用户名: 密码: 验证码:
稳态等离子体推力器模化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳态等离子体推力器自从1970年成功研制以来,已经广泛用于卫星各种实际飞行任务中,成为世界各航天大国电推进装置研究中的热点。目前卫星在轨任务的多样性对推进系统有不同的要求,这要求人们研制不同功率和推力范围的推力器。根据现有的推力器进行模化设计成为设计新推力器的一种重要途径。
     推力器的模化设计离不开相似准则的指导,但目前仅有Melikov-Morozov相似准则数λion /La,主要用于描述电离过程的相似,这对于推力器的相似模化设计来说是不够全面的。Khayms等人在Melikov-Morozov相似准则基础上提出了在直磁场条件下当放电电压不变时的模化设计方法,但理论结果和实验结果差别很大,不能很好地指导推力器的相似设计,因此有必要对稳态等离子体推力器模化设计方法进行深入研究。本文正是基于此出发点来展开推力器相似模化设计方法的研究工作。
     首先本文提出了新的相似准则数。基于中性气体的连续性方程、电子和离子的动量方程、电子的能量方程,采用方程分析法确定了若干相似准则数。并通过对各个准则数的分析,确定了占主导地位的相似准则数,为推力器相似模化设计提供理论基础。
     其次本文提出了直磁场下推力器参数间的关系及模化设计方法。通过对相似准则的分析,确定了在放电电压不变条件下的模化条件。在此基础上确定了稳态等离子体推力器参数与几何尺寸间的关系,指出了放电电压不变条件下的模化设计方法。与Khayms模化设计方法比较,我们提出的模化设计方法与现有型号推力器实验数据吻合较好,且能够缓解推力器小型化时存在的磁饱和及离子对壁面的溅射的问题,也可以提高推力器大型化时的功率密度和推力密度。
     再次本文确定了弯曲磁场下推力器磁场位型、电场位型的变化规律,并提出了在放电电压保持不变时的唯一设计方法:基元展开法。即在保证磁感应强度、磁场位型、电场强度、电场位型、推力器通道长度、通道宽度、等离子体密度均不变的条件下,根据功率要求来调整阳极质量流量和通道横截面积,进行模化设计。
     本文还确定了磁感应强度和放电电压的匹配关系,即在低电压范围内磁感应强度和放电电压满足B_r∝U_d~(1/2)的关系,而在高电压范围内,磁感应强度应维持不变才能维持较高的效率,这对于高电压的模化设计有很重要的指导意义。同时并结合基元展开法提出了推力器变电压的设计方法。
     最后基于本文提出的基元展开法设计并加工了1.5kW的推力器P100,并进行了相关对比实验,分别测量了推力、放电电流、羽流发散角、电子温度、离子能量分布、磁安特性等参数。实验结果表明:采用真空度修正后的放电电流、推力、功率及效率基本上能达到设计值,且P100和样机模型P70的电离和加速过程基本相似,提出的基元展开法可用于指导推力器的模化设计。
Stationary plasma thruster has been widely applied in orbit missions and space explorations since it had been successfully developed in 1970. Now, it intrigues the world wide interests in the electric propulsion field. Different orbit missions of the satellites result in different demands on the propulsion system, which requires people to design other power level and thrust level thruster. How to modeling and designing other power lever thrusters according to the existing ones is one of the most important methods to design a new thruster.
     Similarity criterion can be used to direct the modeling design of SPTs. But now, there is only one similarity criterion: Melikov-Morozov criterionλi on /La, which only embodies the ionization process of a thruster, and it cann’t reflect other physical processes, so it is not enough to direct the scaling design of SPTs. Based on Melikov-Morozov criterion, Khayms et. al. proposed one scaling design method with a crossed electric and magnetic field when the discharge voltage is kept constant, which is much different from the experimental data, then Khayms’method cann’t direct the thruster designing well. It is needed to develop the thruster scaling design method, which is starting point of my research work.
     Firstly, in this paper, we proposed some new similarity criterions. Based on the neutral continue equation, electron and ion momentum equation and electron energy equation, we deduced some new similarity criterions with the method of equation analyses. After comparing and analyzing these similarity criterions, we selected the prevailing criterions, and the following scaling design method is developed based on these selected criterions.
