用户名: 密码: 验证码:
煤矿液压支架缸体环焊缝缺陷超声检测与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压支架是煤矿综合机械化开采的主要设备,对现代煤矿生产具有举足轻重的意义。液压缸是液压支架完成各种运动和承载顶板压力的关键元件,它的质量直接影响着液压支架的可靠性,进而影响到煤矿的安全和正常生产。
     针对液压缸环焊缝质量检验的难题,为了克服目前手动超声A扫描检测方式的缺点和不足,保证焊接质量,以数字超声探伤仪为基础,以计算机为核心,以虚拟仪器编程语言LabWindows/CVI为软件平台,以现有自动焊接装置为工件装夹平台,借助于计算机技术、超声无损检测与评价技术、机电一体化技术,成功地开发了一个超声自动检测系统,实现了液压缸环焊缝检测的数字化、自动化和图像化,提高了超声检测的可靠性和效率。
     研究了横波斜探头超声扫描成像的原理和方法,给出了斜探头超声B、C扫描成像的定义,建立了人工缺陷超声B扫描和C扫描成像的数学模型,解决了超声扫描成像软件实现的关键技术问题,实现了超声B扫描和C扫描成像功能。
     针对焊接缺陷超声回波信号的特点,深入研究了小波阈值去噪法的原理和方法,在软、硬阈值函数的基础上,构造了一种新的阈值处理函数,提出了基于改进阈值函数的提升小波变换去噪算法。实验结果表明,该方法改进了软、硬阈值去噪法的缺点,获得了更好的去噪性能和更高的信噪比,而且在实时信号去噪方面具有很好的应用前景。
     以焊接缺陷的常见类型为对象,研究了基于小波包变换的多尺度空间能量特征提取方法,对实测的超声缺陷回波信号进行了特征提取实验,并利用基于距离的类别可分性判据对提取的特征向量进行了评价。结果表明,该方法对焊接缺陷超声回波信号的特征提取是有效的。
     为了克服人工神经网络需要大量训练样本,且网络结构确定困难等缺点和不足,在对比分析支持向量机常用多值分类方法的基础上,提出了基于ν-SVM的二叉树多值分类方法,实验结果表明其分类正确率高,在训练时间和测试时间方面均优于其它的支持向量机多值分类方法。
     基于RBF神经网络与支持向量机的结构等价性,提出了基于ν-SVM-BTMC的RBF神经网络焊接缺陷识别方法,实验结果表明该方法比RBF神经网络、基于ν-SVM的二叉树多值分类方法的分类正确率更高,其训练和测试速度最快。
Hydraulic support is a main equipment of the comprehensive mechanization mining, and it is of great significance for modern coal mine production. Hydraulic cylinder is a key actuator which completes various motions and bears roof pressure. Its quality directly affects the reliability of hydraulic support, and then affects safety and normal production of coal mine.
     Aiming at the problem of girth weld quality test for hydraulic cylinder, in order to conquer the disadvantages of manual ultrasonic A-scan testing and ensure weld quality, taking digital ultrasonic flaw detector as base, computer as core, virtual instrument programming language of Lab Windows/CVI as software platform and existing automatic welding equipment as clamping workpiece platform, an ultrasonic automatic testing system has been successfully developed by means of technologies of computer, ultrasonic NDT and NDE, integration of mechanics and electrics. This system has implemented numeralization, automatization and imaging of girth weld testing for hydraulic cylinder, and enhanced efficiency and reliability of ultrasonic testing.
     The principle and method of ultrasonic scan imaging for transverse wave angle probe are studied, the definitions of ultrasonic B-scan and C-scan imaging for angle probe have been given, the mathematical models of ultrasonic B-scan and C-scan imaging for artificial defect have been established, the key technique problems of software implementation of ultrasonic scan imaging have been achieved, and the functions of ultrasonic B-scan and C-scan imaging have been realized.
