级成矿有利区,圈定靶区,得到专题图。分析表明预测结果与先前模型的预测结果也是基本一致的。此外,针对人工神经网络的训练容易陷入局部极值的不足,本文采用群智能优化算法-粒子群算法进行神经网络的权值、阈值的优化以便提升神经网络的泛化能力,并进行了预测效果的比较。
     6、率先采用一种能处理各变量间复杂非线性关系的降维处理新方法-投影寻踪插值模型,将其应用于成矿预测领域。采用上述的128个样本,本文提出一种改进的人工蚁群算法用于优化计算求得模型的最佳投影方向,以此方向为基础,计算未知单元的投影值。根据投影值的分布特征,划分四级成矿有利区,圈定靶区,得到专题图。分析表明该模型所得预测结果与前述方法的结果是基本一致的,该方法是有效的。
     7、总结成矿预测的过程,可以将其看作是一模式识别问题。本文率先采用一种模式识别的新方法-支持向量回归机模型,将其应用于成矿定位预测。模型的训练样本同上,分别采用网格搜索法和基于群体智能优化的方法-粒子群算法来搜索最佳的模型参数。根据最佳模型参数,计算未知单元的预测值。根据其分布特征,划分四级成矿有利区,圈定找矿靶区,获得专题图。预测结果表明在大多数的成矿位置上同前面模型的结果一致,同时有自己的特点。
     8、为检验能处理非线性复杂关系的三种模型(人工神经网络、投影寻踪、支持向量机)的有效性,从128个样本中等间隔选取共16个样本组成小样本,并进行建模实验。结果表明:针对小样本情况,投影法的预测结果较好,支持向量机一般,神经网络的预测结果较差。
In the process of modern mineral exploration, the massive special information is produced from geology, geophysics, geochemistry, remote sensing and so on, therefore, metallogenic diagnosis based on multi-source information holds important status. It has been ever since one of geo-science research focuses and difficulties to effectively combine specialized geological theory knowledge with mathematical methods so as to fully extract the useful metallogenic information from multi-source data to establish the integrated finding mineral model. Shitai region of South Anhui province, which is located at the western section of South of Yangtze River transitional zone and the south side of Cu-Fe-S-Au mineralization belt of the middle and lower reaches of Yangtze River, owns transitional features of Cu-Fe-S-Au mineralization belt along the Yangtze River and polymetallic mineralization belt in South Anhui province with promising metallogenic prospects. However, up to now, it has been difficult for the mineralization prediction because of poor geological exploration and few mineralization points. Therefore, it is of great significance to make the mineral prediction for the copper-polymetallic deposits from the views of multi-source information on the basis of mentioned above.
     Taking the example of copper-polymetallic deposits prediction, the dissertation deals with metallogenic diagnosis coupled by multi-source metallogenic information by selecting Dingxiang district of Shitai county in South Anhui province on the basis of the geological exploration special project of Anhui province (AHGTT 2006-4).Firstly, the metallogenic diagnosis is made by a variety of conventional prediction models (integrated finding mineral model, expert weight of evidence model, prospecting-information contents, BP artificial neural networks). Secondly, two new models that can cope with complicated relationships among variables are used to do that.
     The main contents and achievements obtained in the dissertation are as follows:
     1. An integrated finding mineral model of copper-polymetallic deposits is constructed by synthetically studying regional multi-source information from geology, geophysics, geochemistry and so on, and analyzing the metallogenic laws of mineralization points found. Seven forecast variables (stratum, fault, magmatic rock, adjoining rock, aeromagnetic, geochemical exploration, remote sensing) are selected to make the thematic layers of variables. According to expert knowledge, thematic layers of variables are given the corresponding weights by means of their importance in metallogenic diagnosis, and then comprehensive mineralization potential information of the research area can be obtained by using GIS. On the basis of prediction data, topic chart of mineralization forecast is obtained by dividing metallogenic favorability area into four grades and enclosing perspective zones. By the analysis of enclosed perspective zones, the prediction result shows the model is suitable and effective. In addition, the method is a convenient, effective forecast technique and can provide the basis for further exploration work.
