用户名: 密码: 验证码:
飞行器再入段电磁波传播与天线特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器以极高速度再入大气层的过程中,会在一段时间内出现电波损耗急剧增大的现象。飞行器与大气层相互作用时产生的等离子体,是引起电波损耗剧增,甚至导致通信中断的主要原因。本文对飞行器再入段的电磁波传播与天线特性进行了系统的研究,通过理论分析、数值仿真和测量实验等方法分析了等离子体产生的电波损耗,并提出了降低电波损耗的方法。
     飞行器再入时产生的等离子体是一种具有高电子密度与高碰撞频率的导电流体,具有色散介质的性质。等离子体导致的电波损耗主要包括:等离子体对电磁波的吸收与反射衰减,以及等离子体中天线阻抗失配造成的增益下降。在分析等离子体对电磁波与天线的作用时,为描述等离子体的宏观性质,采用Drude散射模型来模拟。为研究等离子体对电磁波的衰减作用,对电磁波垂直入射均匀等离子体、斜入射均匀等离子体以及垂直入射非均匀等离子体进行了理论分析,对电磁波的功率吸收系数与功率反射系数进行了数值模拟。再入等离子体覆盖在飞行器天线上,会改变原已调谐好的天线参数,为研究覆盖等离子体的天线性能,对等离子体中对称振子天线的辐射与阻抗特性进行了理论分析,对输入阻抗、反射损耗与方向图进行了仿真研究。为适应实际的飞行器情况,建立了覆盖等离子体的喇叭天线模型,分析了天线的反射损耗、电场分布与方向图。
     为验证理论与仿真分析,本文提出了一种测量等离子体中电波损耗的地面实验方案,该方案采用多根低压气体放电等离子体管组成了等离子体平板,模拟了再入段等离子体分布特性,确定了平均等离子体密度,将等离子体平板覆盖在发射天线上,利用收发对置的喇叭天线测量了等离子体造成的电磁波衰减与天线特性参数的改变。
     降低等离子体产生的电波损耗对保障高速飞行器的通信十分重要。基于等离子体的流体性质,本文提出了一种改进再入段等离子体分布特性的结构,建立了相应的等离子体分布模型。该模型保持总体电子数不变,在电磁波极化方向上呈高低电子密度周期排列。为应用微波网络理论对所提出的降低电波损耗方法进行验证,建立了收发对置喇叭天线仿真模型,其中发射天线覆盖有等离子体层。在对等离子体模型参数进行优化设计后,对各频段天线的阻抗特性与辐射特性进行了仿真分析。采用这种等离子体模型后,电磁波的吸收与反射衰减有明显减少,天线的反射损耗减小而增益增大。地面实验测量结果表明所提出的方法可显著降低等离子体产生的电波损耗,改善天线的阻抗匹配特性。
     对于一些具有等离子体喷焰的高速飞行器,提出了一种利用高电子密度射流构成等离子体天线的方法。利用高电子密度等离子体的类似金属性质,基于金属天线理论,对等离子体单极天线的阻抗特性与辐射特性进行了理论分析,通过适当的馈电方式与结构设计,构成了飞行器上使用的等离子体天线。为分析等离子体天线的基本性能,对同轴线馈电的柱形与锥形等离子体天线进行了仿真研究。结合再入环境中的情况,研究了等离子体层覆盖地板的柱形等离子体天线。为适应飞行器上应用,建立了环耦合馈电的柱形等离子体天线模型,提出了在馈电环与等离子体之间加入介质环套的方法,以防止高温对馈电环金属的烧蚀,并对等离子体包围的环耦合馈电等离子体天线进行了研究。本文制作并测量了环耦合馈电的等离子天线,结果表明利用等离子体可实现天线的辐射性能。由于现阶段应用的等离子体天线带宽较窄,为适应宽带测控系统的需要,基于圆盘单极子理论,提出了圆盘与椭圆盘形等离子体单极天线。对其阻抗与辐射特性进行了仿真分析,结果表明新型的等离子体天线有效地拓展了带宽。
     本文详细分析了飞行器在再入段中高速飞行时的电磁波传播与天线特性,提出了降低电波损耗的方法,进行了理论分析、仿真研究与地面测量,为飞行试验提供了理论参考与借鉴。
When a high speed spacecraft flies in reentry aerosphere stage, a phenomenon of electromagnetic attenuation increasement rapidly is able to occur. The reentry plasma is generated by the interaction between spacecraft and aerosphere. The plasma is a main cause of electromagnetic attenuation rapid augment so much as the communication blackout occurment. In this paper, the electromagnetic wave attenuation caused by plasma and the mitigation technique are studied through different method such as theoretical analysis, simulated calculation, and experimental measurement.
