用户名: 密码: 验证码:
大豆种子贮藏蛋白亚基特异种质的筛选、鉴定及其遗传稳定性与功能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以1400份大豆品种为材料,在筛选到蛋白亚基特异种质的基础上,进行了亚基含量年份间稳定性分析、亚基缺失类型的进一步鉴定和遗传分析以及种质创新、亚基特异种质的蛋白功能性评价等方面的研究。以期为进一步发掘我国丰富的大豆基因资源、筛选出亚基组成优良的大豆材料,明确亚基变异类型遗传规律,阐明亚基变异对大豆蛋白功能性的影响奠定基础。主要结果如下:
     1、1400份参试品种的11S/7S比值范围为0.44~3.64,平均值为1.68±0.37,鉴定出34份亚基含量特异材料,其中包括α'和α亚基含量低、β亚基含量低、A_3B_4亚基缺失、A_5A_4B_3亚基缺失和A_(1a)B_(1b)亚基缺失种质。理化诱变结果表明:化学诱变率为2.92%,物理诱变率为5.71%,对大豆蛋白的诱变效果0.4%EMS处理优于0.2%EMS处理,而仰~(60)Co γ射线慢照射处理优于化学诱变处理。并从M_3代种子中筛选出了211粒亚基变异种质。
     2、分析了2003年、2004年和2005年种植的280份大豆种质的7S和11S组分及其亚基含量间的差异,结果表明:品种对大豆贮藏蛋白7S、11S组分及其亚基含量、7S+11s和11S/7S值的影响均达极显著水平,年份除对α亚基和A_4亚基含量的影响达极显著水平外,对其它亚基含量及7S、11S、7S+11S和11S/7S值的影响均不显著;品种×年份对7S、11S、11S/7S值、α亚基、A_4亚基和A_5亚基含量的影响达极显著水平,对其它组分和亚基含量的影响均不显著。
     3、在SDS-PAGE筛选到蛋白亚基特异种质的基础上,运用双向聚丙烯酰胺凝胶电泳(2-DE)分析大豆贮藏亚基正常品种南农大黄豆和亚基变异品种桂阳紫金豆种子总蛋白的蛋白质组。差异蛋白质组学显示,等电点和分子量分别约为5.40和37.85kDa、5.24和37.2kDa、5.15和37.05kDa的蛋白质点在正常品种种子中表达而在缺失品种中未表达。对这3个蛋白质点用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)测定其胶内酶解后的肽质量指纹谱(PMF),对获得的PMF用Mascot软件在NCBI数据库中查询比对,鉴定出这3个蛋白质点均为大豆球蛋白A_(1a)B_(1b)亚基同源三聚体,表明桂阳紫金豆种子贮藏蛋白缺少A_(1a)b_(1b)亚基。
     4、研究了4个不同蛋白亚基类型(A_(1a)b_(1b)亚基正常、A_(1a)b_(1b)亚基缺失;A_3B_4亚基正常、A_3B_4亚基缺失)的品种所配成的6个杂交组合的F_1、F_2、F_3种子亚基表现及其遗
The contents of 7S and 11S globulins and their respective subunits, and the 11S/7S ratios in seeds of 1400 soybean varieties were analyzed using SDS-PAGE, the affection of varieties and years on the major fractions and their subunits, further identification the kind of subunits deficiency, the genetic analysis of A_(1a)B_(1b)-subunit and A_3B_4-subunit in soybean seeds, integration null mutations for A_(1a)B_(1b)-subunit, A_3B_4-subunit and A_5A_4B_3-subunit of the storage protein were by crossbreeding, induced variation germplasm of storage proteins by physical and chemical method, and the relationships between subunits variation and functional properties of soybean protein were analyzed. The main results are as follows:
    1. The average and variation range of the 11S/7S ratios of 1400 soybean varieties were 1.68±0.37 and 0.44-3.64, and 34 variation accessions of subunits content were identified, including low level of α'-,α-subunit, low level of β-subunit, absence of A_3B_4-subunit, absence of A_5A_4B_3-subunit and A_(1a)B_(1b)-subunit. The results of induced variation germplasm of storage proteins by physical and chemical method indicated: the chemical induced rate is 2. 92%, while the physical induced rate is 5.71%, ~(60)Co γ-ray irradiation treatment > 0.4%EMS treatment > 0.2% EMS treatment, and 211 seeds of subunits variation were detected in the M_3 seed.
