用户名: 密码: 验证码:
重庆市长寿区城市河岸生态修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃花溪系长江左岸的一条支流,流经重庆市长寿区城区,由于工业废水和居民生活污水的排放,桃花溪面临水环境污染和水土流失日趋严重的状况,河流两岸的生态护岸对生态环境的改善具有重要作用。为探讨城市河流生态护岸技术的重要性及其应用的效果,本论文依托国家林业局“948”项目“城市河流生态系统的森林生物工程修复技术引进(2007-4-14)”,在桃花溪河岸进行河岸生态修复技术研究,以期为我国城市河流生态修复建设提供理论基础及科学依据。
     研究内容主要包括河流生态护岸理论与技术、岸坡土壤理化特征、岸坡土壤抗蚀性、岸坡土壤抗剪性、岸坡植被特征、桃花溪河岸生态修复效果综合评价、人工湿地护岸装置的设计和填料的筛选等,主要研究成果如下:
     将国内外先进的河岸修复技术与我国生态河岸建设理念相结合,设计了适合我国的护岸措施,并将护岸方案在桃花溪的重庆市长寿区段进行实施。
     采用野外调查结合室内试验的方法对重庆市长寿区桃花溪生态护岸应用后的效果进行了研究。在总体群落中,植被护岸的植物生长最好,物种丰富,分布较均匀,物种多样性指数较高。岸坡土体抗剪强度,植被护岸(68.6kPa)>天然织物垫护岸(68.0kPa)>天然织物扁袋护岸(57.7kPa)>对照岸坡(40.6kPa)。各系列护岸技术对土壤的改良作用整体以植被护岸措施最优,天然织物垫护岸稍差,天然织物垫护岸与植被护岸的土壤微团聚体水稳定性明显优于天然织物扁袋护岸与对照岸坡,其对土壤结构的改善效果最为明显。各护岸类型抗蚀性综合得分分别为:植被护岸(-5.69)>天然织物垫护岸(-6.31)>天然织物扁袋护岸(-12.97)>对照岸坡(-15.00)。不同护岸类型,均不同程度的增强了河道岸坡土壤的抗蚀性,植被护岸与天然织物垫护岸对土壤抗蚀性的影响明显大于天然织物扁袋护岸和对照岸坡。
     采用层次分析法对重庆市长寿区桃花溪各生态护岸模式的生态修复效果进行分析。各护岸类型生态修复效果的量化指标介于0.709—0.928之间,其排列顺序为:植被护岸(0.928)>天然织物垫护岸(0.874)>天然织物扁袋护岸(0.819)>对照岸坡(0.709)。各护岸类型的生态修复效果均好于对照岸坡,以植被护岸的修复效果最好,天然织物垫护岸和天然织物扁袋护岸效果次之。
     设计出具有防护岸坡、净水和景观等功能的人工湿地护岸装置,通过室内试验的方法,研究了不同条件下填料对污染物质的吸附效果,沸石、圆陶粒、页岩、砾石和粗砂这五种填料对污染物质氨氮和TP的吸附量均随着吸附时间的增长而增加,达到吸附量最大值后,吸附量趋于稳定或略有下降。在10℃—25℃的温度范围内,温度对试验的五种填料的吸附氨氮的影响不大;圆陶粒、页岩、砾石和粗砂对TP的吸附量都是随温度升高而增大,温度高不利于沸石对TP的吸附。沸石对氨氮的吸附在酸性条件下有利,沸石去除氨氮的效果在pH值在6-7的范围最好;圆陶粒在pH值为6-10的范围对氨氮具有较好的净化效果。在碱性条件下五种填料对TP的去除效果优于酸性条件下的去除效果。研究了利用人工湿地护岸装置净化污水的填料选择与配比方案,方案1、5、7对NH3-N和TN的去除率都较高,均达到40%以上,建议在净化NH3-N和TN为主要污染物的污水时,使用以上的配比方案;方案2、5对CODcr的去除率在50%左右,当污水主要成分为CODcr时,可以应用方案2和5的配比比例;方案5对各种污染物质的去除率都较高,是比较理想的配比填料组合方案。并获得一项专利。
     本文对城市河流生态护岸技术的研究,丰富了河流生态系统的研究内容,为城市生态河流系统的构建和可持续管理提供了科学依据。
Taohuaxi River line the left bank of a tributary of the Yangtze River, flows through the Changshou District. Water pollution and soil erosion of Taohuaxi River facing the increasingly serious situation due to industrial waste water and living sewage discharge. Both sides of the river bank protection of ecological environment of the improvement has an important role. To explore the ecology of urban river bank protection the importance of technology and its application of the results, this paper relies on the State Forestry Administration, "948" project, "urban river ecosystem restoration of forest biological engineering technology introduction (2007-4-14)" in Taohuaxi riparian restoration techniques for riparian ecosystem research, with a view to build ecological restoration of urban rivers and provide a theoretical foundation and scientific basis.