     Plasma in reentry aerosphere stage is a kind of electric liquid with high electron density, collision frequency and dispersive characteristic. The electromagnetic attenuation caused by plasma is consisted with the electromagnetic wave absorption and reflection of plasma, and the gain reduced by mismatch of antenna impedance. To describe the macrography characteristic of plasma, the Druce dispersion model is able to employ to analyze the interaction of electromagnetic wave and plasma as much as antenna and plasma. To research the electromagnetic wave attenuation of plasma, the theory of vertical incidence and oblique incidence in homogeneous plasma, and vertical incidence in nonhomogeneous is analyzed, and power absorption coefficient and power return loss of electromagnetic wave is simulated. The reentry plasma can change the initial antenna characteristic. To research the characteristic of antenna covered with plasma, a dipole antenna in plasma is researched. The theory of impedance and radiation characteristic is analyzed, and the input impedance, return loss and radiation pattern of the antenna is simulated. A horn antennacovered with plasma is proposed to analyze the antenna on spacecraft, and the return loss, electric field intensity and radiation pattern of the antenna is simulated.
     To verify the results of theory and simulation analysis, a experiment scheme is proposed to measure the electromagnetic wave attenuation of plasma. The experiment scheme includes a plasma flat slab consist of several plasma tubes by low voltage gas discharge. The plasma flat slab can simulate the reentry plasma characteristic of the spacecraft. After determine the average electron density of the plasma flat slab, the plasma flat slab is put on the transmitting antenna,and the attenuation and the antenna characteristic of electromagnetic wave in plasma are measured by transmitting and receiving horn antenna.
     It is important for the communication protection of high speed spacecraft to mitigate the electromagnetic wave attenuation caused by the plasma. Based on the liquid property of plasma, a configurationis proposed to change the characteristic of the reentry plasma, and the realignment model of plasma electron density is analyzed. When the total number of electron is fixed, the electron density of plasma is arranged normal to the polarization. To analyze the mitigation of electromagnetic wave attenuation based on microwave network theory, ahe model consisted with transmitting antenna and receiving antenna is proposed. The impedance and radiation characteristic is researched. The measurement results show the electromagnetic wave attenuation is mitigated, and the gain is increased. In this model, the transmitting antenna is covered with plasma. The parameter of the plasma electron density model is optimized, and the impedance characteristic and radiation characteristic in every frequency band is simulated and analyzed. The results show the proposed plasma model can reduce the absorption and reflection of electromagnetic wave, reduce the return loss of antenna, and increase the gain of antenna. The results in experiment show the proposed method can mitigate the electromagnetic wave attenuation, and improve the antenna characteristic.