    2. The content of 11S and 7S fractions and their major subunits in 280 soybean varieties storage protein during 2003, 2004 and 2005 years were compared with SDS-PAGE. The results showed that there were significant differences on the content of α', α, β, A_3, A_4, A_2A_(1a)A_(1b), B_3, B_(1a)B_(1b)B_2, B_4, A_5 subunits, 11S and 7S, 11S +7S and 11S/7S between difference varieties, while except A_4-subunit there no significant differences among 2003, 2004 and 2005 years.
    3. Basis on successfully selected a mutant line which characterized by the lack of the A_(1a)B_(1b) or A_(1b)B_2 or A_2B_(1a) -subunits of glycinin from cultivar variety "Guiyangzijindou", the proteome of the seed protein of soybean varieties "Nannongdahuangdou" and
引文
1.崔杰峰,刘银坤.蛋白质组学研究的支撑技术-双向凝胶电泳[J].国外医学临床生物化学与检验学分册,2003,24(5):283-287
    2.陈海敏,华欲飞.品种差异对大豆蛋白质功能性的影响[J].中国油脂,2000,25(6):178-180
    3.陈海敏,华欲飞.大豆蛋白组成与功能关系研究[J].西部粮油科技,2001,26(3):36-38
    4.陈建南,刘纪华,李海民.半野生大豆7S贮藏蛋白的提取及某些特性的研究[J].大豆科学,1985,4(1):37-44
    5.陈章良主编.植物基因工程研究[M].北京:北京大学出版社,1993:116-137
    6.程翠林,石彦国,王振宇,等.大豆蛋白亚基组成对其功能性的影响[J].食品科学,2006,27(3):70-74
    7.丁勇.大豆种子贮藏蛋白遗传工程研究[J].中国生物工程杂志,1995,5:7-11
    8.关荣霞,常汝镇,邱丽娟,等.栽培大豆蛋白亚基11S/7S组成及过敏蛋白缺失分析[J].作物学报,2004,30(11):1076-1079
    9.郭尧君编著.蛋白质电泳实验技术[M].北京:科学出版社,1999
    10.何志鸿,姚振纯,林红.黑龙江省大豆化学品质生态地理分布Ⅰ.野生大豆化学品质生态地理分布[J].东北农学院学报,1988,3:237-245
    11.黄丽华,麻浩,王显生,等.大豆种子贮藏蛋白11S和7S组分的研究[J].中国油料作物学报,2003,25(3):20-23
    12.黄尚琼.中国南方栽培大豆蛋白质资源[J].中国油料作物学报,1989,3:52-54
    13.黄友如,裘爱泳,华欲飞.大豆蛋白结构与功能的关系[J].中国油脂,2004,29(11):24-28
    14.韩雅君.大豆分离蛋白的组分分离技术研究[D].中国农业大学硕士学位论文,2004