     Secondly, we obtain the relationship of the SPT parameters and proposed the scaling design method with the crossed electric and magnetic field. After analyzing the prevailing criterions, we determined the preconditions with constant discharge voltage. Based on these preconditions, we determined the relationship between SPT parameters and radius, and proposed the scaling design method with constant discharge voltage. Compared with Khayms’scaling design method, we proposed one agree well with the experimental data of the existing SPTs, and it can alleviate the magnetic saturation and ion sputtering for the lower power thrusters, and improve the power density and thrust density for the larger power thrusters.
     Thirdly, we determined the change laws of the magnetic field profile and electric magnetic field profile, and proposed the exclusive scaling design method with constant discharge voltage - basic cell outspread method, i.e. the magnetic and electric field intensity and profile, channel depth and width, and the plasma density should be kept constant, and the anode mass flow rate and cross-sectional area should be adjusted according to the power.
     Fourthly, we determined the matching relationship between magnetic field intensity and discharge voltage. In the lower discharge voltage range, the magnetic field and voltage satisfy the relationship of B_r∝U_d~(1/2), while in the higher discharge voltage range, the magnetic field should keep constant to keep the high efficiency, which has great significance on the thruster designing with high discharge voltage. In addition, combining the basic cell outspread method, we proposed one designing method with variable discharge voltage.
     Lastly, according to the basic cell outspread method we proposed, we designed and manufactured P100 with the power of 1.5kW. Some experiments have been done on P100, and we have measured the thrust, discharge current, angle of plume divergence, electron temperature, ion energy distribution and magnetic and electric characteristics. The experimental data shown that the discharge current, thrust, power and efficiency are satisfied the designing values after these parameters are corrected with the degree of vacuum. What’s more, the ionization and acceleration process of P100 and the prototype P70 are similar, which proves that the basic cell outspread method can be used to instruct the modeling design of Hall thrusters.
引文
1 O. B. Duchemin. An Investigation of Ion Engine Erosion by Low Energy Sputtering. Ph.D Thesis. California Institute of Technology. 2001:1~3
    2 M. Martinez-Sanchez, J. E. Pollard. Spacecraft Electric Propulsion - An Overview. Journal of Propulsion and Power. 1998,4:688~699
    3 Y. Chiu, B. L. Austin, K. Williams, R. A. Dressler, G. F. Karabadzhak. Passive Optical Diagnostic of Xe-Propelled Hall Thrusters. I. Emission Cross Sections. Journal of Applied Physics. 2006,99:1~10
    4 W. A. Hargus. Jr. Investigation of the Plasma Acceleration Mechanism within a Coaxial Hall Thruster. Report No.TSD-130. 2001:3~4
    5毛根旺,韩先伟,杨涓,何洪庆.电推进研究的技术状态和发展前景.推进技术. 2000,21(5):1~5
    6聂万胜,庄逢辰.航天器电推进技术现状与发展趋势.装备指挥技术学院学报. 2003,14(1):37~45
    7 S. King, M. Walker. Small Satellite LEO Maneuvers with Low-Power Electric Propulsion. AIAA-2008-4516
    8 T. Kremic. An Overview of NASA's In-Space Propulsion Technology Program. AIAA-2007-5432
    9 P. Peterson, H. Kamhawi, D. Manzella, D. Jacobson. Hall Thruster Technology for NASA Science Missions: HiVHAC Status Update. AIAA-2007-5236
    10 O. Duchemin, F. Marchandise, N. Cornu, E. Bourguignon. Electric Propulsion Thruster Assembly for Future Small Geostationary Comsats. AIAA-2008-5182
    11林来兴.现代小卫星及其关键技术.中国空间科学技术. 1995,15(4): 37~43
    12李世忠,陈虹.现代小卫星技术与数字地球.遥感信息. 2000,4:47~49
    13张祥根.小卫星的现状、特点及发展方向.电信快报. 2000,5:27~29
    14李之光.相似与模化.国防出版社. 1982:8~10
    15 F. S. Gulczinski III. Examination of the Structure and Evolution of Ion Energy Properties of a 5kW Class Laboratory Hall Effect Thruster at Various Operational Conditions. Ph.D Thesis. The University of Michigan.1999:1~7