     2. On the basis of data used by the integrated finding mineral model and DPIS software, expert weight of evidence model is used to carry out metallogenic prediction, which can overcome the shortage of data-driven weight of evidence model that needs more data. Firstly, documents of variables for the shp form are made and unit grid meshes are produced. Secondly, weights of variables according to the expert knowledge are set. Finally, topic chart of mineralization forecast is obtained on the basis of the posterior probability of every unit grid mesh and the curve of accumulation posterior probability with metallogenic favorability area divided into four grades and perspective zones enclosed. The prediction result shows that the result of model is basically consistent with that of integrated finding mineral model.
     3. The objective model of metallogenic diagnosis-prospecting-information contents is used in mineralization forecast to avoid the subjective influence from experts. Its computation result indicates that the mineralization contribution descending order is geochemical exploration, stratum, magmatic rock, fault, remote sensing, adjoining rock, aeromagnetic. In the light of distribution characteristic of prospecting-information contents, the corresponding topic chart can be obtained with metallogenic favorability area divided into four grades and perspective zones enclosed. The prediction result shows that the result of model is basically consistent with that of integrated finding mineral model and expert weight of evidence model.
     4. A new method of metallogenic diagnosis is proposed in the dissertation; that is, forecast technique based on the coupling of prospecting-information contents-expert weight of evidence. To make full use of knowledge from the subjective and objective aspects, it can obtain new comprehensive weights by fusing subjective weights which come from experts and objective weights which come from prospecting-information contents on the basis of D-S evidence theory. Subsequently, expert weight of evidence is used according to comprehensive weights. The forecasting result indicates that this method can obtain more satisfactory effect.
     5. The prediction is carried out by artificial neural network that has strong ability of treating the non-linear relationship among variables in the paper. According to the above data, 128 samples to train BP artificial neural network are produced, considering the analysis result of prospecting-information and the variables’weight information of integrated finding mineral model. The training samples are used according to 1, 0 two types which express geological condition's existence and no existence in the units respectively. MATLAB software is employed to realize the training and forecasting of BP artificial neural networks by programming. According to the distributed characteristics of forecasting values, topic chart of mineralization forecast is obtained with metallogenic favorability area divided into four grades and perspective zones enclosed. Analysis shows forecasting result is basically consistent with that of former models. In addition, aimed at the fault of easily falling into the local extremum in the training, the dissertation uses swarm intelligence optimization algorithm-particle swarm algorithm to carry out optimization of the weight and the threshold values of the neural network so as to promote its generalization ability, and makes the comparison on the prediction effect.
     6. The dissertation for the first time applies a new method-projection pursuit interpolation model which deals with the complex relationship among variables and reduces the dimensions into mineralization forecast. On the basis of 128 samples, an improved ant colony algorithm is presented to compute the best projection direction, by which the unknown projection values of every unit can be computed. According to the distributed characteristics of projection values, topic chart of mineralization forecast is obtained with metallogenic favorability area divided into four grades and perspective zones enclosed. Analysis shows forecasting result is effective and basically consistent with that of former methods.
     7. Studying the course of metallogenic prediction, it can be regarded as a pattern recognition problem. Therefore, a kind of new pattern recognition method-support vector regression model is used for the first time to mineralization forecast. Training samples are the same as the above models, the best model parameters are investigated through the grid method and swarm intelligent optimization algorithm-particle swarm algorithm, by which predicted values of units can be computed. According to their distributed characteristics, topic chart of mineralization forecast is obtained with metallogenic favorability area divided into four grades and perspective zones enclosed. The result indicates that this model has its own typical characteristics, besides, is consistence with former forecasting results for most locations.
     8. To test the validity of three models that can treat complex nonlinear relationship among variables, 16 samples out of 128 ones are selected and modeled in equidistance as sub-samples. The result indicates projection pursuit model is better, support vector regression model moderate, and neural network worse.
引文
Agterberg F P, 1989. Computer programs for mineral exploration .Science, vol.245, pp: 76-81.
    Agterberg F P, Bonham-Carter G F, Wright D F, 1990. Statistical pattern integration for mineral exploration. Computer application in resources estimation prediction and assessment for metal and petroleum, Pergamon Press, Oxford.