    15.胡志昂,王洪新,赵述文,等.栽培大豆和野生大豆(Glycine soja)种子蛋白的变异[J].大豆科学,1986,5(3):205-210
    16.胡明祥,于德洋,孟祥勋等.不同地理生态环境对中国大豆种子品质的影响[J].大豆科学,1990,1:39-49
    17.纪锋,郑惠玉,杨光宇等.吉林省野生大豆蛋白质含量的初步分析[J].吉林农业科学,1990,3:93-96
    18.姜振峰.大豆贮藏蛋白亚基资源分析及年份地点变异研究[D].东北农业大学硕士学位论文,2003
    19.雷勃钧,尹光初,刘红军,等.大豆属贮存蛋白的研究—Ⅰ、大豆及某些野生型大豆球蛋白构成的比较[J].大豆科学,1984,3(2):36-39
    20.李福山,常汝镇,舒世珍,等.栽培、野生、半野生大豆蛋白质含量及氨基酸组成的初步分析[J].大豆科学,1986,5(1):65-72
    21.李里特主编。大豆加工与利用[M].化学工业出版社,2003,111-112
    22.刘志胜,李里特,辰巳英三.大豆蛋白营养品质和生理功能研究进展[J].大豆科学,2000,19(3):263-268
    23.卢为国,王树峰,李卫东,等.大豆籽粒贮藏蛋白11S/7S比值与生态因子相关关系的研究[J].中国农业科学,2005,38(5):1059-1064
    24.麻浩,王显生,刘春,等.706份中国大豆种质贮藏蛋白7s和11s组分及其亚基相对含量的研 究[J].大豆科学,2006(1):11-17
    25.孟岩.亚基缺失特异大豆品种的筛选及β-亚基对大豆加工特性的影响[D].中国农业大学硕士学位论文,2004
    26.孟祥勋.大豆种子贮藏蛋白研究[J].东北农业大学学报,1997,28(2):201-207
    27.平春枝.日本作物学会纪事[M].1976,45:381-391
    28.宋启建,盖钧镒,马育华.大豆蛋白质和油分含量生态特点研究[J].大豆科学,1990,9(2):121-128
    29.石彦国,程翠林,朱秀清,等.品种差异对大豆蛋白凝胶性的影响[J].中国粮油学报,2005,20(3):58-61
    30.孙英.转gagal基因大豆的培育及初步鉴定[D].南京农业大学硕士学位论文,2003
    31.谈建中,楼程富.大豆种子贮存蛋白基因及其遗传转化的研究进展[J].大豆科学,2000,19(1):57-62
    32.陶慰孙编著.蛋白质分子基础(第二版)[M].北京:高等教育出版社,1995
    33.万晶宏,贺福初.蛋白质组技术的研究进展[J].科学通报,1999,44(9):903-906
    34.王大成.蛋白质工程[M].北京:化学工业出版社,2002,94-105
    35.王金龙,陈存来.大豆种子贮藏蛋白组分11S/7S研究概况[J].山东农业科学,1998,1:48-50
    36.王丽侠,郭顺堂,付翠真,等.大豆种子贮藏蛋白11S与7S组份的研究[J].中国粮油学报,2004,19(4):53-57
    37.王培英,许德春,郭玉虹,等.人工诱变改良大豆品质的研究[J].核农学报,2000,14(1):21-23
    38.王显生.大豆种子贮藏蛋白11S和7S组分亚基的变异、积累动态及遗传研究[D].湖南农业大学硕士学位论文,2004
    39.王显生,麻浩,向世鹏,等.不同SDS-PAGE分离胶浓度下大豆贮藏蛋白亚基的分辨效果[J].中国油料作物学报,2004,26:75-80.
