用户名: 密码: 验证码:
再入飞船等离子体鞘套对通信衰减的仿真与建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天飞行器(卫星、导弹、航天飞机和载人飞船返回舱等)以高超声速再入大气层时,由于高温高压会在表面形成包覆着飞行器的等离子体鞘套。等离子体鞘套会对通过其中的无线信号产生吸收、反射、折射、投射、色散等现象,严重影响航天器与外界通信,甚至会产生黑障而完全阻隔通信。
     国外为了研究返回舱再入时这种特殊的通信环境问题,早在20世纪60年代美国就投入巨资进行了无线电衰减测量试验,如(RAM计划),并通过RAM—C1、RA M—C2、RA M—C3试验,获得了大量的技术数据和经验;国内从20世纪80年代开始进行了大量地面实验,如由中科院力学所等单位开展了再入通讯可行途径的地面试验等。这些研究主要集中于对等离子体鞘形状、结构及特点的研究,以及对等离子体鞘中电子密度分布的计算和建模,等离子体的反射系数和透射系数的计算,还有消除等离子体的物理、化学手段等方面。这些学者在各个的领域里对再入通信衰减的研究做出了杰出的贡献。
     本文在前人研究的基础上,提出了一种研究完整的飞船再入全过程中等离子体鞘对通信影响的新方案:即从衰减分贝数的角度,在飞船再入全过程中进行飞船表面三维实时衰减情况模拟,得到飞船返回轨迹上每一点的位置及在这位置上飞船表面每一点的衰减情况。通过对飞船三维外形、飞船再入过程、飞船周围流场温度、压强和电子密度分布等部分进行仿真建模,探讨了等离子体各参数对衰减的影响,并将各种研究综合起来得到三维实时的衰减模型,为今后研究采取主动和被动手段来解决通信衰减问题提供了重要理论依据,也是进一步采用新型技术进行再入通信仿真的前提,对研究航天器与外界的通信问题具有重要意义。
When space vehicles (such as satellite, missile, space shuttle and the reentry module of the spacecraft. etc) reentry atmosphere at hypersonic speed, a plasma sheath enveloping the spacecraft begins to come into being. The sheath is composed of plasma, and the plasma is a medium which will exert influence on communication of the vehicles, such as absorption, reflection, refraction, dispersion etc, even can full cutoff communication which is called as communication blackout.
     In order to study this special reentry communication environment problem, in early 1960s American invested hugely to conduct radio attenuation measuring experiment, such as RAM plan, and through the RAM - C1, RAM - C2 and RAM - C3 test, they got a great deal of technical data and experience; from 1980s China began a large number of ground tests, such as feasible ways ground test of reentry communications. These studies mainly focused on the research of plasma sheath shape, structure and characteristics, computation and modeling of plasma sheath electronic density distribution, calculation of plasma reflection coefficient and transmission coefficient, and the physics, chemistry means to eliminate plasma etc. The scholars have made outstanding contributions in their fields in the research of reentry communication attenuation.
     This article is based on the whole ship plasma sheath in reentry process, on the basis of previous studies a new research scheme is proposed: by modeling the spacecraft in 3D contour, reentry process, spacecraft surrounding flow field temperatures, pressures and electron density distribution, combining with integrated computation, a 3D real-time reentry spacecraft communication attenuation model can be gained. According to this model, we can find out the attenuation value of every point of the spacecraft at different altitudes. This model well be the fundamental of further research on blackout countermeasure technologies, and has important significance to investigate the problem of reentry communication between the spacecraft and ground.
引文
[1]王唯,关仰泽.关于黑障问题的探索[J]. 863航天技术通讯, 1999, 6:32~37.
    [2]孙鉴,黄进武.空天飞机的测控通信技术[J]. Telecommunication Engineering, 2007, 47(1): 48~52.
    [3] C. R. Mullin, F.H. Mitchell. Comments on“Communication-system blackout during reentry of large vehicles”[J]. Proceedings of the IEEE, 1968,56(2):203~204.
    [4] B. Rosenbaum. Apollo plasma sheath in-flight diagnostics. NASA, April 1966, Technical Note TM X-55533.