    Agterberg F P,Bonham-Carter G F,1990. Weights of evidence modeling: A new approach to mapping mineral potential statistical applications in the earth science.Geological Survey of Canada.
    Agterberg F P,Cheng Q M,2002. Conditional Independence Test for Weights-of-Evidence Modeling. Natural Resources Research, vol.11, no.4, pp: 249-256.
    Agterberg F P, 1992. Combining indicator patterns in weights of evidence modeling for resource evaluation: Nonrenewable Resources, vol.1, no.1, pp: 35-50.
    Bachmann Charles M, 1997. Novel projection pursuit indices for feature extraction and classification: an inter comparison remote sensing application.Neural Networks Signal Process Proceeding of IEEE. Piscataway: IEEE Service Center, pp: 54-63.
    Batchmann Charles M, et al., 1994.Unsupervised BCM projection pursuit algorithms for classification of simulated radar presentation. Neural Networks, vol.7, no.4, pp: 709-728.
    Birge, B., 2003. PSOt, a Particle Swarm Optimization Toolbox for Matlab, IEEE Swarm Intelligence Symposium Proceedings, April 24-26.
    Bonham-Carter G F, Agterberg F P, Wright D F, 1989. Weights of evidence modelling: a new approach to mapping mineral potential. Geological Survey of Canada, Paper 89-9, pp: 171-183.
    Chang C C, Lin C J. LIBSVM,a library for support vector machines.Http:// www.csie.ntu.edu.tw/ cjlin / libsvm.
    Chen Guangzhou, Wang Jiaquan, Hu Shuheng, 2009. An Adaptive Clonal Selection Algorithm and Its Applications. Proceedings of 2009 International IEEE Workshop on Intelligent Systems and Application, Wuhan, vol.3, pp: 1743-1746.
    Chen Guangzhou,Wang Jiaquan,Li Chuanjun,2008.Solving the Optimization of Projection Pursuit Model Using Improved Ant Colony Algorithm. The 4thInternational Natural Computing Conference, Jinan, vol.7, pp: 521-525.
    Cheng Q M, 1994a. Multifractal modeling and spatial analysis with GIS: Gold mineral Potential estimation in the Mitchell-Sulphurets area northwestern British.Columbia (Dissertation).Univ. Ottawa, Canada.
    Cheng Q M,Agterberg F P,Ballantyne S B,1994b.The separation of geochemical anomalies frombackground by fractal methods.Journal of Geochemical Exploration,vol.51,no.2,pp:109-130.
    Cheng Q.M.2005.A new model for incorporating spatial association and singularity in interpo-lation of exploratory data.In:Leuangthong,O.,Deutsch,C.V.,eds.Geostatistics banff 2004. Quantitative geology and geostatistics(14).Springer,pp:1017-1025.
    Cheng Q M, 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu,Yunnan Province China.Ore Geol. Reviews, vol.32,no.12, pp: 314-324.
    Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin. A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide.
    Chiles J P, 1988. Fractal and geostatistical method for modeling of a fracture network.Mathematical Geology, vol.20, no. 6, pp: 631-654.
    Colorni A, Dorigo M, et al., 1991. Distributed optimization by ant colonies[C].Proceedings of the 1st European Conference on Artifical Life. Paris: ElesvierPublishing, pp: 134-142.
    Dempster A P,1967. Upper and low probabilities induced by a multi-valued mapping. Annuals of Mathematical Statistics,38 (2) :325-339.
    Dorigo M, Maniezzo V, Colorni A,1992.Optimization,leaning and natural algorithm.PH.D.Thesis, Department of Electronics, Politecnico diMilano, Italy.
    Dotm Yocheved, Intrator Nathan, 1998. Multimodality exploration by an unsupervised projection pursuit neural network. IEEE Trans, Neural Networks, pp: 464-472.
    Duda R, Gaschning J. and Hart P, 1979. Model design in the PROSPECTOR consultant system for mineral exploration, Expert Systems in the MicroelectronicAge, D.Michie (Ed.), Edinburgh University Press,Edinburgh,Scotland,pp:153-167.
    Flick Thmas E, et al., 1990.Pattern classification using projection pursuit. Pattern Recognition Let, vol.23, no.12, pp:1367-1376.