    40.王志新,杨庆凯.环境因素对大豆化学品质及产量影响研究:Ⅰ.播期对大豆化学品质及产量的影响[J].大豆科学,2003,22(1):45-49
    41.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社,2000
    42.徐豹,郑惠玉,吕景良,等.中国大豆的蛋白资源[J].大豆科学,1984,3(4):327-331
    43.徐豹,邹淑华,庄炳昌,等.野生大豆(G soja)种子贮藏蛋白组份11S/7S的研究[J].作物学报,1990,16(8):235-241
    44.许月,朱长甫,石连旋,等.大豆种子贮藏蛋白的研究概况[J].大豆科学,1998,17(3):262-267
    45.周新安,盖钧镒,马育华.大豆种子贮藏蛋白组成及其相关分析[J].大豆科学,1992,11(3):191-197
    46.周瑞宝,周兵.大豆7S和11S球蛋白的结构和功能性质[J].中国粮油学报,1998,13(6):39-42
    47.赵政文,马继风,李小红,等.南方春大豆春、秋播与籽粒蛋白质脂肪含量关系的研究[J].大豆科学,1999,18(3):183~189
    48. Allen R D, Bernier F, Lessard P A, et al. Nuclear factors interact with a soybean β-conglycinin enhancer[J]. The Plant Cell, 1989, 1:623-631
    49. Adachi M, Takenaka Y, Gidamis A B, et al. Crystal structure of soybean proglycinin A_(1a)B_(1b) homotrimer[J]. J Mol Biol, 2001, 305:291-305
    50. Altenbach S B, Pearson K W, Meeker G, et al. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants [J]. Plant Mol J Biol, 1989, 13: 513-522
    51. Badley R A, Atkinson D, Hauser H, et al. The structure, physical and chemical properties of the soybean protein glycinin [J]. Biochim. Biophys. Acta, 1975,412: 214-228
    52. Baumlein H, Wobus U, Pustell J. The length gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element [J]. Nucleic Acids Res, 1986, 14: 2707-2720
    53. Beachy R N, Thompson J F, Madison J T. Isolation of polyribosomes and messenger RNA active in in Vitro synthesis of soybean seed proteins [J]. Plant physiol, 1978, 61(2): 139-144
    54. Beachy R N, Chen ZL, Horsch R B, et al. Accumulation and assembly of soybean β -conglycinin in seeds of transformed petunia plants [J]. EMBO J, 1985,4: 3047-3053
    55. Benier F, et al. Proceedings of the Fourth International Workshop on Seeds; basic and applied aspects of seed biology, Angers, France, 20-24 July 1992, Volume 1,1993,13-20
    56. Berk Z. Isolated soy protein. In Technology of Production of Edible Flours and Protein Products from Soybeans; Berk Z. Ed., FAO: Rome, Italy, 1992, p83-96.
    57. Bian Y, Myers D J, Lihono M A, et al. Functional properties of soy protein fractions produced using a pilot-scale process [J]. J Am Oil Chem Soc, 2003, 80: 545-549.
    58. Binz P A, Muller M, Walther, et al. A molecular scanner to automate proteomic research and to display proteome images [J]. Anal Chem, 1999,71:4981-4988
    59. Bourne M C. Texture profile Analysis. Food Technology, 1978, 32:62-72
    60. Bray E A, Naito S, Pan N S, et al. Expression of the β-subunit of β-conglycinin in seeds of transgenic plants [J]. Planta, 1987, 172: 364-370
    61. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye biding [J]. Analytical Biochemistry, 1976, 72:248-254
    62. Chalkley R J, Burlingame A L. Identification of GlcNAcylation sites of peptides and α-crystallin using Q-TOF mass spectrometry [J]. J Am Soc Mass Spectrom, 2001,12:1106-1113
    63. Chamberland S, Daigle N, Bernier F. The legumin boxes and the 3' part of a soybean β-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants [J]. Plant Mol Biol, 1992, 19: 937-949
    64. Cho T J, Davies C S, Nielsen N C. Inheritance and organization of glycinin genes in soybean [J]. The Plant Cell, 1989, 1:329-337.
    65. Clercq A D, Vandewiele M, Rycke R D, et al. Expression and processing of an Arabidopsis 2S albumin in transgenic tobacco [J]. Mol J Gen Genet, 1990a, 221: 306-314
    66. Clercq A D, Vandewiele M, et al. Stable accumulation of modified 2S albumin seed storage proteins with higher methionine contents in transgenic plants [J]. Plant Physiol, 1990b, 94:970-979
    67. Damodaran S. Refolding of thermally unfolded soy proteins during the colling regime of the gelation process: effect on gelation. J Agric Food Chem, 1988,36 (2): 262-269
    68. Davies C S, Coates B, Nielsen. Inheretance and biochemical analysis of four electrophoretic variants of β-conglycinin from soybean [J]. Theor Appl Genet, 1985, 71: 351-358
    69. Doyle J J, Schuler M A, Godette W D, et al. The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. Structural homologies of genes and proteins [J]. J Biol Chem, 1986, 26: 9228-9238 55.