     For some high speed spacecrafts with high electron density plasma jet, a method is proposed to form a plasma antenna by plasma jet with high electron density. Based on the similar metal characteristic of plasma and metal antenna theory, the impedance characteristic and radiation characteristic of plasma monopole antenna is analyzed. The plasma antenna used on the spacecraft can be formed with appropriate feeding and configuration design. To analyze the antenna characteristic, the columnar plasma antenna and conical plasma antenna fed by coaxial line are simulated and analyzed. To adapt the reentry environment, a columnar plasma antenna with ground covered by plasma is researched. To adapt the application of reentry spacecraft, a columnar plasma antenna model fed by metal ring is proposed, and a dielectric ring is used between the feeding metal ring and columnar plasma to avoid the high temperature ablation. The columnar plasma antenna fed by metal ring surround by plasma is researched. A columnar plasma antenna fed by metal ring is designed and measured. The experiment results show the plasma can radiate the electromagnetic wave.To adapt the ues of wideband communication system, some wideband plasma antennas are proposed, such as circular plasma monopole antenna and elliptic plasma monopole antenna based on circular monopole theory. The impedance characteristic and radiation characteristic of these antennae are simulated and analyzed. The results show that the band width of the novel plasma antenna is extended markedly.
     The electromagnetic wave attenuation of high speed reentry in aerosphere stage is analyzed in detail. Based on the liquid property of plasma and the similar metal characteristic of plasma, two methods of electromagnetic wave attenuation mitigation are proposed. The model of electromagnetic wave attenuation mitigation is designed and analyzed by theory and simulation, and the experiment is proposed and researched. The simulation and experiment results are the consultation for flight experiments.
引文
1马兆国,高正平,饶克谨.导弹再入过程中电磁波传播的研究.战术导弹控制技术. 2005(3): 89~94
    2宋蔚皓,陈力农.再入通讯中断问题研究.第十一届全国遥测遥控技术年会,成都, 2000: 90~95
    3 D. E. Mather, J. M. Pasqual, J. P. Sillence and P. Lewis. Radio Frequency (RF) Blackout During Hypersonic Reentry. AIAA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005: 1~12
    4 D. D. Morabito. The Spacecraft Communications Blackout Problem Encountered during Passage or Entry of Planetary Atmospheres. IPN Progress Report. 2002:1~23
    5沈剑,王伟.国外高超声速飞行器研制计划.飞航导弹. 2006(8):1~8
    6陈英硕,叶蕾,苏鑫鑫.国外吸气式高超声速飞行器发展现状.飞航导弹. 2008(12):25~32
    7 M. D. White. Simulation of Communications Through a Weakly Ionized Plasma for a Re-entry Vehicle at Mach 23.9. IEEE Antennas and Propagation Society International Symposium, Washington D.C., USA, 2005:418~421
    8朱方,吕琼之.返回舱再入段雷达散射特性研究.现代雷达. 2008,30(5):14~16