    Friedman J H, Stuetzle W, 1981. Projection pursuit regression. J.Amer.Statist.Assoc, pp:817-823. Friedman J H,Turkey J W, 1974.A projection pursuit algorithm for exploratory data analysis. IEEE Trans On Computer, vol.23, no.9, pp: 881-890.
    Gish H, Schimdt M. Text-independent speaker identification. IEEE Trans on Signal Processing Magazine, 1994,42(1):18-32.
    Harris J R, Wilkinson L,Heather K, et al.,2001. Application of GIS processing techniques for producing mineral prospectivity maps-a case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario,Canada. Natural Resources Research, vol.10, no.2, pp: 91-124.
    Kemp L D, Bonham-Carter G F, Raines G L, 1999. Arc-WofE: Arcview extension for weights of evidence mapping..http://ntserv.gis.nrcan.gc.ca/wofe.
    Kruscal J B, 1972. Linear transformation of multivariate data: Theory and Application in the Behavioral Sciences vol. I.New York and London Semimar Press.
    Kruscal J B, 1969. Toward a practical method which helps uncover the structure of a set of multi variate observations by finding the linear transformation which optimizes a new index of condensation. New York: in statistical computer academic.
    Liu Bao, Shen zhenkang,Sun zhongkang,1990. A pattern recognition method using projection pursuit.IEEE Proc Natl. Aerosol Electron Conf.Piscataway:IEEE Service Center, no.1,pp:300-302.
    Maechler M,Mertin D,Schimert J,1990. Projection pursuit learning networks for regression. Proceedings of the 2nd International IEEE Conference, pp: 350-358.
    Mandelbort B B, 1977.Form chance and dimension. Freeman, San Francisco.
    Mandelbort B B, 1982. The Fractal Geometry of Nature. Freeman, San Francisco.
    Mike Fugate, James R Gattikers, 2003. Computer intrusion detection with classification and anomaly detection using SVM.International Journal of Pattern Recognition and Artificial Intellegence,vol.17,no.3,pp:441-458.
    Muller K R,Mika S,Ratsch G,et al,2001. An introduction to kernel-based learning algorithms. IEEE Trans on Neural Networks, vol.12, no.2, pp:181-201.
    Safavian S R, et al., 1997. Projection pursuit image compression with variable block size segmentation. IEEE Signal Process Lett, no.4, pp:117-120.
    Shafer G A, 1976. A mathematical theory of evidence. Princeton: Princeton University Press.
    Smola A J, Scholkopf B A, 1998. Tutorial on spport vector regression, NeuroCOLT Technical Report NC-TR-98-030 [R]. Royal Holloway College Universityof London, UK.
    Vapnik V N, 1998. Statistic learning theory [M].New York: John Wiley.
    Vapnik V N, 1995. The nature of Statistic learning theory [M].New York:Springer,verlag.
    Zadeh L A, 1965. Fuzzy Sets. Information and Control, vol.8, no.1, pp: 338-353.
    曹静平,支利庚,王文联,2006.安徽南部地区铜金多金属矿产资源GIS评价.安徽省地质调查研究院.
    常印佛,刘湘培,吴言昌,1991.长江中下游铁铜成矿带[M].北京:地质出版社.
    陈春仔,金友渔,1997.分形理论在成矿预测中的应用[J].矿产与地质,11(4):272-276.
    陈广洲,汪家权,2009a.基于投影寻踪插值模型鉴别化合物毒性的研究[J].计算机与应用化学,26(1):121-124.
    陈广洲,汪家权,2009b.基于投影寻踪的城市生态系统健康评价[J].生态学报,29(9):4918- 4923.
    陈广洲,解华明,鲁祥友,2008a.MATLAB遗传算法工具箱在非线性优化中的应用[J].计算机技术与发展,18(3):246-248.
    陈广洲,汪家权,解华明,2008b.粒子群算法在投影寻踪模型优化求解中的应用[J].计算机仿真,25(8):159-161,165.
    陈广洲,汪家权,2008c.模拟退火算法在投影寻踪模型优化中的应用[J].合肥工业大学学报(自然科学版),31(8):1315-1317.