    16 V. Kim, G. Popov, S. Tverdokhlebov, A. Semenkin, E. Tverdokhlebova, G. Karabadxhak. Overview of Russian EP Activities. AIAA-2003-4440
    17 S. Tverdokhlebov. Overview of Russian Electric Propulsion Activities. AIAA-2002-3562
    18 O. A. Gorshkov, A. S. Koroteev, B. A. Arkhipov, V. M. Murashko, N. A. Anfimov, V. I. Lukyashenko, V. Kim, G. A. Popov. Overview of Russian Activities in Electric Propulsion. AIAA-2001-3229
    19 A. I. Bugrova, A. S. Lipatov, A. I. Morozov, D. V. Churbanov. On a Similarity Criterion for Plasma Accelerators of the Stationary Plasma Thruster Type. Technical Physics Letters. 2002,28(10):821~823
    20 D. T. Jacobson, R. S. Jankovsky, V. K. Rawlin, D. H. Manzella. High Voltage TAL Performance. AIAA-2001-3777
    21 B. Pote, R. Tedrake. Performance of a High Specific Impulse Hall Thruster. IEPC-2001-35
    22 D. H. Manzella, D. T. Jacobson, R. S. Jankovsky. High Voltage SPT Performance. AIAA-2001-3774
    23 J. J. Szabo, N. Z. Warner, M.Martinez-Sanchez. Instrumentation and Modeling of a High Isp Hall Thruster. AIAA-2002-4248
    24 J. J. Szabo, P. S. Rostler, S. A. McElhinney, N. Z. Warner. One and Two Dimensional Modeling of the BHT-1000. IEPC-2003-231
    25 N. Z. Warner, J. J. Szabo, M. Martinez-Sanchez. Characterization of a High Specific Impulse Hall Thruster using Electrostatic Probes. IEPC-2003-82
    26 R. R. Hofer, A. D. Gallimore. The Role of Magnetic Field Topography in Improving the Performance of High-Voltage Hall Thrusters. AIAA-2002-4111
    27 R. R. Hofer, R. S. Jankovsky. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters. IEPC-2003-142
    28 S. Robert, H. David, R. R. Hofer. NASA’S Hall Thruster Program 2002. AIAA-2002-3675
    29 D. Jacobson, D. Manzella, R. Hofer, P. Peterson. NASA's 2004 HallThruster Program. AIAA-2004-3600
    30 D. Jacobson, J. John, D. Manzella, P. Peterson. An Overview of Hall Thruster Development at NASA's John H. AIAA-2005-4242
    31 A. D. Gallimore, I. D. Boyd, R. L. Burton, M. A. Capelli, E. Y. Choueiri, N. J. Fisch, J. C. Dickens. Review of the EP Activities of US Academia. AIAA-2001-3227
    32 M. Cappelli. Overview of Electric Propulsion Research in Academia. AIAA-2003-4442
    33 Y. Raitses, D. Staack, A. Dunaevsky, N. J. Fisch. Operation of a Segmented Hall Thruster with Low-Sputtering Carbon-Velvet Electrodes. Journal of Applied Physics. 2006,99:036103
    34 A. Fruchtman, N. J. Fisch, Y. Raitses. Control of the Electric-field Profile in the Hall Thruster. Physics of Plasmas. 2007,8:1048~1056
    35 A. Fruchtman, N. J. Fisch. Variational Principle for Optimal Accelerated Neutralized Flow. Physics of Plasmas. 2007,8(1):56~58
    36 A. Smirnov, Y. Raitses, N. J. Fisch. Enhanced Ionization in the Cylindrical Hall Thruster. Journal of Applied Physics. 2003,94(2):852~857
    37 Http://www.busek.com/halleffect.html
    38 N. B. Meezan, A. Cappelli. Kinetic Study of Wall Collisions in a Coaxial Hall Discharge. Physical Review E. 2002,66:036401
    39 N. B. Meezan, W. A. Hargus, Jr., M. A. Cappelli. Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma. Physical Review E. 2001,63:026410
    40 P. Y. Peterson, A. D. Gallimore, J. M. Haas. Experimental Investigation of a Hall Thruster Internal Magnetic Field Topography. IEPC-2007-030
    41 J. M. Haas, R. R. Hofer, A. D. Gallimore. Hall Thruster Discharge Chamber Plasma Characterization Using a High-Speed Axial Reciprocating Electrostatic Probe. AIAA-1999-2426
    42 J. A. Linnell, A. D. Gallimore. Internal Plasma Structure Measurements of a Hall Thruster Using Xenon and Krypton Propellant. IEPC-2005-024
    43 J. L. Rovey, M. L. R.Walker, A. D. Gallimore, P. Y. Peterson. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster. AIAA-2004-3948
    44 I. D. Boyd, R.A. Dressler. Far Field Modeling of the Plasma Plume of a Hall Thruster. Journal of Applied Physics. 2002,92:1764~1774.
