用户名: 密码: 验证码:
等离子体鞘层及尘埃在鞘层中的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在等离子体材料表面改性、合成薄膜及刻蚀等工艺过程中,等离子体和材料表面附近形成的等离子体鞘层的物理特性直接影响被加工材料的性能。鞘层内带电粒子的能量分布、密度分布、鞘层的电位结构以及磁场等都将决定等离子体与材料的相互作用过程。所以对等离子体鞘层的研究具有重要的意义和价值。但等离子体鞘层的研究工作还不够完善,特别是电负性等离子鞘层特性的研究,由于在某些等离子体加工中存在大量的负离子,会对鞘层结构产生很大的影响。另外,带电尘埃粒子广泛存在于宇宙空间、实验室等离子体装置以及微电子工业加工等离子体中,人们对尘埃等离子体或尘埃在等离子体中性质的研究涉及诸多方面,包括尘埃的带电机理,动力学行为,尘埃晶格结构,马赫锥现象,尘埃空洞等,但是其中还有许多问题没有研究清楚。本文针对电负性等离子体鞘层及电负性等离子体中存在紫外辐射时尘埃的充电行为,柱槽状电极的等离子体鞘层及在鞘层中尘埃粒子的分布结构,在磁场作用下等离子体鞘层中单尘埃粒子的动力学行为进行了数值模拟研究,具体内容为:
     (1)综述介绍了等离子体鞘层和尘埃等离子体的基本概念、基本特性及研究意义和发展现状。
     (2)采用流体理论研究了强电负性等离子体的鞘层结构。采用有限轨道运动(OML)模型研究了紫外辐射对尘埃颗粒在电负性硅烷(SiH_4)等离子体中的充电行为的影响。研究结果表明:在等离子体区和鞘层区之间几乎不存在预鞘过渡区,在电极附近形成一个纯正离子鞘层,在鞘边附近鞘层里的空间净电荷形成一个很陡的峰分布,空间电势下降得更快,鞘层厚度变得更薄;光电分离效应将会有效的降低尘埃所带的负电荷数量,甚至会使尘埃颗粒带上正电荷。
     (3)采用柱形槽状电极的流体鞘层模型,数值模拟了二维鞘层特性,并在此基础上,建立了描述尘埃粒子运动的三维动力学模型,研究了尘埃粒子在鞘层中的分布结构。研究结果表明:电极鞘层形成一个势阱,可以束缚尘埃粒子。等离子体密度高时,鞘层薄,反之,鞘层厚;尘埃数目少时,基本形成一层结构,粒子数目多时,形成多层结构;电极尺寸不同时,尘埃粒子形成一些复杂而又有趣的结构。在考虑尾流效应时,发现分布在鞘层中的上层粒子对相对应的下层粒子在轴向分量上有取向一致的吸引作用。
     (4)采用单尘埃粒子模型研究了在磁场作用下等离子体鞘层中尘埃粒子的动力学行为。研究结果表明:尘埃粒子的大小,初始位置,初始速度和磁场都会影响尘埃在等离子体鞘层中的平衡位置和运动状态。对于大小相同的尘埃,不论其初始位置、初始速度如何,最终会在静电力、重力、中性气体碰撞力、离子拖拽力和洛仑兹力的共同作用下平衡于相同的位置。如果尘埃大小超过某一值,它将不会平衡在鞘层中。
     (5)采用一维流体模型,对等离子体源离子注入不同几何形状的靶,不同中性气体气压条件下无碰撞和碰撞鞘层的时空演化进行了数值研究,并研究了鞘层表面处离子注入平均动能和离子注入电流密度等物理量随时间的演化。研究结果表明:对碰撞鞘层,平面靶、球形靶和柱形靶所对应的最终鞘层厚度彼此之间有显著差别,且不同几何形状靶的碰撞鞘层的数值结果与相应解析模型得到的结果符合得很好。
     最后,给出本文研究工作的主要结论及对未来工作的展望。
In the process of plasma material surface modification, synthesis film and etching, theplasma and the physical characteristic of the plasma sheath formed near the surface of thematerials directly affect the capability of the materials processed. Energy and densitydistribution of charged particle in the sheath, potential structure of sheath and magnetic fieldwill all decide the interactive process of plasma and material. Therefore, it is significant andworthy to research the plasma sheath. Meanwhile, the researches on the plasma sheath are notenough, especially the research on the sheath characteristic of the electronegative plasma. Forthe great amount of negative ions that exist in some plasmas' processes have impact on thestructure of the sheath dramatically. In addition, the charged dust particles exist widely inspace, laboratory as well as micro-electronics industry for plasma processes devices. Theresearch on characteristic of the dusty plasma or the dust in the plasma have explaineddifferent aspects, however, there are still many questions remaining unclear. This thesisresearches through simulation on the sheath of the electronegative plasma and the chargebehavior of dust with the ultraviolet radiation in the electronegative plasma, the plasma sheathof the cylindrical concave electrode and the distribution of the dust particles in the sheath, anddynamic behavior of the single dust particle in the plasma sheath within the magnetic field.The contents are:
     Firstly,basic concept and characteristic of plasma sheath and dusty plasmas, significance ofresearch and development actuality are introduced.
     Secondly,sheath structures of strong electronegative plasmas are investigated, using a fluidtheory. The effect of ultraviolet radiation to the charge behavior of dust particles in theelectronegative SiH_4 plasmas has been researched, using the OML model. The result showsthat presheath transition almost does not exist between bulk plasma and sheath and a purepositive ion sheath is formed near the electrode. Furthermore, the net charge has a peak nearthe sheath edge. The faster spatial potential falls, the thinner the sheath thickness becomes.UV photodetachment could significantly lower the dust negative charge and even make dustgrains positively charged under some special conditions.