    陈广洲,汪家权,李传军等,2009c.一种改进的人工鱼群算法及其应用[J].系统工程,27(12): 105-110.
    陈广洲,汪家权,2008d.基于支持向量机的水资源开发利用程度评价[J].中国农村水利水电, (11):1-4.
    陈虎虎,钟方平,许学忠等,2005.基于支持向量机的低空飞行目标识别[J].系统工程与电子技术,27(1):46-48.
    陈沪生,1993.1:100000中国东部灵璧-奉贤地学断面图说明书.北京:地质出版社.
    陈芝芬,张冬梅,姚振忠,2009.SVM在成矿预测中的研究[J].计算机工程与应用,45(30): 234-236.
    成秋明,2007.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,14(5):42 -53.
    成秋明,2006.非线性成矿预测理论:多重分形奇性-广义自相似性-分形谱系模型与方法[J].地球科学,31(1):337-348.
    程小久等,1994.铅锌品位分维D值的意义和计算程序[J].地质与勘探,30(5):30-35.
    程裕淇,陈毓川,赵一鸣,1979.初论矿床的成矿系列问题[J].中国地质科学院院报,(1):32-58.
    丁清峰,孙丰月,2006.基于专家证据权重法的成矿远景区划与评价—以东昆仑地区金矿为例[J].地质科技情报,25(1):41-46.
    杜灵通,吕新彪,2003.GIS在矿产资源评价中的应用[J].地质找矿论丛,18(4):275-278.
    杜树新,吴铁军,2003.模式识别中的支持向量机方法[J].浙江大学学报(工学版),37(5):521-527.
    冯京,兰险,张维洲等,2008.新疆莱历斯高尔铜钼矿找矿方法及综合信息找矿模型[J].新疆地质,26(3):240-246.
    付强,赵小勇,2006.投影寻踪模型原理及其应用[M].北京:科学出版社.
    傅文杰,洪金益,林明森,2006.基于光谱相似尺度的支持向量机遥感土地利用分类[J].遥感技术与应用,21(1):25-30.
    高尚,钟娟,莫述军,2003.连续优化问题的蚁群算法研究[J].微机发展,13(1):21-22.
    高尚,杨静宇,2006.群智能算法及其应用[M].北京:中国水利水电出版社.
    韩邵阳,2001.以ArcView3.2为平台的砂岩铀矿勘查信息系统的研制及应用[硕士学位论文].北京核工业北京地质研究院.
    韩绍阳,侯惠群,黄树桃,2002.基于ArcView3.2的证据权重法在层间氧化带型砂岩铀矿定量评价中的应用[J].物探与化探,26(6):443-449.
    黄海峰,姚书振,丁振举,2003.基于GIS的证据权重法在成矿预测中的应用—以甘肃省眠县-礼县地区的金矿预测为例[J].地质科技情报,22(3):77-82.
    江涛,牛如宝,1998.模糊模式在金矿成矿预测中的应用[J].山东地质,14(3):46-51.
    姜谙男,梁冰,2009.基于粒子群支持向量机的三维含水层渗流参数反馈识别.岩土力学,30(5): 1527-1531.
    黎夏,刘小平,李少英,2010.智能式GIS与空间优化[M].北京:科学出版社.
    李长江,麻土华等,1999.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社.
    李随民,姚书振,周宗桂,2007.基于ARCVIEW证据权重法的成矿远景区预测—以陕西旬北铅锌矿富集区为例[J].地质找矿论丛,22(3):179-183.
    李阳,史峰,王小川等.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社.
    李祚泳,汪嘉杨,熊建秋等,2007.可持续发展评价模型与应用[M].北京:科学出版社。
    林吉海,谢文兵,2004.基于BP网络算法的矿产资源评价方法[J].重庆工商大学学报(自然科学版),21(5):450-452.
    刘春波,王鲜芳,潘丰,2008.基于蚁群优化算法的支持向量机参数选择及仿真[J].中南大学学报(自然科学版),39(6):1309-1313.
    刘世翔,薛林福,孙丰月等,2008.专家证据权重法在矿产评价中的应用-以黑龙江省西北部金矿为例[J].地球科学进展,23(8):848-855.