    9常雨,陈伟芳,孙明波,吴其芬.等离子体涡电磁散射特性及隐身性能.航空学报. 2008,29(2):304~308
    10常雨,陈伟芳,罗宁,吴其芬.基于物理光学法的再入等离子体包覆体空间散射特性分析.微波学报. 2008,24(2):1~6
    11唐德礼,孙爱萍,邱孝明.均匀磁化等离子体与雷达波相互作用的数值分析.物理学报. 2002,51(8):1724~1729
    12黄伟,陈逖,罗世彬,王振国.临近空间飞行器研究现状分析.飞航导弹. 2007(10):28~31
    13王唯,关仰泽.关于黑障问题的探索.863航天技术通讯.1999 (6):32~37
    14孙鉴,黄进武.空天飞机的测控通信技术.电讯技术. 2007,47(1):48~52
    15 M. Kim, M. Keidar, I. D. Boyd. Two-dimensional Model of an Electromagnetic Layer for the Mitigation of Communications Blackout. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Florida, USA, 2009:10~17
    16 A. B. Petrin. On the Transmission of Microwaves Through Plasma Layer. IEEE Transactions on Plasma Science. 2000,28(3):1000~1008
    17 A. B. Petrin. Transmission of Microwaves Through Magnetoactive Plasma. IEEE Transactions on Plasma Science. 2001,29(3):471~478
    18 I. Alexeff, M.Laroussi. The Uniform, Steady-state Atmospheric Pressure DCPlasma. IEEE Transactions on Plasma Science, 2002,30(1):174~175
    19 N. Sternberg, A. I. Smolyakov. Resonant Transmission of Electromagnetic Waves in Multilayer Dense-Plasma Structures. IEEE Transactions on Plasma Science. 2009,37(7):1251~1260
    20 E. A. Soliman, A. Helaly, andA. A. Megahed.Propagation of Electromagnetic Waves in Planar Bounded Plasma Refion. Progress In Electromagnetics Research, PIER 67,2007:25–37
    21 G. V. Naidis. On Propagation Characteristics of Electromagnetic Waves along a Plasma Filament. Apply Physics. 2001,34(18):103~104
    22 H. W. Yang, R. S. Chen. FDTD Analysis on the Effect of Plasma Parameters on the Reflection Coefficient of the Electromagnetic Wave. Opt Quant Electron. 2007(39):1245~1252
    23 G. Cerri, F. Moglie, R. Montesi, P. Russo and E. Vecchioni. FDTD Solution of the Maxwell–Boltzmann System for Electromagnetic Wave Propagation in a Plasma. IEEE Transactions on Antennas and Propagation. 2008,56(8):2584~2588
    24 I. Funaki. H. Ogawa, T. Kato, T. Abe, K. Fujita and S. Nonaka. Microwave Attenuation Measurement of Full-scale Solid Rocket Motor Plumes. 33rd AIAA Plasmadynamics and Lasers Conference, Maui, USA, 2002:1~7
    25 P. Hilliona. Electromagnetic Field Propagation in Neutral Isotropic Plasmas. European Physical Journal D. 2004(29):273~277
    26 D. S. Frankel, P. E. Nebolsine, M. G. Miller and J. M. Glynn. Re-entry Plasma Induced Pseudorange and Attenuation Effects in a GPS Simulator. SPIE Defense and Security Symposium, USA, 2004:12~16
    27 M. Kim, M. Keidar and I. D. Boyd. Effectiveness of an Electromagnetic Mitigation Scheme for Reentry Telemetry Through Plasma. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, Nevada,USA:1~11
    28 M. Kim, M. Keidar and I. D. Boyd. Analysis of an Electromagnetic Mitigation for Reentry Telemetry Through Plasma .Journal of Spacecraft and Rockets. 2008,45(6): 1223~1229
    29王舸,陈银华,陆玮.电磁波在非均匀等离子体中的吸收.核聚变与等离子体物理. 2001,21(3):160~164