     Thirdly,a fluid sheath model of a cylindrical concave electrode has been established and itstwo-dimension characteristic has been simulated. Based on that, a three dimensionaldynamics model describing dust particles has been established and their distributions have been studied. The result shows that the potential well formed by the electrode sheath couldscatter the dust particles. The sheath is thin if the density of the plasma is high; on thecontrary, the sheath is thick. One layer structure is formed if the number of the dust is small;while multilayer structure is formed if the number of the dust is large. With variant sizes ofthe electrode, the dust particles then form some complex and interesting structures. Whileconsidering the wake effect, it is found that in the sheath, the particles on the upper level areorientationally consistent to attract their counterparts on the lower level on the axialcomponent.
     Fourthly,dynamics of dust in a plasma sheath with magnetic field is investigated, using asingle particle model. The result shows that radius, original position and velocity of dustparticles and the magnetic field have effect on its movement and equilibrium position in theplasma sheath. The same size dust particles, whatever original velocity and position they have,finally will rest at the same position under the net actions of electrostatic, gravitational,neutral collisional,ion drag and Lorentz forces. But they will not rest in the plasma sheath iftheir radius is beyond certain size.
     Fifthly,the evolution of collisionless and collisional sheaths in different geometries andunder various gas pressures has been numerically studied, using a one-dimensional fluidmodel. Besides that, plots for the average kinetic energy as well as the current density of ionimplantations at the target surface are presented. For the collisional sheath, it is found that thefinal sheath thickness in planar, spherical or cylindrical geometries differs from each othersignificantly. Also, computational results of the collisional sheath in different geometries arein good agreement with those obtained by analytic models.
     Finally, conclusions and the future work are given in the thesis.
引文
[1] Lieberman M A, Lichtenberg A J. in Principles of Plasma Discharges and Materials Processing. Wiley. New York: (1994).
    [2] 马腾才.等离子体物理原理.第一版.合肥:中国科学技术大学出版社,1988年.3-5.
    [3] B.E.格兰特著.马腾才、秦运文译.等离子体物理基础.第一版.北京:原子能出版社,1983年.
    [4] Shaginyan L R, Fendrych F, Jastrabik L et al. films obtained by ECR plasma activated CVD: the role of substrate bias (DC, RF)and some other deposition parameters in growth mechanisms. Surface and Coatings Technology. 1999, 116-119:65-73.
    [5] Larson J M, Swihart M T, Girshick S L. Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond. Diamond and Related Materials. 1999, 8:1863-1874.
    [6] Abdelbasset Hallil, Bernard Despax, Internal r f. plasma parameters correlated with structure and propertied of deposited hydrocarbon films. Thin Solid Films. 2000,358: 30-39.
    [7] Chao Hsun Lin, Hui Lin Chang, Ming Her Tsai et al. Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition. Diamond and Related Materials. 2002,11:922-926.
    [8] Mi Chen, Chieng-Ming Chen, Chia-Fu Chen. Growth of carbon nanotubes by microwave plasma chemical vapor deposition using CH_4 and CO_2 gas mixture. Thin Solid Films. 2002, 420-421:230-234.
    [9] Rangelow I W. Reactive ion etching for high aspect ratio silicon micromachining. Surface and Coatings Technology. 1997, 97:140-150.
    [10] Jung C O, Chi K K, Hwang B Get al. Advanced plasma technology in microelectronics. Thin Solid Films. 1999, 341:112-119.
    [11] Christophe Cardinaud, Marie-Claude Peignon, Pierre-Yves Yessier. Plasma etching: Principles, mechanisms, application to micro-and nano-technologies. Applied Surface Science. 2000, 164:72-83.
    [12] John Feldsien, Doosik Kim, Demetre J. Economou. SiO_2 etching in inductively coupled C_2F_6 plasmas: surface chemistry and two-dimensional simulations. Thin Solid Films. 2000, 374:311-325.
    [13] Nishikawa K, Ootera H, Tomohisa Set al. Transport mechanisms of ions and neutrals low-pressure, high-density plasma etching of high aspect ratio contact holes. Thin Solid Films. 2000, 374:190-207.
    [14] Paul A. K, Dimri A. K, Bajpai R. P. Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application. Vacuum. 2003, 68:191-196
    [15] Irving Langmuir. The interaction of electron and positive ion space charges in cathode. Physics Review. 1929, 33:954-989.
    