    刘星,胡光道,2003.应用MORPAS系统证据权重法进行多源信息成矿预测—以澜沧江南段地区为例[J].地质与勘探,39(4):65-68.
    刘志远,徐学纯,2007.辽东青城子金银多金属成矿区综合信息找矿模型及找矿远景分析[J].吉林大学学报(地球科学版),37(3):437-443.
    刘卓,易东云,2003.投影寻踪方法与高光谱遥感图像数据特征提取的研究[J].数学理论与运用,23(1):76-81.
    卢敏,张展羽,2005.基于支持向量机的水资源可持续利用评价[J].水电能源科学,23(5):18-21.
    卢作祥,范永香,刘辅臣等,1989.成矿规律和成矿预测学[M].中国地质大学出版社.
    孟宪国,1991.R/S分析和地球化学数据的分形处理[J].地球科学,16(3):281-287.
    钱惠萍等,2009.1∶5万丁香、南村幅地球化学研究报告.安徽省地球物理地球化学勘查技术院地调中心.
    秦长兴,1989.矿床学中若干问题的分形几何学研究(学位论文).中国地质大学(武汉).
    任俊,李志能,2005.支持向量机在字符分类识别中的应用[J].浙江大学学报(工学版),39(8):1136-1141.
    沈步明,沈远超,1993.新疆某金矿的分维数特征及其地质意义[J].中国科学(B辑),23(3): 297 -302.
    宋国耀,肖克炎,朱裕生,1999.美国矿产资源评价状况[J].物探化探计算技术,21(4):301- 305.
    孙祥,杨子荣,徐大地,2008.基于模糊神经网络的义县萤石成矿预测[J].地质找矿论丛,23(2): 149-152.
    谭征兵,2002.矿产资源GIS评价系统及成矿预测BP模型[A].北京:中国地质大学(北京).
    万丽,王庆飞,高帮飞,2006.成矿预测中的非线性数学方法[J].地质找矿论丛,21(1):45-48.
    王翠香,2009.模糊数学在个旧东区锡矿资源预测中的应用[D].中国地质大学(北京).
    王定成,方廷建,唐毅等,2003.支持向量机回归理论与控制的综述[J].模式识别与人工智能,16(2):192-197.
    王建伟,胡开勇,李仁和,2009.1∶5万丁香、南村幅航磁研究报告.安徽省地球物理地球化学勘查技术院地调中心.
    王景雷,吴景社,孙景生等,2003.支持向量机在地下水位预报中的应用研究[J].水利学报,34(5):122-128.
    王开林,高建国,郭君,2007.山东莱州金矿化集中区综合信息找矿模型及靶区预测[J].昆明冶金高等专科学校学报,23(3):14-19.
    王淼,范继璋,王忠文,2009.内蒙古黄岗—甘珠尔庙成矿带铅锌矿综合信息找矿模型[J].地学前缘,16(6):318-324.
    王全明,方一平,2001.矿产资源调查评价中的GIS[J].中国地质,28(4):38-44.
    王诗元,范继璋,王淼,2008.吉林老岭成矿带金矿综合信息找矿模型[J].吉林大学学报(地球科学版),32(2):211-216.
    王世称,许亚光,侯惠群,1992.综合信息成矿系列预测的基本思路与方法[J].中国地质,10:12-14.
    王世称,杨毅恒,李景朝等,1999.综合信息矿产资源预测中的定性数据分析方法[M].长春:吉林大学出版社.
    王世称,2000.综合信息矿产预测理论与方法[M].北京:科学出版社.
    王万良,2005.人工智能及其应用[M].北京:高等教育出版社.
    王正海),2004.云南鹤庆北衙富碱斑岩型金矿综合信息找矿模型及预测评价[D].中国地质大学博士学位论文(武汉).
    夏国恩,金炜东,张葛祥,2006.基于支持向量分类机与回归机的综合评价方法[J].西南交通大学学报,41(4):522-527.
    肖健华,林健华,刘晋,2006.区域经济中长期预测的支持向量机回归方法[J].系统工程理论与实践,26(4):97-103.
    肖克炎张晓华陈郑辉等,1999.成矿预测中证据权重法与信息量法及其比较[J].物探化探计算技术,21(3):223-226.