    45 J. W. Koo, I. D. Boyd. Computational Modeling of Stationary Plasma Thrusters. AIAA-2003-4705
    46 M. Celik, M. Santi, S. Cheng, M. Martinez-Sanchez, J. Peraire. Hybrid-PIC Simulation of a Hall Thruster Plume on an Unstructured Grid with DSMC Collisions. IEPC-2003-134
    47 M. Santi, S. Cheng, M. Celik, M. Martinez-Sanchez, J. Peraire. Further Development and Preliminary Results of the AQUILA Hall Thruster Plume Model. AIAA-2003-4873
    48 D. B. VanGilder, I. D. Boyd, M. Keidar. Particle Simulations of a Hall Thruster Plume. Journal of Spacecraft and Rockets. 2000,37(1):129~136
    49 M. Keidar, I. D. Boyd. Effect of a Magnetic Field on the Plasma Plume from Hall Thrusters. Journal of Applied Physics. 1999,86(9):4786~4791
    50 S. Roy, B. Pandey. Development of a Finite Element Based Hall Thruster Model for Sputter Yield Prediction. IEPC-2007-49
    51 S. Roy, B. P. Pandey. Development of a Finite Element Based Hall Thruster Model. Journal of Propulsion and Power. 2003,19(5):964~975
    52 M. Gollor, S. Weinberg. Electric Propulsion Electronics Activities in Europe. AIAA-2008-5284
    53 A. Bouchoule, A. Cadiou, A. Heron, M. Dudeck, M. Lyszyk. An Overview of the French Research Program on Plasma Thrusters for Space Applications. Contributions to Plasma Physics. 2007,41(6):573~588
    54 A. Rolfo, A. Cadiou, O. Secheresse, P. Dumazert, V. Gounot, X. Ragot, N. Mattei, T. Grassin, P. Garnero. Plasma Thrusters Development in France. Acta Astronautica. 2002,51(1): 39~46
    55 F. Darnon, D. Arrat, S. Escrivan, E. Chesta, N. Pillet. Overview of Electric Propulsion Activities in France. AIAA-2007-5165
    56 N. Gascon, M. Dudeck, S. Barral. Wall Material Effects in Stationary Plasma Thrusters. I. Parametric Studies of an SPT-100. Physics of Plasmas. 2003,10(10):4123~4136
    57 S. Barral, K. Makowski, Z. Peradzyński, N. Gascon. Wall Material Effects in Stationary Plasma Thrusters. II. Near-Wall and In-Wall Conductivity.Physics of Plasmas. 2003,10(10):4137~4152
    58 A. Bouchoule, A. Cadiou, A. Heron, M. Dudeck, M. Lyszyk. An Overview of the French Research Program Plasma Thrusters for Space Applications. Contribution to Plasma Physics. 2007,41(6):573~588
    59 A. Rolfo. Plasma Thrusters Development in France. Acra Asrronautica. 2002,51:39~46
    60 C. Koppel, F. Marchandise M. Prioul, D. Estublier, F. Darnon. The SMART-1 Electric Propulsion Subsystem around the Moon: In Flight Experience. AIAA-2005-3671
    61 M. Tajmar, J. Gonzalez, A. Hilgers. Modelling of Spacecraft Environment Interactions on SMART-1. AIAA-2000-3526
    62 S. Roche, N. Gascon, M. Prioul. Operating Conditions and Plasma Study of an Aton-Class Hall Thruster. The 3rd International Conference on Spacecraft Propulsion. Cannes. 10-13 October 2000: 351~354
    63 H. Tahara. Research and Development of Hall- Effect Thrusters at Osaka Institute of Technology. AIAA-2008-5086
    64 H. Kuninaka. Activities on Electric Propulsion in Japan - Space Flight from Basic Research. AIAA-2002-3563
    65 H. Tahara, K. Mitsuo, D. Goto, T. Yasui, T. Yoshikawa. Operating Characteristics of Low Power Hall Thrusters. 22nd International Symposium on Space Technology and Science. Morioka, Japan, Paper No.ISTS-2000-b-36p, 2000
    66 H. Tahara, D. Goto, T. Yasui, T. Yoshikawa. Thrust Performance and Plasma Characteristics of Low Power Hall Thrusters. IEPC-2001-042
    67 H. Tahara, Y. Nikai, T. Yasui, T. Yoshikawa. Hall Thruster Research at Osaka University. AIAA-99-2570