    [16] Schneider F and Angew Z. Phys. 1954 ,6:456-462.
    
    [17] Amemiya H. Plasmas with negative ions-probe measurements and charge equilibrium. Journal of Physics D: Applied Physics. 1990, 23:999-1014.
    
    [18] Cooney J L, Aossey D W, Williams J E et al. Scheller A Lonngren K. E. Capacitive RF discharge modelled by particle-in-cell Monte Carlo simulation. II. Comparisons with laboratory measurements of electron energy distribution functions. Plasma Sources Science and Technology. 1993, 2:273-278.
    
    [19] Fernandez J I, Palop, Ballesteros J, Colomer V et al. Sheath structure in a plane probe immersed in an electronegative plasma. Journal of Applied Physics.1995, 77: 2937-2944.
    
    [20] Fernandez J I, Palop Colomer V, Ballesteros J et al. Theoretical aspects of the metal-electronegative plasma interface. Surface and Coatings Technology. 1996, 84: 341-347.
    
    [21] Amemiya H, Annaratone B M, Allen J E. The double sheath associated with electron emission into a plasma containing negative ions. Journal of Applied Physics. 1998, 60: 81-93.
    
    [22] Ming Li, Michael A. Vyvoda, Steven K Dew et al. Sheath structure of an electronegative plasma with cold positive ions. IEEE Transactions on Plasma Science. 2000, 28:248-252.
    
    [23] Braithwaite N S L and Allen J E. Plasmas with negative ions-probe measurements and charge equilibrium. J. Phys. D. 1990, 23:999-1002.
    
    [24] Kono A. Negative ions in processing plasmas and their effect on the plasma structure. Applied Surface Science. 2002,192:115-134.
    
    [25] Franklin R N. The plasma-wall boundary region in negative-ion-dominated plasmas at low pressures. Plasma Source Sci. Technol. 2000, 9:191-198.
    
    [26] WANG Zheng-Xiong, LIU Jin-yuan, Zou Xiu, Liu Yue et al. Sheath Structure of an Electronegative Plasma. Chinese Physics letters. 2003, 20:1537-1539.
    
    [27] Amemiya. Diagnostics of negative ions using probe and laser in plasmas (oxygen discharge), Vacuum. 2000 58:100-116.
    
    [28] Wang W C, Andrey K B, and Xu Y.Observations of H3- and D3- from dielectric barrier discharge plasmas. Chem. Phys. Let. 2003 ,377:512-518.
    
    [29] Mishra M K, Arora A K, Chhabra R S. Ion-acoustic compressive and rarefactive double layers in a warm multicomponent plasma with negative ions. Physical Review E. 2002, 66: 046402
    
    [30] Ryuta Ichiki, Shinji Yoshimura, Yoshinobu Kawai. Experimental observation of dominant propagation of the ion-acoustic slow mode in a negative ion plasma and its application. Physics of Plasmas. 2002, 9:4481-4487.
    [31] Mamun A A and Shukla P K. Charging of dust grains in a plasma with negative ions . Phys. Plasmas 10 1518 2003
    
    [32] Djebli M. Charge evolution in dusty plasma expansion with negative ions. Phys. Plasmas 2003,10(12):4910-4912.
    
    [33] Ostrikov K, Denysenko I B, Vladimirov S V et al. Low-pressure diffusion equilibrium of electronegative complex plasmas. Phys. Rev. E. 2003,67:056408
    
    [34] Conrad J R, Radtke J L, Dodd R A et al. Plasma Source Ion Implantation Technique for Surface Modification of Materials. J. Appl. Phys. 1987, 62(11):4591-4600.
    [35] Conrad J R, Dodd R A, Han S et al. Ion Beam Assisted Coating and Surface Modification with Plasma Source Ion Implantation. J. Vac. Sci. Technol. 1990, A(8):3146-3151.
    [36] Lieberman M. A. Model of Plasma Immersion Ion Implantation. J. Appl. Phys. 1989, 66:2926-2932.
    
    [37] Scheuer J T, Shamim M, and Conrad J R. Model of Plasma Source Ion Implantation in Planer, Cylindrical and Spherical Geometries. J. Appl. Phys. 1990, 67:1241-1248.
    [38] Emmert G. A and Henry M A. Numerical Simulation of Plasma Sheath Expansion, with Applications to Plasma-Source Ion Implantation. J. Appl. Phys.1992,71:113-117.
    [39] Kim H J. Multi-ion species model with initial presheath profile for plasma source ion implantation, Surface and Coatings Technology. 1999, 112:318-323.
    