    肖克炎,陈郑辉等,2003.矿产资源评价系统(MRAS)用户使用指南.
    肖克炎,丁建华,刘锐,2006.美国“三步式”固体矿产资源潜力评价方法评述[J].地质论评,52(6):793-798.
    邢学文,胡光道,王正海等,2006a.模糊逻辑法在云南中甸地区铜矿潜力预测中的应用[J].地质科技情报,25(6):53-58.
    邢学文,胡光道,2006b.模糊逻辑法在秦岭松潘成矿区金矿潜力预测中的应用[J].吉林大学学报(地球科学版),36(2):298-304.
    熊建秋,邹长武,李祚泳,2006.基于免疫进化支持向量机的年用电量预测[J].四川大学学报(工程科学版),38(2):6-10.
    熊建秋,邹长武,李祚泳,2005.基于支持向量机的人均综合用水量预测[C].中国环境保护优秀论文集(上册),中国环境科学学会编,北京:中国环境科学出版社.
    徐晓春,支利赓,褚平利等.区域矿产地质调查报告(丁香幅、南村幅).合肥工业大学资源与环境工程学院、安徽省地球物理地球化学勘查技术院,2009.
    徐勇,张广辉,钱锋,2008.基于改进克隆选择算法的最小二乘支持向量机华东理工大学学报(自然科学版),34(5):729-733.
    薛顺荣,胡光道,丁俊,2001.成矿预测研究现状及发展趋势[J].云南地质,20(4):411-416.
    薛顺荣,肖克炎,丁建华,2008.基于MRAS的证据权重法在香格里拉地区的综合信息成矿预测[J].吉林大学学报(地球科学版),38(5):738-744.
    薛云,2008.基于蚁群算法和支持向量机的矿化蚀变信息提取研究[D].中南大学学位论文(博士).
    杨涛,薛云,戴塔根,2008.基于光谱和纹理的支持向量机矿化信息提取-以青海黄南州吉地地区为例[J].地球与环境,36(1):81-86.
    翟裕生,姚书振,崔彬,1996.成矿系列研究[M].武汉:中国地质大学出版社.
    翟裕生.成矿系统的结构框架和基本类型,1998.中国可持续发展的资源环境科学学术讨论会论文集[C].北京:科学出版社.
    翟裕生,2003.成矿系统研究与找矿[J].地质调查与研究,26(3):129-135.
    翟裕生,1999.论成矿系统[J].地学前缘,6(1):13-28.
    张锦水,何春阳,潘耀忠,2006.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,10(1):49-57.
    张军,詹志辉等.计算智能[M].北京:清华大学出版社.
    张维震,刘建芬,2003.神经网络法在寻找“隐伏矿(盲矿)”中的应用机理探讨[J].地质与勘探,39(2):56-60.
    张晓军,张均,秦举礼等,2000.川西北金矿的证据权模型及其预测应用[J].高校地质学报,6(4):554-559.
    张欣莉,丁晶,郑祖国,2000.投影寻踪回归在紫坪埔洪水预报中的应用[J].四川大学学报(工程科学版),32(2):22-24.
    赵鹏大,池顺都,1991.初论地质异常[J].地球科学—中国地质大学学报,16(3):241-248.
    赵鹏大,张寿庭,陈建平,2003.“三联式”成矿预测新进展[J].地学前缘,10(2):455-459.
    赵鹏大,2002.“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J].地球科学—中国地质大学学报,27(5):482-489.
    赵晓翠,王来生,2007.基于投影寻踪和支持向量机的模式识别方法[J].计算机应用研究,(2): 86-88.
    周兆永,汪西莉,曹艳龙,2008.基于GA优选参数的SVM水质评价方法研究[J].计算机工程与应用,44(4):190-193.
    周子勇,程方道,1995.模糊直接识别方法在湘南地区成矿预测中的应用[J].物探与化探,19(4): 271-279.
    朱裕生,肖克炎,丁鹏飞等,1997.成矿预测方法[M].北京:地质出版社.
    朱裕生,2006.矿产预测理论—区域成矿学向矿产勘查延伸的理论体系[J].地质学报,80(10):1518-1527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700