     According to the characteristics of ultrasonic echo-signals of weld flaws, the principle and algorithm of wavelet on threshold de-noising are further studied. On the basis of soft and hard threshold fuctions, a new threshold function is structured, and a lifting wavelet transform (LWT) de-noising algorithm based on the improved threshold function has been put forward. Experimental results show that this algorithm has overcome the disadvantages of soft and hard threshold de-noising methods, and obtained a better de-noising performance and a higher signal-noise ratio (SNR). Moreover, this algorithm has a good application prospect in real-time signal de-noising.
     Taking the common types of weld flaws as object, the method of energy feature extraction based on wavelet packet transform (WPT) are studied. The feature values of actual measured ultrasonic echo-signals are extracted by this method and evaluated by the sort separability criterion based on distance. The experimental result shows that this method is comparatively quite effective in the feature extraction of ultrasonic echo-signals for welding flaws.
     In order to overcome the disadvantages of artificial neural network, such as needing the massive trainings amples, the difficulty of determining network structure, and so on, through contrastively analyzing the common multi-class classification methods of support vector machine (SVM), a binary tree multi-class classification algorithm based onν-SVM (ν-SVM-BTMC) has been proposed. Experimental results show that the classification accuracy of this algorithm is high, and it is superior to other multi-class classification methods of SVM in the aspects of training and testing time.
     Considering the equivalence between RBF neural network (RBFNN) and SVM in structure, a new RBFNN recognition algorithm to welding flaws based onν-SVM-BTMC is proposed. From the experimental results, it is shown that the new recognition algorithm has a higher classification accuracy than RBFNN and the binary tree multi-class classification algorithm based onν-SVM, moreover, its training and testing speed are fastest.
引文
[1]姜谦.2010-2015年中国能源行业投资分析及前景预测报告[R].中投顾问产业研究中心,2010
    [2]国家煤矿安全监察局.http://www.chinacoal-safety.gov.cn[OL]
    [3]李海宁、纪茂峰.液压支架焊接工艺装备现状与自动化焊接技术解决方案[J].煤矿机械,2006,27(7):825~826
    [4]张延平.液压支架结构及工艺参数优化与质量保证体系研究[D].淮南:安徽理工大学,2000
    [5]牟丹、廖生行、周恩涛.VC++6.0在液压缸泄漏量检测数据处理中的应用[J].机床与液压,2004(1):128~129
    [6]王正海.液压支架漏液分析与控制[J].煤矿机械,2006,27(7):175~176
    [7]郑中兴.材料无损检测与安全评估[M].北京:中国标准出版社,2004
    [8] V. G. Shcherbinskii. Technology of testing welded joints [M]. NPO Central Research Institute of Heavy Machinery, Moscow, Russia, 2003
    [9] Baldev Raj, Subramanian C V. Nondestructive testing of welds [J]. Materials Evaluation, 1999, 57(12): 1251~1254
    [10] V. A. Barkhatov. Development of methods of ultrasonic nondestructive testing of welded joints [J]. Russian Journal of Nondestructive Testing, 2003, 39(1): 23~47