    70. Fontes E P B, Moreira M A, Davies C S, et al. Urea-elicited changes in relative electrophoretic mobility of certain glycinin and β-conglycinin subunits[J]. Plant physiology, 1984, 76: 840-842
    71. Fujiwara T, Beachy R N. Tissue-specific and temporal regulation of a β-conglycinin gene: roles of the RY repeat and other cis-acting elements [J]. Plant Mol Biol, 1994,24: 261-272
    72. Fukazawa C, Momma T, Higuchi W, et al. Complete nucleotide sequence of the gene encoding a glycinin A_2B_(1a) -subunit precursors of soybean [J]. Nucleic Acids Res, 1987,15: 8117
    73. Fukushima D. Recent progress of soybean protein foods: Chemistry, technology, and nutrition [J]. Food Rev. Int, 1991a, 7: 323-351
    74. Fukushima D. Structures of plant storage proteins and their functions [J]. Food Reviews International, 1991b, 7: 353-379
    75. Gallardo K, Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic process related to reserve accumulation [J]. Plant Physiology, 2003, 133: 664-682
    76. Gevaert K, Vandekerckhove J. Protein identification methods in proteomics [J]. Electrophoresis, 2000,21:1145-1154
    77. Gidamis A B, Wright P, Haque Z U, et al. Modification tolerability of soybean proglycinin [J]. Biosci Biotechnol Biochem, 1995,59: 1593-1595
    78. Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients [J]. Electrophoresis, 2000,21: 1037-1053
    79. Gygi S P, Aebersold R. Mass spectrometry and proteomics [J]. Curr Opin Chem Biol, 2000, 4: 489-494
    80. Hajduch M, Ganapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database [J]. Plant Physiology, 2005,137 (4): 1397-1419
    81. Hajika M, Takahashi M, Sakai S. et al. A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja) [J]. Breed Sci, 1996,46: 385-386
    82. Hamasaki H, Aoyagi M, Kasama T. GT1b in human metastatic brain tumors: GT1b as a brain metastasis-associated ganglioside [J]. Biochim Biophys Acta, 1999,1437 (1): 93-99
    83. Harada K, Toyokawa Y, and Kitamura K. Genetic analysis of the most acidic 11S globulin subunit and related characters in soybean seeds [J]. Japan J Breed, 1983, 33:23-30
    84. Harada K, Barker S, Goldberg R. Soybean β-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes [J]. The Plant Cell, 1989, 1: 415-425
    85. Harry J L, Wilkins M R, Herbert B R, et al. Proteomics: Capacity versus utility [J]. Electrophoresis, 2000,21:107181.
    86. Hayashi M, Harada K, Kitamura K. Characterization of a 7S globulin-dificient mutant of soybean (Glycine max (L.) Merri.) [J]. Mol Gen Genet, 1998, 258: 208-214
    87. Hill J E, Breidenbach R. W. Protein of soybean seeds II. Accumulation of the major protein components during seed development and maturation [J]. Plant Physiol, 1974, 53: 747-751
    88. Hou H J, Chang K C. Structural characteristics of purified glycinin from soybeans stored under various conditions [J]. J Agric Food Chem, 2004, 52: 3792-3800.
    89. Hu B, Esen A. Heterogeneity of soybean seed proteins: one-dimensional electrophoretic profiles of six different solubility fractions [J]. J Agric Food Chem, 1981,29:497-501
    90. Iida A, Nagasawa A, Oeda K. Positive and negative cis-regulatory regions in the soybean glycinin promoter identified by quantitative transient gene expression [J]. Plant Cell Reports, 1995, 14: 539-544
    91. Itoh Y, Kiramura Y, Fukazawa C. The glycinin box: a soybean embryo factor binding motif within the quantitative regulatory region of the 11S seed storage globulin promoter [J]. Mol Genetics and Genomics, 1994, 243: 353-357
    92. Iwabuchi S., Yamauchi F. Determination of glycinin and β-conglycinin in soybean proteins by immunological methods [J]. J Agric Food Chem, 1987,35: 200-205.