     The study includes the theory and technology of river ecosystem revetment, bank soil physical and chemical characteristics of slope soil corrosion resistance, shear resistance of soil slope, bank vegetation, Taohuaxi River comprehensive evaluation of effects of riparian ecosystem restoration, wetland bank protection device design and screening of such fillers, the main findings are as follows:
     Riparian restoration will be advanced technology and our philosophy of combining ecological riparian building designed for our bank protection measures, and bank protection program was implemented in Taohuaxi River the Chongqing section
     Combination of laboratory tests using field survey methods for ecological revetment applications of Taohuaxi River in Changshou were studied after the effect. Communities in general, vegetation revetment of the best plant growth, species richness, more uniform distribution, species diversity index is higher. Shear strength of soil slope, vegetation revetment (68.6kPa)> Natural fabric mat revetment (68.0kPa)> Natural fabric flat bag revetment (57.7kPa)> control slope (40.6kPa). The series of bank protection techniques for soil improvement role in the overall best bank protection measures to vegetation, revetment mat somewhat less natural fabrics, natural fabrics and vegetation revetment mat of soil micro-aggregate water stability was significantly better than the natural bank protection and control fabric flat bag shore slope, and its effect on soil structure improvement is most obvious. Corrosion resistance of the revetment type composite score was:vegetation revetment (-5.69)> Natural fabric mat revetment (-6.31)> Natural fabric flat bag revetment (-12.97)> control slope (-15.00). Different revetment types are different levels of the river bank slope to enhance the corrosion resistance of soil, vegetation and natural fabric revetment mat corrosion resistance of the soil was significantly greater than the natural bank protection and control fabric flat bag Slope.
     The ecological revetment model of Taohuaxi River was analyzed of the effects of ecological restoration by the A HP in Changshou. The revetment types of quantitative indicators of ecological restoration effects range between 0.709-0.928, and the order of:vegetation revetment (0.928)> revetment mat of natural fabrics (0.874)> Natural fabric flat bag revetment (0.819)> control slope (0.709). The revetment types of ecological restoration effects are better than the control slope, vegetation revetment repair with the best, natural fabrics and natural fabric pad flat bag revetment effect followed.
     Designed with protection slope, water and landscape features such as wetlands bank protection device, the method by laboratory tests to study the filler under different conditions of adsorption of pollutants, zeolite, round ceramic, shale, gravel and coarse sand filling of the five pollutants and ammonia nitrogen adsorption volume with the TP adsorption increases with time, reaching the maximum adsorption capacity, the adsorption stabilized or declined slightly. At 10℃-25℃temperature range, the temperature of the test five filler little effect on the adsorption of ammonia; round ceramic, shale, gravel and coarse sand of TP adsorption increased with increasing temperature are, high temperature is not conducive to zeolite adsorption of TP. Zeolite adsorption of ammonia under acidic conditions favorable, the effect of zeolite to remove ammonia in the pH range of 6-7 is best; round ceramic range of pH 6-10 with a better purification of ammonia effect. Five kinds of filler in the alkaline conditions better than the TP removal removal under acidic conditions. Studied the use of artificial wetlands bank protection device selection and purification of waste water filling ratio, program 1,5,7 of NH3-N and TN removal rate are high, more than 40% are recommended in the purification of NH3-N and TN as the main pollutants of sewage, using the ratio of the above program; program 2,5 CODcr removal rate of about 50%, when the main component of sewage CODcr, the program can be applied to the proportion of the ratio of 2 and 5; Scenario 5 the removal of various pollutants have a high ratio of filler is the ideal combination of solutions. And obtain a patent.
     In this paper, urban rivers ecological revetment techniques, enriched the content of the study river ecosystem, river systems for urban ecology and sustainable management of building a scientific basis.
引文
[1]Asakawa,Shoichiro,Yoshida et al. Perceptions of urban stream corridors within the greenway system of Sapporo,Japan. Landscape and Urban Planning,2004,v 68 n 2-3:167-182.
    [2]Barton C.D.,Karathanasis A.D..Renovation of a failed constructed wetland treating acid mine drainage[J].Environmental Geology,1999,39:39-50.
    [3]Binder W,P Juerging, J Karl. Naturnaher Wasserbaur-Merkamale und Grenzen [J].Garten and Landschaft,1983,93(2):91-94.
    [4]Block A,Kelana Centre Point Jalan.The use of Constructed Wetlands for Wastewater Treatment,Wetlands Internatinonal-Malaysia office,Malaysia,2003.
    [5]Boon P J,Davies B R,Petts G E. Global perspectives on river conversation:science,policy,and practice,Chichester,West Sussex[M].New York:Wiley,2000:496-502.
    [6]Braskerud BC.Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution[J].Ecological Engineering,2002,19:41-61.
    [7]Brij Gopal.Constructed wetland for wastewater Treatment:Potentials and Problems. Wat[J].Sei.Tech,1999,40(3):27-35.
    [8]Brix H. Use of constructed wetlands in Water Pollution Control.In:Proceedings of International Conference,Water Quality International,Budapest,IAWQ,London,1994:245-255.
    [9]Bryson D W,Ghere DG,Hulbert W H. European practice for bridge scour and stream instability countermeasures. Transportation Research Record,2000,v2n1696:236-243.
    [10]C.C.Tanner,M.L.Nguyern.Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy Pasture.Agriculture,Ecosystems and Environment,2005, (105):145-162.