    [11]罗雄彪、陈铁群.超声无损检测的发展趋势[J].无损检测,2005,27(3):148~152
    [12]马宏伟.电触头钎焊接头超声成像无损检测技术研究[D].西安:西安交通大学,1998
    [13] Sung-Jin Song, Hak-Joon Kim, et al. Development of an intelligent system for ultrasonic flaw classification in weldments[J]. Nuclear Engineering and Design, 2002(212): 307~320
    [14]张俊哲.无损检测技术及其应用[M].北京:科学出版社,1993
    [15]单宝华、喻言、欧进萍.超声相控阵检测技术及其应用[J].无损检测,2004,26(5):235~238
    [16] J. Poguet, Petru Ciorau.Special linear phased array probes used for ultrasonic examination of complex turbine components[J/OL]. www.ndt.net, 2002, 7(10)
    [17] N. Bertus, A. Erhard, et al. Ultrasonic phased array system for railroad axle examination[J/OL]. www. ndt.net, 2003, 8 (3)
    [18] A. Erhard, G. Schenk. Ultrasonic phased array technique for austenitic weldinspection[C]. The proceedings of 15th WCNDT, Rome, Italy, Oct 15-21, 2000
    [19] Lawrence Azar. Experimental characterization of ultrasonic phased arrays for the nondestructive evaluation of concrete structures[J]. Materials Evaluation, 1999, 57(2): 134~135
    [20] S. Izadpanah, G. Reza rashed, et al. Using ultrasonic guided waves in evaluation of pipes[J/OL]. www.ndt.net, 2009, 4
    [21] N. Muthu, S. Vinogradov. Application of guided waves technology for screening of seacure tubing [J/OL]. www.ndt.net, 2008, 12
    [22]李衍.超声TOFD原理和方法要领[J].无损检测,2007,29(2):88~93
    [23] C. Brillon, T. Armitt, et al. TOFD inspection with phased arrays[C]. The proceedings of 17th WCNDT, Shanghai, China, Oct 25-28, 2008
    [24]张伟志、刚铁、王军.超声波检测计算机模拟和仿真的研究及应用现状[J].应用声学,2003,22(3):39~44
    [25] http://www.utex.com/Products/Simulation/I3d/Imagine3D.htm[OL]
    [26]王琴、王九良、朱维华等.超声检测技术应用及其发展概况[J].科技信息,2006(9):284
    [27] http://www.siui.com/ [OL]
    [28] http://www.chsndt.com/chsndt_1/program/index.asp[OL]
    [29] http://www.ndtinfo.net/hichina/ndtqc/ndtzu.html[OL]
    [30]黄良兵.超声检测虚拟仪器研究[D].西安:西安科技大学,2005
    [31]第16届世界无损检测会议综述.http://www.chsndt.com/news/ 2004-10-20-4.htm[OL]
    [32] Lee, Youngseock. 3-Dimensional imaging technique for shape estimation of flaw in ultrasonic non-destructive evaluation [J]. Key Engineering Materials, 270~273, NI, Advances in Nondestructive Evaluation, 2004: 198~203
    [33]李凌.碳纤维复合材料数字化超声检测系统关键技术研究[D].杭州:浙江大学,2007
    [34]郑中兴、滕永平、胡绍海等.超声波P扫描成象系统研究[J].机械工程学报,1996,32(3):58~64
    [35]沈建中.超声波成象技术在无损检测中的应用[J].无损检测,1994,16(7):202~206
    [36] WANG wu-ping, LUO qi-xian, et al. Detecting inner quality of foundation pile with ultrasonic CT technology [J/OL]. www.ndt.net, 2001,10
    [37]周黎明、王法刚、肖国强等.超声波层析成像技术在三峡工程混凝土质量检测中的应用[J].无损检测,2004,26(10):517~519
    [38]徐西刚、施克仁、陈以方等.相控阵超声无损检测系统的研制[J].无损检测,2004,26(3):116~119
    [39]钟志民、梅德松.超声相控阵技术的发展及应用[J].无损检测,2002,24(2):69~71
    [40]袁涛、曹怀祥、祝卫国等.TOFD超声成像检测技术在压力容器检测中的应用[J].压力容器,2008,25(2):58~60
    [41] http://www.zkcx.com[OL]
    [42]周正干、冯海伟.超声导波检测技术的研究进展[J].无损检测,2006,28(2):57~63
    [43] http://www.imperiuminc.com[OL]
    [44] D. V. Perov, et al. Wavelet filtering of signals from ultrasonic flaw detector[J]. Russian Journal of Nondestructive Testing, 2002, 38(12): 869~882