    30孙爱萍,李丽琼,邱孝明,董玉英.电磁波与非磁化等离子体的相互作用.核聚变与等离子体物理. 2002,22(3):135~138
    31 D. L. Tang, A. P. Sun, X. M. Qiu and P. K. Chu. Interaction of Electromagnetic Waves With a Magnetized Nonuniform Plasma Slab. IEEE Transactions on Plasma Science,2003,31(3):405~410
    32刘明海,胡希伟,江中和,刘克富,辜承林,潘垣.电磁波在大气层人造等离子体中的衰减特性.物理学报. 2002,51(6):1317~1320
    33 L. Lin, B. Wu,C.K. Wu.Propagation Properties of Electromagnetic Wave in a Plasma Slab. Plasma Science & Technology.2003,5(4): 1905~1908
    34吴彬,林烈,吴承康,张澎,王永庆.垂直入射电磁波在大气压非平衡等离子体层中的传播特性.强激光与粒子束.2005,17(2):225~228
    35赵宏康,陆建萍.平面电磁波在等离子体中的吸收衰减.北京理工大学学报. 2004,24(4):350~352
    36杨涓,朱良明,苏纬仪,毛根旺.电磁波在磁化等离子体表面的功率反射系数计算研究.物理学报. 2005,54(7):3236~3240
    37杨华,时家明,凌永顺.电磁波在磁化等离子体上的反射特性研究.电波科学学报. 2001,16(2): 195~199
    38袁忠才,时家明,汪家春.大气中固体燃烧等离子体与微波相互作用的实验研究.强激光与粒子束.2005,17(5):225~228:707~710
    39朱冰,杨涓,黄雪刚,毛根旺,刘俊平.真空环境中等离子体喷流对反射电磁波衰减的实验研究.物理学报. 2006,55(5):2352~2356
    40杨涓,朱冰,毛根旺,许映乔,刘俊平.真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究.物理学报. 2007,56(12):7120~7126
    41王亮,曹金祥,王艳,牛田野,王舸,朱颖.电磁脉冲在实验室等离子体中传播时间的实验研究.物理学报. 2007,56(3):1429~1433
    42 P. B. Mital. An Experimental Study of Curved Rectangular Microstrip Antenna in Simulated Plasma Medium. Active and Passive Elec. Comp., 1996, 19:119~123
    43 M. V. Isakov, V. A. Permyakov. Radiation from Slot Antennas through a Nonlinear Plasma Layer. Radiophysics and Quantum Electronics. 1995,38(5):284~289
    44 H. Usui, N. Nakamnura, Y. Miyake, H. Kojima, H. Matsumoto and Y. Omura. Particle-In-Cell Simulations on Antenna Characteristics in Space Plasma. 2004 Asia-Pacific Radio Science Conference, Kyoto, Japan, 2004: 588~591
    45 P. Nikitin, C. Swenson. Impedance of a Short Dipole Antenna in a Cold Plasma. IEEE Transactions on Antennas and Propagation. 2001,49(10):1377~1381
    46 Y. V. Chugunov, V. Fiala. Effective Length of a Receiving Antenna in a Streaming Plasma. IEEE Transactions on Antennas and Propagation. 2006,54(10):2750~2756
    47钱志华,陈如山,杨宏伟.等离子体覆盖单极子天线的FDTD分析.南京理工大学学报. 2005,29(5):510~513
    48 Z. H. Qian, R. S. Chen, K. W. Leung, H. W. Yang. FDTD Analysis of Microstrip Patch Antenna Covered by Plasma. 4th International Conference on Microwave and Millimeter Wave Technology Proceedings, China, 2004:983~986
    49 Z. H. Qian and R. S. Chen, K. W. Leung, H. W. Yang. FDTD Analysis of Microstrip Patch Antenna Covered by Plasma Sheath. Progress In Electromagnetics Research, PIER 52, 2005:173~183
    50 G. X. Fan, Q. H. Liu. A PML-FDTD Algorithm for Simulating Plasma-covered Cavity-backed Slot Antennas. Microwave and Optical
    67 G. G. Borg, J. H. Harris, N. M. Martin, D. Thorncraft, R. Milliken, D. G. Miljak, B. Kwan, T. Ng and J. Kircher. Plasma as Antenna: Theory,Experiment and Applications. Physics of Plasma. 2000,7(5):2198~2202