    [11]Cairns J.J.R. The status of the theoretical and applied science of restoration ecology[J]. Environ.Prof.,1991,13(3):1-9.
    [12]Carleson D., Wilson L.,1985,Report of the riparian habitat technieal task force, Final Report to Oregon Department of Forestry and Oregon Department of Fish and Wildlife,Salem,OR, USA.
    [13]Catherine Boutin,Alain lienard.Constructed wetlands for wastewater treatment.the French use of aquatic macrophytes for wastewater treatment in constructed wetlands,edited by Werissmo Dias Jan Vymazal,2003:439.
    [14]Chambers JM,McComb AJ.1994.Establishment of wetland ecosystems in lakes created by mining in Western Australia[A].In:Mitsch W,ed.Global Wetlands; Old World and New[C].Netherlands:Elsevier.
    [15]Clausen J C,K Guillard,C M Sigmund,et al..Water quality changes from riparian buffer restoration in Connecticut. Journal of Environmental Quality,2000,296:1751-1761.
    [16]Cmapbell A.G, Fraknlin J.E,1979, Riparian Vegetation in oregon'5s Westenr Cascdae Mountains:eomPosition, biomass, and autumn Phenology, Eeosysetm Analysis Studies on Coniefrous Forest Biomes, Bulletin No.14, Seattle:university of washington, USA.
    [17]Conley L.M.,Diek R.I.,Lion L.W.Anassessment of the root-zone method of Wastewater treatment[J].Res,J WPCE,1991,63:239-247.
    [18]Cooper A B. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia,1990,202:13-26.
    [19]De Wall L,Large A R G,Gippel C J,Wade P M. River and floodplain rehabilitation in Western Europe:Opportunities and constrains[J].Arch.Hydrobiol.Suppl.,1995,9:679-693.
    [20]Duerbeck H W,Klumpp E,Schladot J D et al. Environmental specimen bank of the Federal Republic of Germany-significance of surfactants. Progress in Colloid & Polymer Science, 1994,v95:48-60.
    [21]Eastern Sierra Riparian Songbird Conservation:1998-2000 final report & Mono Basin 2000 Progress report.
    [22]Flebbe,Dolloff. Habitat structure and woody debris in Southern Appalachian wilderness streams. NCASI Technical Bulletin,1999,n 781 1:166.
    [23]Franklin J.E, Perry D.A., Sehowater TD et al.,1991, ImPortnace of ecological diversity in mnaageing long-term stie Productivity, In:Perry DA eds. Maintaining Long-term Productivity of Paeifie Nohrtwest Forest Eeosystems. Portlnad, OR, USA:Timber Press.
    [24]Fukuoka. Utilization of natural vegetation groins as a bank protection measure. International Water Resources Engineering Conference-Proceedings,1998,v 1:352-357.
    [25]Gerald E,Galloway M. River basin management in the 21 century:Blending development with economic,ecologic,and cultural sustainability[J]. Water International,1997,22(2):82-89.
    [26]Gillespie,Jr WB,et al..Transfers and transfonnations of zinc in constructed wetlands:mitigation of a refinery effluent[J].Ecological Engineering,2000,14:279-292.
    [27]Gregory S.V, Swartson F.J., Mekee W.A. etal, An ecosystem perspective of riparian zones, Bioseienee,1991,41:540-551.
    [28]Grissinger,Bowie. Material and site controls of stream bank vegetation. Transactions of the ASAE,1984,Nov-Dee v 27 n 6:1829-1835.
    [29]Hammer D.A.,Bastian R.X.Wetlands ecosystems Natural water purifiers(A).In:Hammer D.A.(ed).Constructed Wetlands for Wastewater Treatment:Municipal,Industrial,and Agricultural[C]. Chelsea,MI:Lewis Publishers,1989,21:5-19.
    [30]Hartig, J.H & R.L.Thomas.1988.Development of plans to restore degraded areas in the Great Lakes. Environ. Manage.,12:327-347.
    [31]Hawkesbury-Nepean Catchiest Management Trust, Compiled by Paul Bennett, Guidelines for Assessing and Monitoring Riverbank Health,2000.
    [32]Hiley P.D.The reality of sewage treatment using wetland[C].ICWS,94 Pro,1994,68-83.
    [33]Huett DO,Morris SG,Smith G,et al.Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research, 2005,39:3259-3272.
    [34]IWA Scientific and Technical Report No.8 Constructed Wetlands for Pollution Control-Processes, Performance,Design and Operation.By IEA Specialist Group on Use of Macrophytes in Water Pollution Control,2000:85-88.
    [35]Jan Vymazal.Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment[J].Ecological Engineering,2005,25(7):478-490.
    [36]Joan G.,Paula A,Rafael M,et al..Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban waste water[J]. Water Research,2004,38:]669-1678.
    [37]Jordan,W.R.Ⅲ,M.E.Gilpin & J.D.Aber:1987.Restoration Ecology[M].Cambridge:Cambridge University Press.
    [38]Jordan,W.R.Ⅲ,M.E.Gilpin,and J.D.Aber. Restoration Ecology:A Synthetic Approach to Ecological Research[M].Cambridge University Press, Cambridge, England, UK,1987.