    68 T. Hirokazu, S. Atsushi, Y. Seiro. Optimization of Magnetic Field and Acceleration Channel for Low Power Hall Thrusters. 24th International Symposium on Space Technology and Science. Miyazaki; Japan. 30 May-6 June, 2004:264~273
    69康小录,汪兆凌,汪南豪.稳态等离子体推力器低功率工作模式实验研究.推进技术. 2001,22(04):326~328
    70廖宏图,汪兆凌,康小录.稳态等离子体推力器磁场设计与数值分析.推进技术. 2002,23(03):240~244
    71廖宏图,余水淋,康小录.霍尔推力器内部等离子体流场数值分析.推进技术. 2005,26(03):270~275
    72 A. I. Morozov, I. A. Melikov. The Process Scaling in the Plasma Accelerator with Closed Electron Drift under the Condition of Ionization. Journal of Technical Physics. 1974,44(5):544~548
    73 A. I. Bugrova, N. Maslennikov, A. I. Morozov. Similarity Laws for the Global Properties of a Hall Accelerator. Journal of Technical Physics. 1991,61(6):45~51
    74 A. I. Morozov, V. V. Savel'ev. Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics 21. Edited. by B. B. Kadomtsev and V. D. Shafranov. New York Consultants Bureau. New York. USA. 2001:332~339
    75 A. I. Bugrova, A. S. Lipatov, A. I. Morozov, D. V. Churbanov. On a Similarity Criterion for Plasma Accelerators of the Stationary Plasma Thruster Type. Technical Physics Letter. 2002, 128(10): 821~823
    76 A. I. Bugrova, A. S. Lipatov, A. I. Morozov, L. V. Solomatina. Global Characteristics of an ATON Stationary Plasma Thruster Operating with Krypton and Xenon. Plasma Physics Reports. 2002, 28(12):1032~1037
    77 V. Khayms, M. Martinez-Sanchez. Design of a Miniaturized Hall Thruster for Microsatellites. AIAA-1996-329
    78 M. Martinez-Sanchez. Scaling of Hall thrusters. Notes.1995:22~28
    79 D. P. Schmidt, N. B. Meezan, W. A. Hargus. Jr., M. A. Cappelli. Operating Characteristics of a Linear Hall Thruster with an Open Electron-Drift. AIAA-1999-2569
    80 W. A. Hargus. Jr., M. A. Cappelli. Development of a Linerar Hall Thruster. AIAA-1998-3336
    81 V. Kim, V. Kozlov, A. Lazurenko, G. Popov, A.Skrulnikov. Development and Characterization of Small SPT. AIAA-1998-3335
    82 O. Gorshkov. Russian Electric Propulsion Thruster Today. Russian Space News. 1999,9(7):5~11
    83 V. Khayms. Advanced Propulsion for Microsatelites. PH.D Thesis. Massachusetts Institute of Technology. 2000:47~56
    84 N. Z. Warner. Theoretical and Experimental Investigation of Hall Thruster Miniaturization. PH.D Thesis. Massachusetts Institute of Technology. 2007:44~62
    85 T. Misuri, M. Andrenucci. HET Scaling Methodology: Improvement and Assessment. AIAA-2008-4806
    86 V. Kim, V. Kozlov, A. Lazurenko, G. Popov, A. Skrylnikov, C. Clauss, M. Day, J. Sancovic. Development and Characterization of Small SPT. AIAA-1998-3335
    87 V. Kim. Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters. Journal of Propulsion and Power. 1998,14(5):736~743
    88 Y. Raitses, D. Staack, M. Keidar, N. J. Fisch. Electron-Wall Interaction in Hall Thrusters. Physics of Plasmas. 2005,12: 057104
    89 Y. Raitses, D. Staack, A. Smirnov, N. J. Fisch. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters. Physics of Plasma. 2005,12:073507
    90 Y. Raitses, A. Smirnov, D. Staack, N. J. Fisch. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge. Physics of Plasma. 2006,13:014502
    91 Y. Raitses, A. Smirnov, D. Staack. Characterization of Plasma in a Hall Thruster Operated at High Discharge Voltage. AIAA-2005-4404
    92 E. Ahedo, D. Escobar. Influence of Design and Operation Parameters on Hall Thruster Performances. Journal of Applied Physics. 2004,96 (2):983~992.