    [40] Sun Qi, Ma Xinxin and Xia Lifang. Effect of pulse waveform on plasma sheath expansion in plasma-based ion implantation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2000,170:397-405.
    [41] Sheridan T E. Transient sheath in a cylindrical bore for finite-rise-time voltage pulses. Sur Coat Technol, Surface and Coating Technology. 1996, 85:204-208.
    [42]李芳.尘埃等离子体物理.物理,1994,23:518-521.
    
    [43] Robert N Carlile , Sam Geha. Physical properties of contamination particle traps in a process plasma. Journal of Applied Physics. 1993, 73:4785-4793.
    
    [44] Jellum G M, Graves D B. Particle-plasma interactions in low-pressure discharges. Applied Physics Letters. 1990, 57:2077-2079.
    
    [45] Watanable Y, Shiratani M, Yamashita M. Observation of growing kinetics of particles in a helium-diluted silane rf plasma. Applied Physics Letters. 1992, 61:1510-1512.
    [46] Boufendi L, Plain A, Blondeau J Ph., Bouchoule A et al. Measurements of particle size kinetics from nanometer to micrometer scale in a low-pressure argon-si lane radio-frequency discharge. Applied Physics Letters. 1992, 60:169-171.
    
    [47]Merlino R L, Goree, John A. Dusty Plasmas in the Laboratory, Industry, and Space.Phys. Today, 2004, 57(7) :32-38
    
    [48] Selwyn G S, Singh J, Bennett R S. In situ laser diagnostic studies of plasma-generated particulate contamination, J. Vac. Sci. Technol. 1989, A(7): 2758-2764.
    [49] Roth R M , Spears K G , Stein G D et al. Spatial dependence of particle light scattering in an rf silane discharge .Appl. Phys Lett. 1985, 46:253-255.
    
    [50] Rao N N, Shukla P K, Yu M Y. Dust-acoustic waves in dusty plasmas Planet. Space Sci. 1990, 38:543-550.
    
    [51] Barkan A, Merlino R L.Confinement of dust particles in a double layer Phys. Plasmas. 1995,2:3563-3572.
    
    [52] Ikezi H. Coulomb solid of small particles in plasmas. Physics of Fluids. 1986, 29: 1764-1766.
    
    [53] Chu J H , Lin I. Direct Observation of Coulomb Crystals and Liquids in Strongly Coupled rf Dusty Plasmas. Physical Review Letters. 1994, 20:4009-4012.
    
    [54] Thomas H, Morfill G E, Demmel V et al. Plasma Crystal: Coulomb Crystallization in a Dusty Plasma. Physical Review Letters. 1994,73:652-669.
    
    [55] Sergey V. Vladimirov, Mitsuhiro Nambu. Attraction of charged particulates in plasma with finite flows. Physical Review E. 1995, 52:R2172
    
    [56]SergeyV Vladimirov, Osamu Ishihara. On plasma crystal formation. Physica of Plasmas. 1996, 3:444-446.
    
    [57] Shukla P K, Rao N N. Coulomb crystallization in colloidal plasmas with streaming ions and dust grains. Physics of Plasmas. 1996, 3:1770-1772.
    
    [58] Ying-Ju, Lin I. Packings and defects of strongly coupled two-dimensional Coulomb clusters: Nmuerical simulation. Physical Review E. 1999, 60:4743-4753.
    
    [59] Klindworth M, Melzer A, Piel A et al. Laser-excited rotation of finite Coulomb clusters in a dusty plasma, Physical Review B. 2000, 61:8404-8410.
    
    [60]Hiroo Totsuji, Chieko Totsuji, Kenji Tsuruta. Structure of finite two-dimensionalYukawa lattices: Dust crystals. Physical Review E. 2001, 64:066402
    
    [61] Kenichi Nagaoka, Atsushi Okamoto, Shinji Yoshimura et al. Spontaneous Formation of a Plasma Hole in a Rotating Magnetized Plasma: A Giant Burgers Vortex in a Compressible Fluid. Physical Review Letters. 2002, 89:075001
    
    [62] Konopka U, Samsonov D, Ivlev A. V et al. Rigid and differential plasma crystal rotation induced by magnetic fields. Physical Review E. 2000, 61:1890-1898.
    
    [63] Huang Feng, YE Mao-Fu, WANG Long et al. Voids in an Experimental Dusty plasma system. Chinese Physics Letters. 2004, 21:121-124.
    
    [64] Hou Lu-Jing, Wang You-Nian, Miskovic Z L. Formation and rotation of two-dimensional coulomb crystals in magnetized comples plasma. Physics of Plasmas. 2005, 12:042104.
    