    [39]Kadlec H R.Knight R L.Treatment wetlands Lewis[M].Boca Raton,New York, London, Tokyo,1996:893.
    [40]Kadlec R H, Reddy K R. Temperature effect s in treatment wetlands[J]. Water Environment Research,2001,73(5):543-547.
    [41]Kadlec R.H. and Knight R.L..Treatment Wetlands[A].Boca Raton,New York,America:Lewis Publishers,1996.
    [42]Kadlec,R.H..Overview:surface flow constructed wetlands. Wat.sci.Technol.1995,32(3):1-12.
    [43]Katsumiseki Kojitakazawa. Project for creation of rivers rich in nature-toward a richer natural environment in town sand on watersides[J]Journal of Hydro science and Hydraulic Engineering(Special issue)1993,4:86-87.
    [44]Kickuth R..Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under hmnic conditions[A].in Utilization of Manure by Land Spreading[C]. London:Comm.Of the Euro,Communities,EUR 5672c,1997:335.
    [45]Kickuth SK.1976.Macrophytes and Water Purification[A].Biological Control of Water Pollution[C].Philadelphia:Pensylvania University Press.
    [46]Lowrnaee R., Leonard R. and Sheridan J., Mnaaging riparian ecosystems to eontrol nonpoint pollution, Jomual of soil and Water Conservation,1985,40(1):87-91.
    [47]Lyons,John,Trimble et al. Grass versus trees:Managing riparian areas to benefit streams of central North America. Journal of the American Water Resources Association,2000,Aug v 36 n 4:919-930.
    [48]Malanson.G.P, Riparian Landscapes, Cambridge, UK:Cambridge University Press,1993.
    [49]Mander U.,Kuusemets V.,Krista L.,et al. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering,1997,8:299-324.
    [50]Martin R. Perrow,Anthony J. Davy. Handbook of Ecological Restoration [M]. The United Kingdom:Cambridge University Press,2002:374-479.
    [51]Meeban W.R., Swanson.F.J. and Sedell J.R., Influences of riparian vegetation on aquatic ecosystems with partieular refrence stosalmonoid fishes and their food supplies. In:Johnson RR, Jones DA eds, Impohance, Persevration and Mnaagement of Flood Plain Wetlands and other Riparian Eeosystems, USDA Forest Sevrice General Teehnieal Report RM,1977, 43:137-145.
    [52]Michael E. McClain,Elizabeth W. Boyer,C. Lisa Dent. Biogeochemical Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems,2003,6:301-312.
    [53]Mitch J.W. Ecological engineering:a new paradigm for engineers and ecologists[M]. Washington DC:National Academy Press,1996:145.
    [54]Mitch J.W. Ecological engineering-the 7-year itch,Ecological Engineering,1998, 10(2):119-130.
    [55]Mitsch W.J.and Gosselink J.G..Wetlands[M].New York:John Wiley,2000.
    [56]Naiman R.J., Watershed Management:Balancing Sustainability and Environmental Change, New York:Spring, Verlag,1992.
    [57]Naimna R.J., H-Decamps and M-Pollock, The role of riparian corridors in maintaining regional biodiversity, Ecological Applications,1993,3(2):209-212.
    [58]Neue H.U.,Guant J.L.,Wang Z.P.,et al..Carbon in tropical wetlands[J]. Geoderma,1997, 79(1-4):163-185.
    [59]Nilsson C,Berggrea K.Alterations ofriparian ecosystems caused by river regulation[J].Bioscience,2000,50(9):783-793.
    [60]P F Cooper,M B Green.Reed Bed Treatment Systems for Sewage Treatment in the United Kingdom:the First 10 Years Experience.Wat.Sci.Tech,1995,32(3):317-327.
    [61]Paul Cooper.UK experience with reed bed and constructed wetland systems 1985 to 2003,the first international seminar on the use of aquatic macrophytes for wastewater treatment in constructed wetlands,edited by Werissmo Dias Jan Vymazal,2003:414.
    [62]Perfler R.,Laber J.,Langergraber G.,et al..Constructed wetlands for rehabilitation and reuse of suarfce waters and tropical and subtropical areas-Fisrt results from small-scale plots using vertical flow beds[J]. Water Science and Technology,1999,40(3):155-162.
    [63]Peter K C,等.河流恢复的标准模块模型[A].(英)Boon P J,等著.宁远,等译.河流保护与管理[C].北京:中国科学技术出版社,1997:191-200.
    [64]Peterjohn W T,and D L Correll. Nutrient dynamics in an agricultural watershed:observations on the role of a riparian forest. Ecology,1984,65:1466-1475.
    [65]Picard C R, Fraser L H, Steer D. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms[J]. Bioresource Technology,2005, 96(9):1039-1047.
    [66]Raedeke K.J., Streamside management:Riparian wildlife and forestry interactions, Proceedings of A Symposium on Riparian Wildlife and Forestry Interactions. Contribution No.59, University of Washington, Seattle, Washington, USA,1988.
    [67]Riley, A.L.1998.Restoring Streams in Cities. Washington DC:Island Press.
    [68]Robert LK,Victor WE,Payne J,et al.Constructed wetlands for livestock wastewater management[J].Ecological Engineering,2000,15:41-55.