    68 T. Anderson, I. Alexeff. Storage and Release of Electromagnetic Waves by Plasma Antennas and Waveguides.33rd Plasmadynamics and Lasers Conference, Maui, USA, 2002:1~5
    69 J. P. Rayner, A. P. Whichello, A. D. Cheetham. Physical Characteristics of Plasma Antennas. IEEE Transactions on Plasma Science, 2004, 32(1):269~281
    70 I. Alexeff, T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli and P. Hulloli. Experimental and Theoretical Results With Plasma Antennas. IEEE Transactions on Plasma Science. 2006,34(2):166~172
    71 G. Cerri, R. D. Leo, V M. Primiani, P. Russo. Plasma Antenna Characterization. 18th International Conference on Applied Electromagnetics and Communications, 2005: 1~4
    72 V. V. Ovsyanikov, A. L. Olshevskiy and V. M. Popel. Bandwidth Properties of a Loop Antenna of Cold Plasma of a Gas Discharge. Ultrawideband and Ultrashort Impulse Signals, Ukraine, 2006: 257~259
    73 V. V. Ovsyanikov, I. A. Reznichenko, A. L. Olshevskiy, V. M. Popel, K. V. Rodin and Y. D.Romanenko. Wideband Properties of a New Antenna Made of Cold Plasma. 4th International Conference on Ultrawideband and Ultrashort Impulse Signals, 2008:77~79
    74张颋,李红波,刘国强.等离子体天线的基本特性研究.信息工程大学学报. 2006,7(3):241~243
    75刘平,刘黎刚,邓记才,贾琦.等离子体天线的发射特性.郑州大学学报. 2006,27(3):126~128
    76袁忠才,时家明,余桂芳.表面波激励等离子体天线的原理与实现.电子信息对抗技术. 2006,21(4):38~41
    77孙杰,袁斌,蒋垒,林桦.等离子天线及其在复杂电磁环境中的应用.信息技术.2007(7):34~37
    78夏新仁,尹成友,王光明.等离子体柱天线的辐射特性.空军工程大学学报. 2008,9(2):68~71
    79 M. Chung, W.S. Chen, B.R. Huang, C.C. Chang, K.Y. Ku, Y.H. Yu,T.W. Suen. Capacitive Coupling Return Loss of a New Pre-ionized Monopole Plasma Antenna. IEEE Conference on TENCON, 2007:1~4
    80 M. Chung, W.S. Chen, Y.H. Yu, Z. Y. Liou. Properties of DC-biased Plasma Antenna. International Conference on Microwave and Millimeter Wave Technology, China, 2008:1118~1120
    81 Y. Lee, S. Ganguly. Analysis of a Plasma-column Antenna Using FDTD Method.Microwave and Optical Technology Letters. 2005,46(3):252~259
    82 Z. H. Qian, K. W. Leung, R. S. Chen and D. X. Wang. FDTD Analysis of aPlasma Whip Antenna. IEEE Antennas and Propagation Society International Symposium, Washington D.C., USA, 2005:166~169
    83 K. A. Connor, R. D. Curry, S. Kovaleski. Analysis of Plasma Antenna Options for Explosively-Driven Microwave Generators and Outline of Plasma Antenna Design. 27th IEEE Power Modulator Conference, Washington D.C., USA, 2006:380~384
    84 A. H. Adzhiev, V. A. Soshenko, O. V. Sytnik, A. S. Tishchenko. Experimental Investigation of Explosive Plasma Antennas. Technical Physics, 2007,52(6): 765~769
    85 O. O.Puzanov, V. A. Soshenko. Explosive Plasma Antennas. CriMiCo'2005. Sevastopol, Ukraine, 2005:695~696
    86柳锐锋,付海波,陈诚.非磁化等离子体与电磁波的作用.现代防御技术. 2006,34(5):81~85
    87 N. Y. Zhu, X. F. Li, L. S. Huang, X. L. Yu and Q. S. Yang. An Investigation of Electromagnetic Wave Propagation in Plasma by Shock Tube. ACTA Mechanica Sinica, 2004,20(3):212~218