    [45] J. Chen, Y. Shi, et al. Noise analysis of digital ultrasonic nondestructive evaluation system [J]. International Journal of Pressure Vessels and Piping, 1999 (76): 619~630
    [46]张广明、马宏伟、王裕文等.超声无损检测中的缺陷识别与噪声抑制[J].中国机械工程,1999,10(12):1389~1391
    [47]杨克己.基于神经网络的小波域超声信号消噪技术研究[J].浙江大学学报,2005,39(6):775~779
    [48] R. Vicen, R. Gil, et al. Non-linear filtering of ultrasonic signals using neural networks[J]. Ultrasonics, 2004(42): 355~360
    [49]李伟、罗雄彪.基于相关技术的超声检测信号处理[J].无损检测,2005, 27(6):297~299
    [50] Farhang Honarvar, Hamid Sheikhzadeh, et al. Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals[J]. Ultrasonics, 2004 (41): 755~763
    [51] L. Ericsson. T. Stepinski. Algorithms for suppressing ultrasonic backscattering from material structure[J]. Ultrasonics, 2002 (40): 733~734
    [52] Honarvar, S. A. M Tabatabai, et al. A new signal process technique for enhancement of ultrasonic testing signals[C]. The proceedings of 16th WCNDT, Montreal, Canada, Aug 29– Sep 3, 2004
    [53] Q He, H J Zhang, et al. Evaluation of stress using ultrasonic technique based on Hilbert-Huang transform[J]. Journal of Physics, 2006, Conference Series 48: 106~110
    [54] Fairouz Bettayeb, Tarek Rachedi, et al. An improved automated ultrasonic NDE system by wavelet and neuron networks[J]. Ultrasonics, 2004(41): 853~858
    [55] M. A. Rodriguez, et al. Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing[J]. Ultrasonics, 2004(42): 847~851
    [56] Song Shou-peng, Que Pei-wen. Wavelet based noise suppression technique and its application to ultrasonic flaw detection[J]. Ultrasonics, 2006 (44) :188~193
    [57] Fairouz Bettayeb, Salim Haciane. Improving the material ultrasonic characterization and the signal noise ratio by the wavelet packet[C]. The proceedings of 17th WCNDT, Shanghai, China, Oct 25-28, 2008
    [58] Shuncong Zhong, et al. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform[J].Mechanical Systems and Signal Processing, 2007 (21): 1853~1884
    [59]岳焕印、郭华东、范典等.基于静态小波分解的多尺度SAR图象滤波[J].中国图象图形学报,2002,7(12):1252~1256
    [60]李忠国、张为公、刘庆华等.静态小波变换在汽车道路模拟试验中的应用[J].数据采集与处理, 2007,22(2):238~241
    [61] Fan Xianfeng, Zuo Ming J, et al. Application of stationary wavelet transforms to ultrasonic crack detection[C]. The proceedings of 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, Canada, May 7-10, 2006
    [62] Ergun Ercelebi. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform[J]. Computers in Biology and Medicine, 2004 (34): 479~493
    [63]郭显久、郭东钢、吕显强.提升小波变换及其在信号去噪中的应用[J].大连水产学院学报,2005,20(1):51~56
    [64] Kuzume Koichi, Niijima Koich, et al. Signal detection based on lifting wavelet and its application to ECG signal processing[C]. The proceedings of 22nd International Conference on Modelling Identification and Control, Innsbruck, Austria, Feb 10-13, 2003
    [65] Hossein Ravanbod. Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing[J]. NDT&E International, 2005(38): 643~653