    [5] G. Stewart. Laboratory simulation of reentry plasma sheaths[J]. IEEE Transactions on Antennas and Propagation, 1967, 11, 15(6):831~832.
    [6] F. G. Blottner. Viscous shock layer at the stagnation point with nonequilibrium air chemistry[J]. AIAA, 1969,7(12):2281~2287.
    [7]菅井秀朗.等离子体电子工程学(张海波译)[M].北京:科学出版社, 2002:45~48.
    [8] John S. Evans and Paul W. Huber,.Calculated Radio Attenuation Due to Plasma Sheath on Hypersonic Blunt-Nosed Cone[J]. National Aeronautics and Space Administration,December 1963,Technical Note D-2403.
    [9] Macon C. Ellis,Jr. and Paul W. Huber.Radio Transmission Through the Plasma Sheath Around a Lifting Reentry Vehicle[J]. National Aeronautics and Space Administration, 1961, Technical Note D-507.
    [10] J. S. Evans, C. J. Schexnayder, and P. W. Huber.Computation of Ionization in Re-entry Flow Fields [J]. AIAA, June 1970, Vol.8, No.6:1082~1089.
    [11] J. S. Evans, P. W. Huber and C. J. Schexnayder JR. Comparison of Theoretical and Flight-Measured Ionization in a Blunt Body Re-Entry Flowfield[J].AIAA, June 1971, Vol.9, No.6:1154~1162.
    [12] James P. Ryabak and R. J. Churchill. Progress in Reentry Communications[J]. IEEE, September 1971, Vol.AES-7, No.5:879~894.
    [13] John S. Evans and C. J. Schexnayder JR. Influence of Ablation Impurities on Blunt Body Re-Entry Ionization[J]. AIAA, June 1974, Vol.12, No.6:805~811.
    [14]中国人民解放军总装备部军事训练教材编辑工作委员会.天地通信技术[M].北京:国防工业出版社, 2002:61~82.
    [15] C. R. Mullin, F. H. Mitchell. Comments on“Communication-system blackout during reentry of large vehicles”[J]. Proceedings of the IEEE, 1968, 56(2):203~204.
    [16]杨永常、宗鹏、魏志勇.空间环境对无线电波传播的影响综述[J].航天器环境工程2009, 26(1):26~32.
    [17]焦培南,张忠治.雷达环境与电波传播特性[M].北京:电子工业出版社, 2007:281~286.
    [18] B. Chaudhury, S. Chaturvedi. Three-Dimensional computation of reduction in radar cross section using plasma shielding[J]. IEEE Transactions on Plasma Science, 2005, 33(6):2027~2034.
    [19]庄钊文,袁乃昌,刘少斌.等离子体隐身技术[M].北京:科学出版社, 2005:22~52.
    [20]黄捷.电波大气折射误差修正[M].北京:国防工业出版社, 1999:66~88.
    [21]郑宏兴,葛德彪.广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射[J].物理学报, 2000, 49(9):1702~1705.
    [22] H. Nakano, T. Kawano, Y. Kozono, et al. A fast MOM calculation technique using sinusoidal basis and testing functions for a wire on a dielectric substrate and ites application to meander loop and grid array antennas [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10):3300~3307.
    [23] S. Oqurtsov, S.V . Georgakopoulos. FDTD schemes with minimal numerical dispersion[J]. IEEE Transaction on Advanced Packaging, 2009, 32(1):199~204.
    [24] P. W. Cramer, W. A. Imbriale. Speed up of near-field physical optics scattering calculations by use of the sampling theorem [J]. IEEE Transactions on Magnetics, 1994, 30(15):3156~3159.
    [25] S. Adams, R. Boppana. Finite difference time domain(FDTD) simulations using graphics processors[C]. Dod high performance computing modernization program users group conference, 2007:334~338.
    [26] Andrei B, Petrin. Transnission of Microwaves though Magnetoactive Plasma[J]. IEEE Transaction on Plasma Science, June 2001, 29(3).
    [27] A. Helaly, E. A. Soliman, and A. A. Megahed. Electromagnetic Waves Scattering by Nonuniform Plasma Cylinder[J]. Proc. Inst. Elect. Eng.–H, 1997, 144(2): 61~66.