    88 H. Usui, H. Matsumoto, F. Yamashita, M. Yamane and S. Takenaka. Computer Experiments on Radio Blackout of a Reentry Vehicle. 6th Spacecraft Charging Technology Conference, 2000:107~110
    89何开锋,高铁锁,江涛.烧蚀对再入体绕流电子数密度影响的数值研究.空气动力学学报. 2009,27(1):57~61
    90袁忠才,时家明,许波.用于目标隐身的等离子体参数的选择.电子对抗技术. 2004,19(2):39~42
    91杨森,陈新华.火箭尾焰等离子体浓度分布数值计算.科学技术与工程. 2008,8(4):965~970
    92杨涓,刘文一,朱国强,毛根旺.真空中微波等离子体喷流电子数密度分布规律实验研究.物理学报. 2007,56(1):366~370
    93袁忠才,时家明.非磁化等离子体中的电子碰撞频率.核聚变与等离子体物理.2004,24(2):157~160
    94袁忠才,时家明.碰撞频率对等离子体吸波特性的影响.微波学报. 2005,(21增刊):49~52
    95金兹堡.电磁波在等离子体中的传播.北京:科学出版社, 1978:32~33
    96 M. Okoniewski, E. Okoniewska. Drude Dispersion in ADE FDTD Revisited. Electronics Letters. 2006,42(9):102~104
    97张敏. CST微波工作室用户全书.电子科技大学出版社, 2004:13~15
    98 J. Poggie, D. V. Gaitonde and N. Sternberg.Numerical Simulation of Plasma Sheaths in Aerodynamic Applications.33rd AIAA Plasmadynamics and Lasers Conference, Maui, USA, 2002:1~12
    99曾明,柳军,瞿章华.载人飞船等离子体鞘电子密度分布的数值计算.国防科技大学学报. 2001,23(1):19~22
    100 W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E.Sugiyama. Plasma Simulation Studies Using Multilevel Physics Models. Physics of Plasmas. 1999,6(5):1796~1803
    101郭斌,王晓钢,刘悦.离子对电磁波传播特性的影响.核聚变与等离子体物理.2005,25(3):237~240
    102 M. Keidar, I. D. Boyd. Electromagnetic Reduction of Plasma Density during Atmospheric Reentry and Hypersonic Flights. Journal of Spacecraft and Rockets. 2008,45(3):445~453
    103王晓燕,李国锋,赵宏康.电磁波在等离子体中的非线性吸收衰减.计算物理. 2006,23(6):661~664
    104杨涓,龙春伟,陈茂林,许映桥,谭小群.外加磁场微波等离子体喷流对平面电磁波衰减的实验研究.物理学报.2009,58(7):4793~4798
    105刘少斌,莫锦军,袁乃昌.非磁化等离子体密度与目标雷达隐身的关系.电波科学学报. 2003,18(1):57~61
    106王华东,鄢扬,郭军.电磁波在等离子体层中衰减的数值分析.电子科技大学学报.2004,33(4):357~360
    107刘少斌,袁乃昌,莫锦军,张光甫.斜入射到非磁化等离子体的电磁波的吸收.系统工程与电子技术.2003,25(11):1347~1350
    108杨华,时家明,凌永顺,樊祥.斜入射到非均匀等离子体上的电磁波反射系数计算.微波学报.2001,17(2):67~71
    109吕爱龙,许家栋.非均匀磁化等离子体中电磁波的反射.电波科学学报. 2005,20(4):531~534
    110刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离子体中的吸收.电子学报. 2003,31(3):372~375
    111邵可然,晏明,雷刚,胡希伟.电磁波在不均匀非磁化等离子体中的吸收.华中科技大学学报. 2007,35(6):57~59
    112杨宏伟,陈如山.等离子体频率特性对电磁波反射的影响.南京理工大学学报. 2007,31(2):168~170
    113赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播.地球物理学报. 1985,28(2):117~125
    114 V. A. Pakhotin. Radiation from Electrically Short Antenna in a Limited Volume of Gas-Discharge Plasma. Technical Physics Letters, 2007,33(4):326~329
    115 G. Vecchi, M. Sabbadini, R. Maggiora and A. Siciliano. Modelling of Antenna Radiation Pattern of a Re-entry Vehicle in Presence of Plasma. IEEE Antennas and Propagation Society International Symposium, Monterey, USA, 2004:181~184
    116 X.Q.Zhu, D.B.Ge and Y.L.Wu. FDTD Analysis of Radiation from Monopole Antenna with Plasma Coating. 6th International Symposium on Antennas, Propagation and EM Theory, 2003: 42~45