    93 R. R. Hofer, A. D. Gallimore. High-Specific Impulse Hall Thrusters, Part 2: Efficiency Analysis. Journal of Propulsion and Power. 2006,22 (4):732~740
    94 R. R. Hofer, R. S. Jankovsky. High-Specific Impulse Hall Thrusters, Part 1: Influence of Current Density and Magnetic Field. Journal of Propulsion and Power. 2006,22(4):721~731
    95 R. R. Hofer, A. D. Gallimore. The Role of Magnetic Field Topography in Improving the Performance of High-Voltage Hall Thursters. AIAA-2002-4111
    96 F. S. Gulczinski III. Examination of the Structure and Evolution of IonEnergy Properties of a 5 kW Class Laboratory Hall Effect Thruster at Various Operational Conditions. Ph.D Thesis. The University of Michigan.1999:177-207
    97 L. Biagioni, M. Saverdi, M. Andrenucci. Scaling and Performance Prediction of Hall Effect Thrusters. AIAA-2003-4727
    98 E. A. D. Marco, M. Andrenucci. Hall Thrusters Design and Optimization. AIAA-2008-4805
    99 M. Andrenucci, L. Biagioni, S. Marcuccio, F. Paganucci, M. Tobak. Fundamental Scaling Laws for ElectricPropulsion Concepts-part I HET. IEPC-2003-228
    100 M. Andrenucci, F. Battista, P. Piliero. Hall Thruster Scaling Methodology. IEPC-2005-187
    101 D. Msanzella. Scaling Hall Thrusters to High Power. PH.D Thesis. Stanford University. 2005:30~42
    102 V. Khayms. Advanced Propulsion for Microsatellites. Ph.D Thesis. MIT. 2000:24~30
    103 F. B. Mead, Jr., R. G. Jahn. Scaling of MPD Thrusters. AIAA-1979-2075
    104 J. H. Gilland, A. J. Kelly, R. G. Jahn. MPD Thruster Scaling. AIAA-1987-0997
    105 M. Sumida, K. Toki. Scaling Law and Real Gas Effect of MPD Thruster. AIAA-1987-1066
    106 M. Andrenucci, F. Paganucci. Fundamental Scaling Laws for Electric Propulsion Concepts. Part2: MPD Thrusters. AIAA-2004-3468
    107 J. J. Szabo, J. E. Pollard. A Laboratory-Scale Hall Thruster. AIAA-1995-2926
    108 S. Roche, S. Barral, S. Bechu, M. Dudeck, P. Lasgorceix, L. Mag. Thermal Analysis of a Stationary Plasma Thruster. AIAA-1999-2296
    109 J. M. Fife. Influence of Channel Insulator Material on Hall Thruster Discharges: A Numerical Study. AIAA-2007-1137
    110 E. Y. Choueiri. Fundamental Difference between the Two Hall Thruster Variants. Physics of Plasmas. 2001,8(11):10~15
    111 M. Martinez-Sanchjez. Progress Report for 8/1/97-7/31/98 on Grant AFOSR-95-NA-253. March 12,1999:1~10
    112 I. D. Boyd, M. L. Falk. A Review of Space Material Sputtering by Hall Thruster Plumes. AIAA-2001-3353
    113 R. R. Hofer, J. M. Haas, P. Y. Peterson. Optimization of Hall Thruster Magnetic Field Topography. ICOPS-2000-5P02
    114 R. R. Hofer. A Hall Performance Model Incorporating the Effects of a Multiply-Charged Plasma. AIAA-2001-3322
    115徐家鸾,金尚宪.等离子体物理学.原子能出版社. 1981:570
    116 G. S. Janes, R. S. Lowder. Anomalous Electron Diffusion and Ion Acceleration in a Low Density Plasma. Physics of Fluids. 1966,9:1115~23
    117 F. F.陈著,林光海译.等离子体物理学导论.人民教育出版社. 1980:111~113
    118 S. Yoshikawa, D. Rose. Anomalous Diffusion of Plasma Across a Magnetic Field. Physics of Fluids. 1962,5:334~340
    119 A. A. Litvak, N. J. Fisch. Resistive Instabilities in Hall Current Plasma Discharge. Physics of Plasmas. 2007,8(2):648~651
    120 J. Fife, M. Martinez-Sanchez. Comparison of Results from a Two-Dimensional Numerical SPT Model with Experiment. AIAA-1996-3197