    [28] I. Pollin. Control of Electron Density Distribution on Hypersonic Vechicle[J]. HDL-TR-1592, April, 1972.
    [29]黄华,瞿章华. 11组元轴对称热化学非平衡流场的数值研究.空气动力学学报, 1999, 17(4):462~465.
    [30]曾明,柳军,瞿章华.载人飞船等离子体鞘电子密度分布的数值计算[J].国防科技大学学报,2001, 23(1):19~22.
    [31] T. C. Lin, L. K. Sproul. Reentry plasma on electromagnetic wave propagation[C]. 26th AIAA plasma dynamics and lasers conference, 1995, San Diego, CA.
    [32] D. E. Mather, J. M. Pasqual, J. P. Sillence. Radio frequency(RF) blackout during hypersonic reentry[C]. 13th AIAA International Space Planes and Hypersonics systems and Technologies, 2005.
    [33] A. Villeneuve. Admittance of waveguide radiating into plasma environment[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(1):115~121.
    [34] S. V. Nazarenko, A. C. Newell, V. E. Zakharov. Communication through plasma sheaths via raman(three-wave) scattering process[J]. American institute of physics, 1994, 1(9):2827~2834.
    [35] T. C. Lin, L. K. Sproul. Reentry plasma effects on electromagnetic wave propagation[C]. 26th AIAA Plasmadynamics and Lasers Conference, 1942.
    [36] H. Jiebin. W. Gang. S. Lilai. SMM analysis of reflection, absorption, and transmission from non-uniform magnetized plasma slab[J]. IEEE Transactions on Plasma Science, 1999, 27(4).
    [37] M. Laroussi. J. R. Roth. Numerical calculation of the reflection, absorption, and transmission of microwaves by a non-uniform plasma slab[J]. IEEE Transaction on Plasma Science, 1993, 21(3):366~372.
    [38] John S. Evans and Paul W. Huber. Calculated Radio Attenuation Due to Plasma Sheath on Hypersonic Blunt-Nosed Cone[J].National Aeronautics and Space Administration. December 1963, Technical Note D-2403.
    [39]赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播[J].地球物理学报,1983,26(1):9~16.
    [40]赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播2[J].地球物理学报, 1985,26(2):117~125.
    [41]徐燕侯,稽震宇,陈宝彦,方璐.再入等离子体鞘层中斜入射平面电磁波的传播特性[J].安徽工学院学报, 1984, 4(13):23~39.
    [42]马兆国,高正平,毕兆亿.高速飞行器再入时微波通过等离子体鞘套的传输特性[J].战术导弹控制技术, 2007,56:1~5.
    [43]马兆国,高正平,饶克谨.导弹再入过程中电磁波传输的研究[J].战术导弹控制技术, 2005,3(50):89~94.
    [44] P. Garg, A. K. Dodiyal. Reducing RF blackout during re-entry of the reusable launch vehicle[C]. IEEE Aerospace conference 2009:1~15.
    [45] A. O. Korotkevich, A. C. Newell, V. E. Zakharov. Communication through plasma sheaths[J]. Journal of Applied Physics, 2007, 102(8):305~314.
    [46] C. Thoma, D. V. Rose, C. L. Miller, et al. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer[J]. Journal of Applied Physics, 2009, 106(4):3301~3308.
    [47] L. Shaobin, L. Qi. Segmental analyse and numerical verification on radar scattering characteristics of reentry capsule[J]. 3rd IEEE International Symposium on Microwave, antenna, propagation and EMC technologies for wireless communication, 2009:947~949.
    [48] J. V. Candy. A parametric approach to radar processing of reentry vehicle signatures[J]. IEEE Antennas and Propagation Society International Symposium, 1999, 3(3)1628~1640.
    [49] G. Ruiting, L. Zheng, Z Shouhong. Analysis of Doppler Features of Spiral Maneuver of Reentry Missile with Time-Frequency Transform[J]. International Conference on Radar, 2006:1-4.