    [65] Liu Jin Yuan, Wang Dezhen, Ma T C. The charged dust in processing plasma sheath. Vacuum. 2000, 59:126-134.
    
    [66] Tskhakaya D D, Shukla P K, Subba F Behaviour et al. of a dust cloud in the plasma sheath adjacent to a conducting wall. Physics Letters A. 2002, 302:190-195.
    [67] Tskhakaya D, Kuhn S, Petrzilka V Eff et al. ects of energetic electrons on magnetized electrostatic plasma sheaths. Physics of plasmas. 2002, 9:2486-2496.
    [68] Whipple, E.c. Potentials of surfaces in space, Rep. Ptog. Phys, 1981,44:1197-1205.
    [69] Goretz, C K, and IP, W H. limititation of eleetrostatic charging of dust particles in a plasma. J. Geophys. Res. 1984, 1(1): 349-352.
    [70] Mdrtin Lampe, Valeriy Gavrishchaka, Gurudas Ganguli et al. Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma Phys. Rev Lett, 2001,86:5278-5282.
    [71] Martin Lampe. Trapped ion effect on shielding, current flow, and charging of a small object in a plasma. Phys. Plasmas. 2003,10:1500-1507.
    [72] Homann A, Melzer A, Peters S et al. Determination of the dust screening length by laser-excited lattice waves, Phys. Rev E. 1997, 56:7138-7146.
    [73] Konopka U, Morfill G E, Ratke L. Three-Dimensional Strongly Coupled Plasma Crystal under Gravity Conditions. Phys. Rev. Lett. 2000,84:891-901.
    [74] Liu J Y, Wang D Z ,Ma T C et al , The trap of particles in plasma sheath .Phys. Plasmas 1999,6:1405-1408.
    [75] Schollmeyer H, Melzer A, Homann A et al. Dust - dust and dust-plasma interactions of monolayer plasma crystals. Phys. Plasmas. 1999, 6:2693-2701.
    [76] Ivlev A V, Sutterlin R, Steinberg V et al. Nonlinear Vertical Oscillations of a Particle in a Sheath of a rf Discharge. Phys. Lett. Rev. 2000, 85:4060-4675.
    [77] Zafiu C, Melzer A and Piel A. Nonlinear resonances of particles in a dusty plasma sheath, Phys. Rev. 2000, E (63): 066403
    [78] Sorasio G, Resendes D P, and Shukla P K. Instability of shear waves in a nonuniform dusty Phys. plasma. 2002, A (293): 67-75.
    [79] Resendes D P, Sorasio G, and Shukla P K. Self Consistent Langevin Model of Particle Temperature in Plasma Sheaths, Phys. Lett .Plasmas. 2002, 9:2988-3001.
    [80] Wang Y N, Hou L J, X Wang. Self-Consistent Nonlinear Resonance and Hysteresis of a Charged Microparticle in a rf Sheath Phys. Rev. Lett. 2002, 89: 155001.
    [81] 侯璐景,王友年.尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究,物理学报.2003.52:434-442.
    [82] Uchida G, Ozaki R and Iizuka Set al. in Proceedings of International Congress on Plasma, edited by P. Pavlo (European PhysicaiSociety, Prague, 1998), pp. 2557-2560.
    [83] Sato N, Uchida G and Kaneko T et al. Dynamics of fine particles in magnetized plasmas, Phys. Plasmas. 2001, 8:1786-1793.
    [84] Cheung F M H, Prior N J and Mitchell L Wet al. Rotation of Coulomb crystals in a magnetized inductively coupled complex plasma, IEEE Trans. Plasma Sci. 2003, 31:I12 -120.
    [85] Cheung F M H, Samarian A A and JamesThe B W. rotation of planar-2 to planar-12 dust clusters in an axial magnetic field. New J. Phys. 2003,5:75-83.
    [86] Kaw P K, Nishikawa K and Sato N. Rotation in collisional strongly coupled dusty plasmas in a magnetic field, Phys. Plasmas, 2002,9: 387-392.
    
    [87] Osamu Ishihara and Vladimiov S V, Phys. Wake potential of a dust grain in a plasma with ion flow , Plasmas .1986,4:69-75.
    
    [88] Winske D, Daughton W, Lemons D S et al. Molecular dynamics simulations of plasma crystal formationincluding wake effects. Phys. Plasmas. 2000, 7:2320-2328.
    
    [89] Lemons D. S, Murillo, Daughton W et al. Dust wake in a collisional plasma, Phys. Plasmas .2000,7:2306-2311.
    
    [90] Hou Lu Jing, Wang You Nian , Miskovic Z L. wake effects on vertical alignment od two dust particles in a rf plasma sheath , Phys. Lett. 2001, A (292):129-132.
    
    [91] Hebner G A, Riley M E, and Greenberg K E. Analysis of the particle interactions in a two-dimensional-plasma dust crystal and the use of dust as a probe of the time-averaged presheath electric field. Phys. Rev. 2002, E (66):046407.
    