    [69]Sanders Frank.Wetlands treat mine runoff[J].Civil Engineering.1999,69(1):52-55.
    [70]Schafer ML,Lundstrom JO,Pfeffer M,et al.Biologocal diversity versus risk for mosquito nuisance and disease transmission in construeted wetlands in southern Sweden[J].Medical and Veterinary Entomology,2004,18:256-267.
    [71]Schlueter U. Ueberlegungen zum naturahen Ausbau von Wasseerlaeufen[J]. Landschaft und Stadt,1971,9(2):72-83.
    [72]Seidel,K..Abbau von bacterium coli durch hohere wasser pflanzen[J].Naturwiss.1964,51:395.
    [73]Seidel,K..Happel,H.and Graue,G.Contributions to revitalisation of waters 2nd edn.[A].Stiftung Limnologische Aebeit sgruppe Dr.Seidel e.V.,Krefeld(Germany),1978:1-62.
    [74]Seidel,K..Reingung von Gewassern durch hohere pflanzen[J].Naturwiss,1966,53:289-297.
    [75]Seki,Katsumi. Examples of projects for the creation of rivers richly-endowed with nature. Civil Engineering in Japan,1992,v 31:10-18.
    [76]Seth Wenger, A Review of the Scientific Literature on Riparian Buffer Width, Extent and Vegetation, Institute of Ecology, University of Georgia, Athens, Georgia,1999:5.
    [77]Shields Jr.,F. Douglas,Knight et al. Response of fishes and aquatic habitats to sand-bed stream restoration using large woody debris. Hydrobiologia,2003,v 494 Mar 1:251-257.
    [78]shuh-Ren Jins,Ying-feng Lin.Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan.2004,(127):291-301.
    [79]Sotir,Robbin B. Integration of soil bioengineering techniques for watershed management. Proceedings of the 2001 Wetlands Engineering and River Restoration Conference, 2001:645-652.
    [80]Sotir,Robbin B. Soil bioengineering streambank techniques. International Water Resources Engineering Conference-Proceedings,1998 v 1:477-482.
    [81]Sotir,Robbin B. Soil bioengineering takes root. Civil Engineering(New York),1998,v 68 n 7: 50-53.
    [82]Stottmeister U.,Wieoner A.,Kuschk A.,et al.Effects of plants and mieroorganisms in Constructed wetlands for wastewater treatment[J].Biotechnology Advances,2003,22:93-117.
    [83]Sun G.et al.Treatment of agrieultural wastewater in a combined tidal flow-downflow reed bed system[J].water Science and Teehnolog,1999,40(3):139-146.
    [84]Sunil Narumalnai, Yingchun Zhou, John R Jensen. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic botany 1997(58):393-409.
    [85]Swanson EJ., Gregory S.V, Sedell J.R.etal.1982, Land-water interactions:the riparian zone. In:Edmonds RL ed. Analysis of Coniferous Forest Ecosystems in the Western United States. US/IBP Synthesis Series No.14. Hutchinson Ross Publishing. Stroudsburg. Pennsylvania, USA.
    [86]Thomas J.W., Maser C., Rodiek J.E., Riparian zones, In:Thomas JW ed. Wildlife Habitates in Mnaaged Forests:The Blue Mountains of Oregonnad Washington, USDA Forest Sevrice Agiculutarl Handbook,1979,553:41-47
    [87]Timothy MW,Robert HK.Application of residence time distributions to stormwater treatment systems[J].Ecological Engineering,1996,7:213-234.
    [88]US EPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit[A]. Washington 13C:US EPA,Office of Wetlands,Oceans and Watershed,2000.
    [89]Variga S,Chongrak P.Nitrogen mass balance and microbial analysis of construeted wetlands treating municipal landfill leaehate[J].Bioresource Technology,2007,98:565-570.
    [90]Vonxperling.M..Comparison among the most frequently used systems for wastewater treatment in developing countries[J].Wat.Sci.Tech,1996,33:59-72.
    [91]Water and River Commission, Australia, Identifying the Riparian zone,2000:1.
    [92]Werker A G, Dougherty J M, McHenry J L, et al. Treatment variability for wetland wastewater treatment design in cold climates[J]. Ecological Engineering,2002,19(1):1-11.
    [93]Whigham D.F,Ecological issues related to wetland Preservation,restoration,creation and assessment. The Science of the Total Environment,1999,240:32-40.
    [94]Zimmermann,Claus. Mechanics of river bank erosion and protection state-of-the-art report 3: Federal Republic of Germany. Proc 1989 Natl Conf Hydraulic Eng,1989:289-295.
    [95]安树青.湿地生态工程—湿地资源利用与保护模式[M].北京:化学工业出版社,2003.
    [96]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(4):88-92.
    [97]边博,程小娟.城市河流生态系统健康及其评价[J].环境评价,2006,(2):66-69.
    [98]蔡晓明.生态系统生态学[M].北京:科学出版社,2000:1.5.
    [99]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排 水,2003,19(12):105-106.
    [100]陈吉泉.河岸植被特征及其在生态系统和景观中的作用[J].应用生态学报,1996,7(4):439-448.