    117 J. Ward, C. Swenson and C. Furse.The Impedance of a Short Dipole Antennain a Magnetized Plasma Via a Finite Difference Time Domain Model. IEEE Transactions on Antennas and Propagation. 2005,53(8):2711~2718
    118马兆国,高正平,毕兆亿.高速飞行器再入时微波通过等离子体鞘套的传输特性.战术导弹控制技术. 2007(1):1~4
    119 D. M. Pozar. Microwave Engineering (3rd Edtion). John Wiley & Sons, Inc, 2004:555~556
    120王甲寅,时家明,袁忠才,许波.等离子体的三频点微波透射衰减诊断方法.强激光与粒子束. 2007,19(4):621~624
    121程养民. TY-3探空火箭突起物气动加热计算.固体火箭技术. 2003,26(2):1~3
    122耿湘人,桂业伟,王安龄.微型凸起物高超声速气动热特性研究.空气动力学学报. 2006,24(2):265~268
    123徐翔,彭治雨,石义雷,张志刚.高超声速锥体表面凸起物分离干扰区气动力热关联计算方法.空气动力学学报. 2009,27(2):260~264
    124柴霖.临近空间飞行器测控与信息传输系统频段选择.航空学报. 2008,29(4):1007~1112
    125陈宗胜,时家明,王甲寅,袁忠才.表面波等离子体天线的柱状等离子体源参数研究.真空电子技术. 2008(2):18~21
    126 A. K. Mitra. Pulsed Plasma Antenna. United States Patent. June,27,2006
    127黄雪峰,陈斌,汪家有.等离子体天线的基本原理及其构成.电子科技. 2008,21(5):33~36
    128刘良涛,祝大军,刘盛刚.等离子体天线的原理与设计.雷达与对抗. 2004(4):26~30
    129 M. Pencheva, E. Benova and I. Zhelyazkov. Surface Wave Propagation Characteristics in Atmospheric Pressure Plasma Column. Second International Workshop & Summer School on Plasma Physics, 2006:1~6
    130 J. P. Rayner, A. P. Whichello and A. D. Cheetham. Physical Characteristics of Plasma Antennas. 11th International Congress on Plasma Physics, 2002:392~395
    131 M. Hargreave, J. P. Rayner, A. D. Cheetham, G. N. French and A. P. Whichello. Coupling Power and Infomation to a Plasma Antenna, Plasma Physics:11th International Congress on Plasma Physics, 2002:388~391
    132杨兰兰,屠彦,王保平.等离子体天线中波的色散关系的研究.真空科学与技术学报. 2004,24(6):424~429
    133 V. Atanassov, E. Mateev. Spatial Structures Arising along a Surface Wave Produced Plasma Column: an Experimental Study. Second International Workshop & Summer School on Plasma Physics, 2006:11~18
    134 Q. Ding, J.Ding, C.J.Guo and L.Shi. On Characteristics of a Plasma Column Antenna. International Conference on Microwave and Millimeter Wave Technology, China, 2008:413~415
    135 Z. H. Qian, R. S. Chen, H. W. Yang, K. W. Leung and E. K. N. Yung. FDTDAnalysis of a Plasma Whip Antenna. Microwave and Optical Technology Letters. 2005,47(2):147~150
    136 J. Y. Wang, J. M. Shi, J. C. Wang and B. Xu. Study of the Radiation Pattern of the Unipole Plasma Antenna. 7th International Symposium on Antennas, Propagation & EM Theory, 2006:1~4
    137赵国伟,陈诚,徐跃民.柱形等离子体辐射场的数值计算和分析.空间科学学报, 2005,25(2):93~98
    138 G. Cerri, R. D. Leo, V. M. Primiani and P. Russo. Measurement of the Properties of a Plasma Column Used as a Radiating Element. Instrumentation and Measurement Technology Conference, Sorrento, Italy, 2006:483~486
    139 G. Cerri, R. D. Leo, V. M. Primiani and P. Russo. Measurement of the Properties of a Plasma Column Used as a Radiating Element. IEEE Transactions on Instrumentation and Measurement. 2008,57(2):242~247
    140梁志伟,孙海龙,王之江,徐杰,徐跃民.等离子体天线输入阻抗测量及分析.物理学报. 2008,57(7):4292~4297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700