    [92] Vivek Vyas, Gregory A Hebner and Mark J. KushnerSelf-consistent three-dimensional model of dust particle transport and formation of Coulomb crystals in plasma processing reactors J. Appl. Phys. 2002, 92:6451-6459.
    
    [93] Wang X G, Wang Z X, Wang C H et al. Guo B Radial and zonal modes in hyperfine-scale stellarator turbulence, Physics of Plasmas .2002,9:4103-4111.
    
    [94] Kazuo Takahashi, Tomoko Oishi, Ken-ichi Shimomai et al. Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations . Phys. Rev . 1998, E (58):7805-7811.
    
    [95] Chen F F. Introduction to Plasma Physics (New York, Plenum, 1974) Chap. 8 [96] Liu J Y, Wang Z X, and Wang X G. Sheath Structure of an Electronegative Plasma Phys. Plasmas. 2003, 10:3507-3511.
    
    [97] Lapenta G. Dipole Moments on Dust Particles Immersed in Anisotropic Plasmas , Phys. Rev. Lett.1995, 75:4409-4412.
    
    [98] Sun A P, Geng M and Qiu X M. Ion transport in glow discharges with dust, J. Plasma Phys. 2000, 64:263-272.
    
    [99]Samarian A A and Vladimirov S V. Charge of a macroscopic particle in a plasma sheath, Phys. Rev. 2003, E (67) 066404..
    
    [100] Xie B S, He K F,Huang Z Q et al. Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and two-temperature ions. Phys. Plasmas. 1999, 6(10):3808-3816.
    
    [101] Li Y F, Ma J X, and Li J J . Dust - ion - acoustic soliton in an inhomogeneous collisional plasma , Phys. Plasmas. 2004, 11:1366-1372.
    
    [102] Lizuka S, Okazi M, and Gohda T. Levitation of positively charged fine particles in a cross-field sheath between magnetized double plasmas, Phys. Plasmas. 2004 ,11(L5)
    [103] Thomas H M and Morfill G E. Melting dynamics of a plasma crystal J. Vac. Sci. Technol.1996, A(14):501-508.
    
    [104]Schweigert V, Schweigert A I, Melzer V A et al. Plasma Crystal Melting: A Nonequilibrium Phase Transition, Phys. Rev. Lett.1998, 80:5345-5348.
    
    [105] Ishihara O, Vladimirov S V, and Cramer N F. Effect of a dipole moment on the wake potential of a dust grain in a flowing plasma, Phys. Rev. 2000, E (61):7246-7248.
    
    [106] Hou L J, Wang Y N, and Miskovic Z L. Induced potential of a dust particle in a collisional radio-frequency sheath, Phys. Rev. 2003, E (68): 016410.
    
    [107] Goree J. Charging of particles in a plasma. Plamsa Sources Sci. Technol. 1994,3: 400-406.
    
    [108] Shukla P K and Mamun A A . Introduction to Dusty Plasma Physics, (IoP, Bristol) 2002 Chap 2.
    
    [109]Chow V W, Mendis D A and Romberg M . Secondary emission from small dust grains at high electron energies, IEEE. Trans. Plasma Sci. 1994, 22:179-186.
    
    [110] Rosenberg M and Mendis D A. UV-induced Coulomb crystallization in a dusty gas, IEEE Trans. Plasma Sci. 1995, 23:177-179. Rosenberg M and Shukla P K. On beam-plasma interaction in a dust-electron plasma, IEEE Trans. Plasma Sci. 2001,29:202-207.
    
    [111]Ostrikov K, Yu M Y, and Stenflo L. On equilibrium states and dust charging in dusty plasmas, IEEE Trans. Plasma Sci. 2001, 29:175-178.
    
    [112] Tsytovich V N, Nefedov A P, Fortov V E et al. Effects of ultraviolet radiation on dusty plasma structures at microgravity, Phys. Plasmas .2003,10:2633-2642.
    
    [113] Delzanno G L, Lapenta G, and Rosenberg M. Attractive Potential around a Thermionically Emitting Microparticle Phys. Rev. Lett. 2004, 92:035002.
    
    [114]Boufendi L, Bouchoule A. Industrial developments of scientific insights in dusty plasmas, Plasma Sources Sci. Technol. 2002, 11:A211.
    
    [115]Takai M, Nishimoto T, Kondo M et al. Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma, Appl. Phys. Lett. 2000, 77:2828-2830.
    
    [116]Denysenko I B, Ostrikov K, Xu S et al. Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas, J. Appl. Phys. 2003, 94:6097-6107.
    
    [117] Kortshagen U and Bhandarkar U. Modeling of particulate coagulation in low pressure plasmas , Phys. Rev. E. 1999, 60:887-898.
    