    [101]陈利军,周礼恺.土壤保肥—供肥机理及其调节Ⅳ.棕壤型菜园土肥力的调节与培育及其作用实质[J].应用生态学报,2000,11(4):532-534.
    [102]陈颖.人造湿地处理防止废水[J].印染,2001,12:54.
    [103]陈云霞,许有鹏,李嘉俊.城市河流的生态功能与生态化建设途径分析[J].科技通刊,2006,22(3):299-303.
    [104]成水平,况琪军,夏宜(?).香蒲、灯心草人工湿地的研究——Ⅰ_净化污水的效果[J].湖泊科学,1997,9(4):352-357.
    [105]成水平,夏宜(?).香蒲、灯心草人工湿地的研究——Ⅱ_净化污水的空间[J].湖泊科学1998,10(1):62-66.
    [106]成水平,夏宜(?).香蒲、灯心草人工湿地的研究——Ⅲ_净化污水的机理[J].湖泊科学1998,10(2):66-71.
    [107]储小院.缙云山林地土壤侵蚀物理力学机制研究[D].北京:北京林业大学,2010.
    [108]崔伟中.日本河流生态工程措施及其借鉴[J].人民珠江,2003,(5):1-4.
    [109]戴兴春,徐亚同,谢冰.浅谈人工湿地法在水污染控制中的应用[J].上海化工,2004,10:7-9.
    [110]邓红兵,王青春,王庆礼.河岸植被缓冲带与河岸管理[J].应用生态学报,2001,12(6):951-954.
    [111]邓红兵,王庆礼,蔡庆华.流域生态学—新学科,新思想,新途径[J].应用生态学报,1998,9(4):443-449.
    [112]邓泓,何国富,邢和祥,等.河道水体富营养化污染综合治理的研究[J].环境科学与技术,2008,31(2):132-135.
    [113]董哲仁.河流健康的内涵[J].中国水利,2005,(4):23-26.
    [114]董哲仁.河流生态恢复的目标[J].中国水利,2004,(10):6-9.
    [115]董哲仁.河流治理生态工程学的发展沿革与趋势[J].水利水电技术,2004,35(1):39-41.
    [116]董哲仁.生态水工学的工程理念[J].中国水利,2003,1:63-66.
    [117]董哲仁.生态水土学的理论框架[J].水利学报,2003,1:1-6.
    [118]冯鸿宽.土体抗剪强度参数影响因素的灰色关联度分析[J].路基工程,2008,(4):166-167.
    [119]冯培勇等.人工湿地及其去污机理研究进展[J].生态科学,2002,21(3):264-268.
    [120]傅伯杰等.景观生态学原理及应用[M].北京:科学出版社,2001.
    [121]高甲荣.近自然治理—以景观生态学为基础的荒溪治理工程[J].北京林业大学学报,1999,21(1):80-85.
    [122]耿雷华,刘恒,钟华平,等.健康河流的评价指标和评价标准[J].水利学报,2006,37(3):253-258.
    [123]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团粒分形特征研究[J].土壤学报,2007,44(3):571-575.
    [124]龚瑜.河流综合整治中的环境景观要求[J].城市道桥与防洪,2002,(3):56-59.
    [125]关连珠,张伯泉,颜丽.不同肥力黑土、棕壤各级微团粒中胶结物质的粗成及其特性[J].沈阳农业大学学报,1991,22(1):55-60.
    [126]郭爱红,牛福生,贾久满.几种湿地植物对景观水体富营养化治理研究[J].北方环境,2010,22(1):37-39.
    [127]郝桂玉,黄民生,徐亚同.潜流湿地在水体生态修复中的应用[J].净水技术,2004,23(1):34-37.
    [128]何蓉,周琪,张军.表面流人工湿地处理生活污水的研究[J].生态环境,2004,13(2):180-181.
    [129]何松云,韦亚芬,杨海军.城市河流生态恢复的研究现状与问题[J].东北水利水 电,2005,23(12):44-51.
    [130]何松云,杨海军,门德千.城市河流生态恢复的尺度[J].东北水利水电,2005,23(10):40-43.
    [131]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,(5):87-91.
    [132]黄昌勇.土壤学[M].北京:中国农业出版社,1999.
    [133]黄光宇.中国生态城市规划与建设进展[J].城市环境与城市生态,2001,14(3):6-8.
    [134]挥才兴,蒋兴伟,海岸带可持续发展与综合管理[M].北京:海洋出版社,2002.
    [135]季永兴,刘水芹,张勇.城市河道整治中生态型护坡结构探讨[J].水土保持研究,2001,(8):25-28.
    [136]姜学红,陈家琪.塑料土工格栅的性能及应用[J].工程塑料应用,2005,3:50-52.
    [137]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [138]蒋屏.河道生态治理工程——人与自然和谐相处的实践[M].北京:中国水利水电出版社,2003.
    [139]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1720-1725.
    [140]金舒丽,袁兴中.城市河流近自然治理——概念构架与治理设计[J].资源开发与市场,2005,21(3):190-192.
    [141]靖元孝,杨丹普,等.两栖榕在人工湿地的生长特性及其对转水的净化效果[J].生态学报,2003,23(3):614-619.