    121 W. A. Hargus Jr., M. A. Cappelli. Development of a Linear Hall Thruster. AIAA-1998-3336
    122 C. A. Lentz, M. Martinez-Sanchez. Transient One Dimensional Numerical Simulation of Hall Thrusters. AIAA-1993-2491
    123 J. W. Koo, I. D. Boyd. Modeling of Anomalous Electron Mobility in Hall Thrusters. Physics of Plasmas. 2006,13:033501
    124 D. Yu, Z. Wu, X. Wang. Numerical Simulation for Near Wall Conductivity Effect on Current Profiles in the Annular Channel of Hall-type Stationary Plasma Thrusters. Physics of Plasmas. 2005,12:043507
    125武志文.稳态等离子发动机电子近壁传导机制研究.哈尔滨工业大学博士论文.2007:21~22
    126 L. G. Mikellides, I. Katzf, M. Mandell. A 1-D Model of the Hall-Effect Thruster with an Exhaust Region. AIAA-2001-3505
    127 L. Garrigues, A. Heron, J. C. Adam, J. P. Boeuf. Hybrid and Particle-In-Cell Models of a Stationary Plasma Thruster. Plasma Sources Science and Technology. 2000,9:219~226
    128 V. Latocha, L. Garrigues, P. Degond, J. P. Boeuf. Numerical Simulation of Electron Transport in the Channel Region of a Stationary Plasma Thruster. Plasma Sources Science and Technology. 2002,11:104~114
    129 A. I. Morozov, V. V. Savel’ev. Hybrid Model of a Stationary Plasma Thruster. Plasma Physics Reports. 2000,26(10):875~880
    130 L. Garrigues, I. D. Boyd, J. P. Boeuf. Computation of Hall Thruster Performance. Journal of Propulsion and Power. 2001,17 (4) :772~779
    131 J. A. Linnell, A. D. Gallimore. Efficiency Analysis of a Hall Thruster Operating with Krypton and Xenon. Journal of Propulsion and Power. 2006, 22(6):1402~1412
    132 D. Sydorenko, A. Smolyakov. Kinetic Simulation of Secondary Electron Emission Effects in Hall Thrusters. Physics of Plasmas. 2006,13:014501
    133 L. Garrigues, G. J. M. Hagelaar, C. Boniface, J. P. Boeuf. Anomalous Conductivity and Secondary Electron Emission in Hall Effect Thrusters. Journal of Applied Physics. 2006,100, 123301
    134 E. D. Marco. Electron Dynamics in Hall Thrusters. AIAA-2008-4630
    135 R. Hofer, I. Katz, D. Goebel, K. Jameson, R. Sullivan, L. Johnson, I. Mikellides. Efficacy of Electron Mobility Models in Hybrid- PIC Hall Thruster Simulations. AIAA-2008-4924
    136 M. Keidar, I. D. Boyd, I. I. Beilis. Plasma Flow and Plasma–Wall Transition in Hall Thruster Channel. Physic of Plasmas. 2001,8(12): 5315~5322
    137 D. Valentian, A. I. Bugrova and A. I. Morozov. Development Status of the SPT MK II Thrusters. IEPC-1993-223
    138 A. I. Morosov. Focusing of Cold Quasineutral Beams in Electromagnetic Fields. Soviet Physics. 1966, 10(8):1363-6
    139 A. I. Morozov, Y. V. Esipchuk, A. M.Kapulkin, V. A. Nevrovskii. Effect of the Magnetic Field on a Closed-Electron-Drift Accelerator. Soviet Physics Technical Physics. 1972,17(3):482-7
    140 J. P. Bugeat, C. Koppel. Development of a Second Generation of SPT. IEPC-1995-35
    141 J. M. Haas, A. D. Gallimore. Internal Plasma Potential Profiles in a Laboratory-Model Hall Thruster. Physic of Plasmas. 2001,8(2):652~660
    142 E. Ahedo, P. Mart?′nez-Cerezo, M. Mart?′nez-Sa′nchez. One-DimensionalModel of the Plasma Flow in a Hall Thruster. Physic of Plasmas. 2001,8(6):3058~3068
    143 C. Clauss. Preliminary Study of Possibility to Ensure Large Enough Lifetime of SPT Operating under Increased Powers. AIAA-1997-2789