    [66] Acciani, G. Neural network classification of flaws in pipes using ultrasonic waveforms[J]. WSEAS Transactions on Circuits and Systems, 2005(4): 1387~394
    [67]张海燕、周全、夏金东.超声缺陷回波信号的小波包降噪及特征提取[J].仪器仪表学报,2006,27(1):94~97
    [68]刘旭、夏金东、弓乐等.射频信号在超声检测缺陷识别中的应用研究[J].机械工程学报,2002,38(4):84~87
    [69] Li J, Zhan X, et al. Research on automatic flaw classification and feature extraction of ultrasonic testing[J]. Key Engineering Materials, 2008, 381-382: 631~634
    [70] Vapnik V. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10 (5): 988~999
    [71] Christopher J, Burges C. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2 (2): 121~167
    [72] Chan W C, Chan C W, Cheung K C, et al. On the modelling of nonlinear dynamic system using support vector neural networks[J]. Engineering Applications of Artificial Intelligence, 2001, 14(2): 105~113
    [73]刘清坤,阙沛文、郭华伟等.基于支持向量机和特征选择的超声缺陷识别方法研究[J].中国机械工程,2006,17(1):9~12
    [74] Matz, Vaclav, et al. Classification of ultrasonic signals[J]. International Journal of Materials and Product Technology, 2006, (27): 145~155
    [75]李政、罗飞路、潘孟春.基于支持向量机的航空发动机叶片超声检测[J].传感技术学报,2008,21(11):1940~1943
    [76] Zhao Xiufen, Yin Guofu, et al. Study on flaw identification of ultrasonic signal for large shafts based on optimal support vector machine[J].仪器仪表学报,2008,29(5):908~913
    [77]戴波、赵晶、周炎.基于支持向量机的管道腐蚀超声波内检测[J].化工学报,2008,59(7):1812~1817
    [78] CTS-4020数字超声探伤仪使用说明书[Z].汕头超声仪器研究所,2007
    [79]张凤均.LabWindows/CVI开发入门和进阶[M].北京:北京航天航空大学出版社,2001
    [80] LabWindows/ CVI Standard Libraries Reference [Z]. NI, 1997
    [81] LabWindows/CVI中的多线程技术[OL].http://www.ni.com/zhs
    [82]陈矫阳、陈楸、刘桓龙.基于Labwindows/CVI多线程数据采集的研究[J].科学技术与工程,2008,8(9):2459~2461
    [83]王务同.超声波探伤换能器及其性能要求[J].无损检测,1997,19(3):79~82
    [84]史亦伟.超声检测[M].北京:机械工业出版社,2001
    [85]中国机械工程学会无损检测分会编.超声波检测[M].北京:机械工业出版社,2000
    [86]马香玲.管道对接焊缝超声检测机器人研究[D].西安:西安科技大学,2007
    [87]刘松平、刘菲菲、李乐刚等.管道焊缝超声多维成像检测技术[J].无损检测,2008,30(2):77~80
    [88] GB/T 11345—1989,钢焊缝手工超声波探伤方法和探伤结果分级[S]
    [89] JB/T 4730.3—2005,承压设备无损检测第3部分:超声检测[S]
    [90]魏娜.基于虚拟仪器的超声成像检测系统研究[D].西安:西安科技大学,2007
    [91]吴思源,周晓军、杨辰龙等.复杂形状航空锻件超声检测技术研究[J].机床与液压,2006,5:149~152
    [92]周伟.MATLAB小波分析高级技术[M].西安:西安电子科技大学出版社,2006
    [93]张德丰.MATLAB小波分析[M].北京:机械工业出版社,2009
    [94] E. Pardo, J. L. San Emereria, et al. Noise reduction in ultrasonic NDT using undecimated wavelet transforms[J]. Ultrasonics, 2006, 44(12): 1063~1067
    [95]孔国杰、张培林、曹建军等.基于提升小波变换的信号降噪及其工程应用[J].计算机工程与应用,2008,44(10):234~237
    [96] A. Serdar Yilmaz, Abdulhamit Subasi, et al. Application of lifting based wavelet transforms to characterize power quality events[J]. Energy Conversion and Management, 2007, 48: 112~123
    [97] X. Q. Jiang, L. Blunt, et al. Application of the lifting wavelet to rough surfaces[J]. Precision Engineering, 2001, 25: 83~89
    [98]陈益、李书.改进的小波阈值消噪法应用于超声信号处理[J].北京航空航天大学学报,2006,32(4):466~470
    [99]董长虹.Matlab小波分析工具箱原理与应用[M].北京:国防工业出版社,2004