    [50] E. Knott. Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Transactions on Antennas and Propagation, 1969, 17(2):242~244.
    [51] G. Rubin, T. Carney, J. Floyd. H. J. Henderson, et al. Airborne radar measurements of the reentry of the Ariane 5 EPC[C]. IEEE International Radar Conference, 2005:469~473.
    [52] C. Harrison, E. Aronson. On the bistatic scattering cross section of a reentry capsule with ionized wake[J]. IEEE Transaction on Antennas and Propagation, 1969, 17(3):374~376.
    [53]纪霞.感应装定中数据传输技术研究, [硕士学位论文].山西省太原市:中北大学, 2006.
    [54]王希季.航天器进入与返回技术(上)[M].北京:宇航出版社, 1991:20~25.
    [55] William L. Grantham. Reentry plasma measurements using a four-frequency reflectometer. The entry plasma sheath and its effects on space vehicle electromagnetic systems, volume 1, Virginia:Langley Research Center, 1970:69~111.
    [56] J. S. Evans, Paul W. Huber,and C. J. Schexnayder JR. Comparison of Theoretical and Flight-Measured Ionization in a Blunt Body Re-Entry Flowfield[J].AIAA Journal, June 1971,Vol.9,No.6:1154~1162.
    [57]张鲁民等.载人飞船返回舱空气动力学[M].北京:国防工业出版社, 2002:6~9,153~180.
    [58]刘少斌.等离子体覆盖目标的电磁特性及其在隐身技术中的应用,[博士学位论文].湖南:国防科技大学, 2004.
    [59]邵福球.等离子体粒子模拟[M].北京:科学出版社,2002:1~6.
    [60]焦培南,张忠治.雷达环境与电波传播特性[M].北京:电子工业出版社, 2007:281~286.
    [61]杨欢,宗鹏.再入飞船通信环境建模研究[J].航天器环境工程, 2010, 27(5):664~667.
    [62]南英,陈士橹,王志刚.航天器最优再入轨迹的选择分析[J].宇航学报, 1996, 17(4):104~109.
    [63]赵梦熊.载人飞船空气动力学[M].北京:国防工业出版社, 2000:1~5.
    [64]常雨,陈伟芳,罗宁,吴其芬.基于物理光学法的再入等离子体包覆体空间散射特性分析[J].微波学报, 2008, 24(2):1~6.
    [65]黄华,柳军,瞿章华.飞船轴对称热化学非平衡流场数值求解[J].国防科技大学学报, 1999, 21(3):1~4.
    [66]柳军,曾明,瞿章华.飞船再入舱三维化学非平衡流数值模拟[J].国防科技大学学报, 1999, 21(6):9~12.
    [67]张骏,杨华,凌永顺,冯云松.弹道导弹中段弹头表面温度场分布理论分析红外与激光工[J]. 2005, 34(5):582~586
    [68]张小英,朱定强,蔡国飙.中段弹头表面温度及辐射特性的计算研究[J].光学技术, 2009, 35(1):5~9.
    [69] K. Minkwan, M. Keider, D.B. Iain. Electrostatic manipulation of a hypersonic plasma layer: images of the two-dimensional sheath[J]. IEEE Transactions on Plasma Science, 2008, 36(4):1198~1199.
    [70] Pollin I. Control of Electron Density Distribution on Hypersonic Vehicle[J]. HDL-TR-1592, April, 1972.
    [71]吴承康、卞荫贵等.再入通讯可行途径研究[A].空气动力学获奖成果汇编, 1991.
    [72]曾明,林贞彬,冯海涛,瞿章华.高超声速喷管非平衡尺度效应的数值分析[J].推进技术, 2005, 26(1):38~41.
    [73] Park C. Problems of Rate Chemistry in Flight Regime of Aeroassisted Orbital Transfer Vehicles[J]. Progress in Aeronautics and Astronautics, 1985 , 96:511~537.
    [74]邹秀,刘金远,王正汹,宫野,刘悦,王晓钢.磁场中等离子体鞘层的结构[J].物理学报, 2004, 53(10):3409~3412.
    [75]刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离子体中的吸收[J].电子学报, 2003, 31(3):372~375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700