    [142]李博.生态学[M].北京:高等教育出版社,2000.
    [143]李寒娥.人工湿地系统在我国污水处理中的应用[J].环境污染治理技术与设备,2004,5(7):9-12.
    [144]李怀恩,沈晋.非点源污染数学模型[M].西安:西北工业大学出版社,1996.
    [145]李娇娇.城市河流生态恢复研究[D].杭州:浙江大学,2006.
    [146]李科得,胡正嘉.多级人工湿地渗滤床模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5):511-517.
    [147]李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [148]李万庆,王德龙,张建文.水面型湿地工艺设计方法研究[J].环境科学,1992,13(5):2-5.
    [149]李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响:以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151.
    [150]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [151]林积泉,马俊杰,王伯铎,等.城市非点源污染及其防治研究[J].环境科学与技术,2004,27(8):63-65.
    [152]刘红军,王保良,于彦泉.土工合成材料加固路堤边坡机理及工程实际应用[J].东北林业大学学报,2006,03:109-110.
    [153]刘建林,黄领梅.中国西北地区水资源问题及对策研究[J],西北建筑工程学院(自然科学版),2002.12,19(4):51-55.
    [154]刘进金.土壤受蚀性之定性与定量,中华林学季刊[J].1984,17(1):93-105.
    [155]刘浪,余沛.影响粘性土强度的各因素的止交分析[J].重庆交通学院学报,1996,15(1):120-124.
    [156]刘晓涛.城市河流治理若干问题的探讨[J].水利规划设计,2001(3):28-33.
    [157]柳文丽.人工湿地在中国的研究进展[J].四川环境,2010,29(5):58-62.
    [158]鲁春霞,谢高地,成升魁.河流生态系统的休闲娱乐功能及其价值评估[J].资源科 学,2001,(9):77-81.
    [159]鲁敏,曾庆福.七种植物的人工湿地处理生活污水的研究[J].武汉科技学院学报,2004,17(2):32-35.
    [160]雒维国,王世和,黄娟,等.潜流型人工湿地低温域脱氮效果研究[J].中国给水排水,2005,21(8):37-40.
    [161]马学慧,牛焕光.中国的沼泽[M].北京:科学出版社,1991:133-195.
    [162]曲英豪,胡长顺.土工格栅加筋陡边坡路堤位移特性的试验研究[J].中国公路学报,2006,1:47-57.
    [163]宁远,沈承珠,谭炳卿,等译.河流保护与管理[M].北京:中国科学技术出版社,1997:62-175.
    [164]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [165](日)河川治理中心.滨水自然景观设计理念与实践[M].北京:中国建筑工业出版社.2006.
    [166]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999.
    [167]施东文,陈健波,奚旦立,等.活性炭滤池深度处理水中有机物[J].环境工:程,2006,24(6):85-87.
    [168]宋创业,郭柯,刘高焕.浑善达克沙地植物群落物种多样性与十壤因子的关系[J].生态学杂志,2008,27(1):8-13.
    [169]宋庆辉,杨志峰.对我国城市河流综合管理的思考[J].水科学进展,2002,13(3):377-382.
    [170]孙广智,K.R.Gray,A.J.Biddlestone.下行流芦苇床污水处理试验研究与设计方程[J].中国给水排水,1997,13:4-6.
    [171]孙宜敏.城市水体护岸生态设计的原则与实例[J].上海建设科技,2004,01:10-12.
    [172]谭炳卿,孔令金,尚化庄.河流保护与管理[J].水资源保护,2002,3:53-57.
    [173]田积莹,黄义瑞.子午岭连家砭地区土壤物理性质与土壤抗蚀性能指标的初步研究[J].十壤学报,1964,12(3):280-296.
    [174]万咸涛,陈进.世界和中国水资源质量工作进展[J].水利水电快报,2006,27(5):9-11.
    [175]万勇.生态型护岸在观澜河治理工程中的应用[J].中国农村水利水电,2005,11:89-90.
    [176]王安庆,任勇,钱骏,等.人工湿地系统植物床内CODcr动态变化规律探讨[J].四川环境,1999,18(3):58-62.
    [177]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社,2004.
    [178]王国祥,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学,1998,18(5):410-414.
    [179]王洪霞.宁波市生态河道护岸初探[J].浙江水利科技,2006,1:52-55.
    [180]王礼先主编.水土保持学[M].中国林业出版社,1995:130-140.
    [181]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版),2003,33(3):359-362.
    [182]王薇,李传奇.河流廊道与生态修复[J].水利水电技术,2003(9):56-58.
    [183]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62.
    [184]王兴勇,郭军,刘树坤,陈兴茹,生态型鱼巢砖水力特性研究[J],水利学报,2007,38(11):1290-1295.
    [185]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(2):11-16.
    [186]王占军,蒋齐,潘古兵,等.宁夏毛乌素沙地不同密度柠条林对土壤结构及植物群落特征的影响[J].水土保持研究,2005,12(6):123-125.
    [187]王佐.城市公共空间环境整治[M].北京:机械工业出版社,2002.
    [188]吴承祯,洪伟.不同经营模式团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [189]吴启堂,高婷.减少农业对水体污染的对策和措施[J].生态科学,2003,22(4):371-376.