    [100] J. L. San Emeterio, E. Pardo, et al. Ultrasonic grain noise reduction using wavelet processing. An analysis of threshold selection rules[C]. The proceedings of 9th ECNDT, Berlin, Germany, Sep 25-29, 2006
    [101]王玉、高大路、廖明夫等.焊接缺陷信号的小波去噪方法研究[J].西北工业大学学报,2005,23(4):496~499
    [102]汪同庆,郭子义、刘家兵等.一种基于改进阈值函数的小波域超声信号去噪方法[J].无损检测,2007,29(11):641~643
    [103]李建文、徐彦霖、王增勇.应用模式识别技术识别超声检测的缺陷类型[J].仪器仪表学报,2004,25(4):585~586
    [104]谈文心、张新春.便携式智能超声无损检测系统的研究[J].无损检测,1997,19(7):181~185
    [105] Kyungmi Lee, et al. Feature extraction and gating techniques for ultrasonic shaft signal classification[J]. Applied Soft Computing, 2007 (7): 156~165
    [106]李功、黄民.基于小波包变换的超声回波信号特征提取[J].合肥工业大学学报,2006,29(2):246~249
    [107]张立新、高柏峰.小波分析与人工神经网络结合对混凝土缺陷超声信号识别的应用[J].燕山大学学报,2008,32(3):263~267
    [108]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [109]葛哲学、孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007
    [110]张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009
    [111] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302~309
    [112]田丰、刘再胜、孙小平等.基于RBF神经网络的温度场重建算法研究[J].仪器仪表学报,2006,27(11):1460~1464
    [113]田景文、高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006
    [114]潘明清.基于支持向量机的机械故障模式分类研究[D].杭州:浙江大学,2005
    [115] C Cortes, V Vapnik. Support-vector networks[J]. Machine learning, 1995, 20(3): 273~297
    [116] Chang Chih-Chung, Lin Chih-Jen. LIBSVM: a library for support vector machines [EB/OL]. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
    [117] Chen Pai-Hsuen, Lin Chih-Jen, et al. A tutorial onν-support vector machines[EB/OL]. http://www.csie.ntu.edu.tw/~cjlin/papers/nusvmtutorial.pdf
    [118] Sch?lkopf B, J. C. Platt, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443~1471
    [119] Mangasarian O. L, Musicant D. R. Lagrangian support vector machines[J]. Journal of Machine Learning Research, 2001(1): 161~177
    [120] Suykens J. A. K, et al. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293~300
    [121] Hsu Chih-Wei, Lin Chih-Jen. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415~425
    [122]徐红敏.基于支持向量机理论的水环境质量预测与评价方法研究[D].长春:吉林大学,2007
    [123] J. C. Platt, N. Cristianini, et al. Large margin DAGs for multiclass classification[M]. In Advances in Neural Information Processing Systems, 12: 547~553. MIT Press, 2000
    [124] Gjorgji Madzarov, Dejan Gjorgjevikj, et al. A multi-class SVM classifier utilizing binary decision tree[J]. Informatica, 2009, 33: 233~241
    [125]马笑潇、黄席樾、柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272~276
    [126] P. András. The equivalence of support vector machine and regularization neural networks[J]. Neural Processing Letters, 2002, 15(2): 97~104
    [127]张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(7):696~700
    [128]袁小芳、王耀南、孙炜等.一种用于RBF神经网络的支持向量机与BP的混合学习算法[J].湖南大学学报,2005,32(3):88~92
    [129] Sch?lkopf B, Sung K, et al. Comparing support vetcor machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Transactions Signal Procession, 1997, 45(11): 2758~2765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700