    144 C. E. Garner, J. R. Brophy, J. E. Polk. A 5730-Hr Cyclic Endurance Test of the SPT-100. AIAA-1995-2667
    145 K. Komurasaki, K. Mikami, D. Kusamoto. Channel Length and Thruster Performance of Hall Thrusters. AIAA-1996-3194
    146 R. Santos, Magnetic Field Effects on Secondary Electron Emission in Hall Thrusters. AIAA-2008-4725
    147 J. Linnell. Statistical Analysis of the Acceleration Zone Location in Hall Thrusters. AIAA-2008-4721
    148 L. Dorf, Y. Raitses, N.J. Fisch. Effect of Magnetic Field Profile on the Anode Fall in a Hall-effect Thruster Discharge. Physics of Plasmas. 2006,13:057104
    149 S. A. Nasar. Schaum's Outline of Theory and Problems of Electric Machines and Electromechanics. New York. McGraw-Hill. 1998:102~105
    150 A. I. Morozov, A. Shubin. Electron Kinetics in the Wall Conductivity Regime I. Fizika Plazmy. 1984,10:1262~1270
    151 A. I. Morozov, V. V. Savel'ev. Theory of the Near-Wall Conductivity. Physics of Plasmas. 2001,7:607~613
    152 A. I. Bugrova, A. I. Morozov, V. K. Kharchevnikov. The Near Wall Conductivity Effect in the Channel of SPT. Technical Physics Letters. 1983,l9(1):3~6
    153 A. I. Morozov, A. Shubin. Electron Kinetics in the Wall Conductivity Regime II. Fizika Plazmy. 1984,10:1271~1274
    154 D. Bohm. The Characterister of Electrical Discharge in Magnetic Field. New York. McGraw-Hill. 1949:65~68
    155 A. I. Bugrova, A. S. Lipatov, S. V. Baranov, A. I. Morozov. ATON-Type SPT Operation at High Voltages. IEPC-2005-158
    156 L. Albarède, A. Bouchoule, A. Lazurenko, V. Kim, V. Kozlov, A. Skrylnikov. Characteristics of PPS-1350 Type Thrusters under Increased Discharge Voltages and Comparison with Hybrid Codes Simulation Results. IEPC-2005-136
    157 R. R. Hofer. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters. PH.D Thesis. The University of Michigan. 2004:60~94
    158 J. L. Ross, J. D. Sommerville, L. B. King. Efficiency Analysis of a Low Discharge Voltage Hall Thruster. AIAA-2008-4722
    159 C. W. Larson, D. L. Brown, W. A. Hargus. Thrust Efficiency, Energy Efficiency, and the Role of the VDF in Hall Thruster Performance Analysis. AIAA-2007-5270
    160 A. I. Morozov, A. I. Bugrova, A. V. Desyatskov. ATON-Thruster Plasma Accelerator. Plasma Physics Reports. 1997,23(7):587~597
    161 Y. Li, D. Yu. Reconstruction of Ionization Density Distribution in Hall Thruster Channel From ion Energy Spectrum of Plasma Jet. Plasma Science and Technology. 2006,8(6):666~669
    162А.И.Бугрова,А.И.Морозов.ВлияниеBакуумныхYсловийHаPаботуCтационарногоПлазменогоЛвигателяю.ФизикаПлазмы. 1996, 22 (8): 701~706
    163 M. R. Nakles, W. A. Hargus, Jr. Background Pressure Effects on Internal and Near-field Ion Velocity Distribution of the BHT-600 Hall Thruster. AIAA-2008-5101
    164 M. L. R. Walker, R.R. Hofer, A. D. Gallimore. The Effects of Nude Faraday Probe Design and Vacuum Facility Backpressure on the Measured Ion Current Density Profile of Hall Thruster Plumes. AIAA-2002-4253
    165 M. L. R. Walker, A. L. Victor, R. R. Hofer, A. D. Gallimore. Effect of Backpressure on Ion Current Density Measurements in Hall Thruster Plumes. Journal of Propulsion and Power. 2005, 21(3):408~415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700