    [118]Boufendi L , Bouchoule A. Particle nucleation and growth in a low-pressure argon-silane discharge, Plasma Sources Sci. Technol. 1994, 3:262-270.
    
    [119] Lieberman M A. Analytical solution for capacitive RF sheath IEEE Trans. Plasma Sci. 1988,16: 638-645.
    [120] Lieberman M A. Dynamics of a collisional, capacitive RF sheathIEEE Trans. Plasma Sci. 1989,17:338-392.
    
    [121] Godyak V A, Piejak R. B and Sternberg N. A comparison of RF electrode sheath models IEEE Trans. Plasma Sci. 1993,21:378-382.
    
    [122] Gierling J , Riemann K-U. Comparison of a consistent theory of radio frequency sheaths with step models, J. Appl. Phys. 1998,83:3521-3533.
    
    [123] Edelberg E A and Aydil E S. Modeling of the sheath and the energy distribution of ions bombarding rf-biased substrates in high density plasma reactors and comparison to experimental measurements, J. Appl. Phys. 1999, 86:4799-4802.
    
    [124] Qiu H T, Wang Y N, Ma T C. Collisional effects on the radio-frequency sheath dynamics , J. Appl. Phys. 2001, 90:5884-5891.
    
    [125] Dai Z L , Wang Y N. Simulations of ion transport in a collisional radio-frequency plasma sheath, Phys. Rev. 2004, E (69): 036403.
    
    [126] Hayashi Y, Tachibana K. Observation of Coulomb-Crystal Formation from Carbon Particles Grown in a Methane Plasma, Jpn. J. Appl. Phys. 1994, 33: L804.
    
    [127] Melzer A, Trottenberg, T and Piel A. Experimental determination of the charge on dust particles forming Coulomb lattices .Phys. Lett. 1994,A (191):301-309.
    
    [128] Dahiya R P, Paeva G V , Stoffels W W et al. Evolution of a Dust Void in a Radio-Frequency Plasma Sheath, Phys. Rev. lett. 2002,89:125001.
    
    [129] Liu J Y, Wang Z X, Wang X G et al. The Bohm criterion for the dusty plasma sheath. Phys. Plasmas. 2003, 10:3507-3512.
    
    [130] Hebner G A., Riley M E and Johnson D S et al. Direct Determination of Particle-Particle Interactions in a 2D Plasma Dust Crystal. Lett. Phys. Rev.2001, 87: 235001.
    
    [131] Whipple E C, Northrop T G and Mendis D A. The electrostatics of a dusty plasma, J. Geophys. Res. 90, 7405 (1985); H. L. F. Houpis and E. C. Whipple, Electrostatic charge on a dust size distribution in a plasma, J. Geophys. Res. 1987 92:12057.
    
    [132] Melzer A, Schweigert V A and Piel A. Transition from Attractive to Repulsive Forces between Dust Molecules in a Plasma Sheath. Phys. Rev. Lett. 1999, 83:3194-3201.
    
    [133] Kim D and Economou D J. Plasma molding over surface topography: Simulation of ion flow, and energy and angular distributions over steps in RF high-density plasmas, IEEE Trans. Plasma Sci. 2002, 30(5):2048-2058.
    
    [134] Kilgore M D, Daugherty J E, Porteous R K et al. Ion drag on an isolated particulate in a low-pressure discharge. J. Appl. Phys. 1993, 73:7195-7201.
    
    [135] Liu JinYuan, Wang Dezhen, Ma T C.The charged dust in processing plasma sheath. Vacuum. 2000, 59:126-134.
    