    [190]吴晓磊.污染物质在人工湿地中的流向[J].中国给水排水,1994,10(1):40-43.
    [191]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32-34.
    [192]吴振斌,陈辉蓉,贺峰,等.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-34.
    [193]吴志强,蔚芳.可持续发展中国人居环境评价指标体系[M].北京:科学出版社,2004:34-35.
    [194]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [195]夏继红,严忠民.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水土保持,2004,(3):20-21.
    [196]夏继红,严忠民.生态河岸带研究进展与发展趋势[J].河海大学学报:自然科学版,2004,3:252-255.
    [197]夏宜铮.综合生物氧化池污水净化的生物学基础研究[M].国家环境保护局,北京:科学出版社,1993.
    [198]肖衡林,张晋锋.三维土工网垫固土植草试验研究[J].公路.2005,4:86-90.
    [199]徐晶,朱民.城市景观水体富营养化及其控制[J].环境科学与管理,2010,35(7):150-152
    [200]徐丽花等.不同填料多级人工湿地渗滤床处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [201]徐泉斌.三峡库区消落带土壤结构特征研究[D].重庆:西南大学,2010.
    [202]徐祖信.河流污染治理技术与实践[M].中国水利水电出版社,2003:57-59.
    [203]许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):548-558.
    [204]许十国,高永敏,刘盈斐.现代河道规划与治理—建设人与自然相和谐的水边环境[M].北京:中国水利水电出版社,2006.
    [205]许振成,刘少宁,胡康萍,等.白泥坑人工湿地污水处理系统工程设计建设总结报告[R].国家环保局华南科学研究所.1991.
    [206]许志兰,廖日红,楼春华,等.城市河流面源污染控制技术[J].北京水利,2005,4:26-28.
    [207]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术,2002,28(2):101-104.
    [208]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展,2002,21(2):111-119.
    [209]杨玉盛.不同治理模式对严重退化红壤抗蚀性影响研究[J].土壤侵蚀与水土保持学报,1996,2(2):32-38.
    [210]杨芸.论多自然型河流治理法对河流生态环境的影响[J].四川环境,1999,1:19-24.
    [211]殷康前,倪晋仁.湿地研究综述[J].生态学报,1998,18(5):539-546.
    [212]尹澄清.内陆水——陆地交错带的生态功能及其保护与开发前景[J].生态学报,1995,15(3):331-335.
    [213]于智勇,崔凤国.城市受损河流生态恢复的原则[J].中国科技信息,2005(7):139-141.
    [214]余国营.湿地研究的若干基本科学问题初探[J].地理科学进展,2001,20(2):177-182.
    [215]岳隽,王仰麟,彭建.城市河流的景观生态学研究[J].生态学报,2005,25(6):1422-1429.
    [216]张建春,彭补拙.河岸带及其生态重建研究[J].地理研究,2002,21(3):374-383.
    [217]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(1):56-63.
    [218]张建春,史志刚,彭补拙.皖西南大别山麓河岸带滩地生态重建与植物护坡效能分析[J].山 地学报,2002,20(1):55-59.
    [219]张靓,梁成华,杜立宇,等.长期定位施肥条件下蔬菜保护地土壤微团粒组成及有机质状况分析[J].沈阳农业大学学报,2007,38(3):331-335.
    [220]张明,曹梅英.浅谈城市河流整治与生态环境保护[J].中国水土保持,2002,(9):33-34.
    [221]张锡辉.水环境修复土程学原理与应用[M].北学工业出版社,2002:2.
    [222]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [223]张永泽,王恒.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):310-314.
    [224]赵传燕,李林.兰州市郊区土壤水稳定性微团粒的组成分析[J].兰州大学学报(自然科学版),2003,39(2):90-94.
    [225]赵亚楠,杨海军,内田泰三,等.受损河岸生态系统生态修复材料的研究[J].东北师范大学学报:自然科学版,2004,36(1):107-113.
    [226]赵彦伟,杨志峰.城市河流生态系统修诌议[J].水土保持通报.2006,26(1):89-93.
    [227]赵运林,邹冬生编著.城市生态学[M].北京:科学出版社,2005:105-111.
    [228]郑敏.对广州市河涌生态护岸建设的设想[J].人民珠江,2005,4:67-69.
    [229]中国科学院南京土壤研究所.十壤理化分析[M].上海:上海科技出版社,1978.
    [230]周德培,张俊云,植被护坡工程技术[M].北京:人民交通出版社,2003:7-11.
    [231]周怀东,杜霞,李怡庭,等译.多自然型河流建设的施工方法及要点[M].北京:中国水利水电出版社,2003.
    [232]朱晨东.当代多自然型城市河流的设计与实践[J].水利规划与设计,2005,2:23-25.
    [233]朱国平,王秀茹.城市河流的近自然综合治理研究进展[J].中国水土保持科学,2006,4(1):92-97.
    [234]朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境,2000,16(3):55-57.
    [235]庄美琪,娄仲连.锚固土工网复合植被护坡理论与应用[J].人民珠江,2002,2:39-41.
    [236]左良平.城市地表径流非点源污染的研究现状与进展[J].江西化工,2008,4:51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700