    [136] Liu JinYuan, Ma J X. Effects of Various forces on the distribution of particles at the boundary of a dusty plasma. Physics of Plasmas. 1997, 4:2798-2804.
    [137] Wang Z X, Wang X G, Liu J Y et al. Dynamics of dust in the sheath of weakly electronegative plasmas. J. Appl. Phys. 2005, 97:023302.
    [138] 刘德泳,王德真,刘金远.尘埃粒子在直流辉光放电阴极鞘层中的运动及悬浮.物理学报,2000,49:1094-1097.
    [139] Wang Z X, Liu J Y, Liu Y et al. The electrostatic sheath in an electronegative dusty plasma. Phys. Plasmas. 2005, 12:012104.
    [140] Ma Jin Xiu, Yu M Y. Electrostatic sheath at the boundary of a dusty plasma. Physics of Plasmas. 1995,2:P1343-1348.
    [141] Niemann K- U. Theory of the collisional presheath in an oblique magnetic field. Physics of Plasmas. 1994, 1:552-558.
    [142] Stangeby P C. The Bohm-Chodura plasma sheath criterion. Physics of Plasmas. 1995, 2(3):702-706.
    [143] Ahedo E. Structure of the plasma-wall interaction in an oblique magnetic field. Physics of Plasmas. 1997, 4(12):4419-4430.
    [144] Baishya S K, Das G C, Joyanti Chutia et al. Electrostatic sheath at the boundary of a magnetized dusty Plasma. Physics of Plasmas. 1999, 6:3678-3684.
    [145] Fabrice Valsaque, Giovanni Manfredi. Numerical study of plasma-wall transition in an oblique magnetic field. Journal of Nuclear Materials. 2001, 290-293:763-767
    [146] Bornali Singha, Sarma A, Joyanti Chutia. Expermental observation of sheath and magnetic presheath over an oblique metallic plate in the presence of a magnetic field. Physics of Plasmas. 2002, 9:683-690.
    [147] Sheridan T E, Goree J. Collisional plasma sheath model. Physics of Fluids B. 1991, 3:2796-2804.
    [148] Holland D L, Fried B D, Morales G J. Sheath structure in a magnetized plasma. Physics of Fluids B. 1993, 5:1723-1737.
    [149] Chodura R. Plasma-wall transition in an oblique magnetic field. Physics of Fluids. 1982, 25(9):1628-1633.
    [150] DeWald A B, Bailey A W. Trajectories of charged particles traversing a plasma sheath in an oblique magnetic field. Physics of Fluids. 1987, 30:267-269.
    [151] Zou Xiu, Liu JinYuan, Gong Ye et al. Plzama sheath in a magnetic field, acuum, 2004,73:681-685.
    [152] ZOU Xiu, LIU JinYuan, WANG ZhengXiong et al. Electronegative Plazma sheath Structure in a magnetic field. Chinese Physics Letter. 2004,21:1572-1574.
    [153] 邹秀,刘金远,王正汹.磁场中等离子体鞘层的结构,物理学报,2004,53:3409-3412.
    [154] Briehl B and Urbassek H M. Simulation of Sheath and Presheath Dynamics in PⅢ. Surface and Coatings Technol. 2002,156:131-139.
    [155] Widner M, Alexeff I, Jones W. D et al. Ion Acoustic Wave Excitation and Ion Sheath Evolution. Phys. Fluids. 1970, 13:2532-2540.
    [156] Vahedi V, Liberman M A, Alves M V et al. A one-Dimensional Collisional Model for Plasma-Immersion Ion Implantation. J. Appl. Phys. 1991,69:2008-2015.
    [157] Qin S, ChanC, McGruer N E et al. The Response of a Microwave Multipolar Bucket Plasma to a High-Voltage Pulse. IEEE Trans. Plasma Sci. 1991, PS-19:1272-1280.
    [158] Qin S and Chan C. The Response of a Microwave Multipolar Bucket Plasma to a High-Voltage Pulse with Finite Rise Time. IEEE Trans. Plasma Sci. 1992, PS-20:569-576.
    [159] Lieberman M A. Spherical Shell Model of an Asymmetric rf Discharge. J. Appl. Phys. 1989, 65:4186-4192.
    [160] Wang D Z, Ma T C and Deng X L. Model of Collisional Sheath Evolution in Plasma Source Ion Implantation. 5. Appl. Phys. 1993, 74:2986-2992.
    [161] Sheridan T E and Ooeckner M J. Collisional Sheath Dynamics. Appl J. Phys. 1995, 77:4967-4973.
    [162] Jurgensen C W and Shaqfeh E S G. Nonlocal Transport Model of the Self-Consistent Potential Distribution in a Plasma Sheath with Charge Transfer Collisions. J. Appl. Phys. 1988, 64:6200-6208.
    [163] 宫野.计算物理.大连:大连理工大学出版社,1987:128-134.
    [164] 宋远红,宫野,王德真.等离子体源离子注入鞘层随时空演化的数值模拟。计算物理.1995,12(4):528-535.
    [165] Shamim M, Scheuer J T, and Conrad J R. Measurements of Spatial and Temporal Sheath Evolution for Spherical and Cylindrical Geometries in Plasma Source Ion Implantation. Appl J. Phys. 1991,69:2904-2910.
    [166] McDaniel E W. and Mason E. The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).
    [167] Wang D Z., Yu J and Gong Y. Model of Collisional Sheath in Spherical and Cylindrical Geometries for Plasma Source Ion Implantation. Chin. Phys. Lett. 1996, 13:117-122.
    [168] Skorik M A and Hershkowitz N. Plasma Sheaths near a Negatively Step Biased Electrode-Dynamic Behavior for Planar and Spherical Geometry. Phys. Plasmas. 1994, 1: 1338-1344.
    [169] 候璐景.射频鞘层中尘埃颗粒运动过程及库仑晶格形成机理的研究:(博士学位论文).辽宁:大连理工大学,2005.
    [170] J. B. Pieper, J. Goree, O. A. Quinn. Three-dimensinal structure in a crystalIized dusty plasma. Physical Review E, 1996, 54:5636-5640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700