    93. Kaizuma N, et al. A mutant line on 11S globulin subunits induced with gamma-ray irradiation [J]. Japan J Breed, 1990,40: 505-506
    94. Kang I J, Matsumura Y, Mori T. Characterization of texture and mechanical properties of heat-induced soy protein gels. J. Am.Oil Chem.Soc, 1991, 68: 339—345
    95. Katayama H, Nagasu T, Oda Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Rapid Commu Mass Spectrom, 2001, 15: 1416-1421
    96. Kato A, Yutani K. Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase α-subunit substituted at the same position [J]. Protein Engineering, 1988,2: 153-156
    97. Kazuhiro Y, Toshio T. Biochemical Characterization of Soybean Protein Consisting of Different Subunit of Glycinin [J]. J Agri Food Chem, 1997, 45: 656—660
    98. Keough T, Youngquist R S, Lacey M P. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry [J]. Proc Natl Acad Sci U S A, 1999, 96: 7131-7136
    99. Keough T, Lacey M P, Fieno A M, et al.Tandem mass spectrometry methods for definitive protein identification in proteomics research [J]. Electrophoresis, 2000,21:2252-2265
    100. Kim C S, Kamiya S, Kanamori J, et al. High-level expression, purification and functional properties of soybean proglycinin from Escherichia Coli [J]. Agric Biol Chem, 1990a, 54: 1543-1550
    101. Kim C S, Kamiya S, Sato T, et al. Improvement of nutritional value and functional properties of soybean glycinin by protein engineering [J]. Protein Engineering, 1990b, 3: 725-731
    102. Kim C S, et al. Enhanced emulsifying activity of soybean proglycinin modified by protein engineering [J]. Food Science and Biotechnology, 1999, 8 (3): 184-188
    103. Kitamura K, Norihiko K. Mutant strains with low level of subunits of 7S globulin in soybean seeds [J]. Japan J Breed, 1981, 31(4): 353-359
    104. Kitamura K, Davies C S, Nielsen N C. Inheritance of alleles for Cgy_1 and Gy_4 storage protein genes in soybean [J]. Theor Appl Genet, 1984, 68: 253-357
    105. Kitamura K, Ishimoto M, Kaizuma K. Genetic relationships among genes for the subunits of soybean 11S globulin [J]. Japan J Breed, 1993,43[Suppl 2]: 159-163
    106. Kitamura Y, Arahira M, Itoh Y, et al. The complete nucleotide sequence of soybean glycinin A_2B_(1a) gene spanning to another glycinin gene A_(1a)B_(1b) [J]. Nucleic Acids Res, 1990, 18: 4245
    107. Koshiyama I, Kikuchi M, Harada K, et al. 2S globulins of soybean seeds. I. Isolation and characterization of protein components [J]. J Agric Food Chem, 1981a, 29: 336-340
    108. Koshiyama I, Kikuchi M, Fukushima D. 2S globulins of soybean seeds. II. Physicochemical and biologrical properties of protease inhibitors in 2S globulins [J]. J Agric Food Chem, 1981b, 29: 340-343
    109. Kuster B, Mortensen P, Andersen J S, et al. Mass spectrometry allows direct identification of proteins in large genomes [J]. Proteomics, 2001,1: 641-650
    110. Kwon S. World Soybean Research [MJ. 1975, 290-291
    111. Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T_4 [J]. Nature, 1970, 227: 680-685
    112. Lakemond C M M, Jongh H H J, Hessing M, et al. Soy glycinin: influence of pH and ionic strength on solubility and molecular structure at ambient temperatures [J]. J Agric Food Chem, 2000, 48: 1985-1990.
    113. Larkins B A. Genetic Engineering of seed storage protein in "Genetic Engineering of Plants" Ed by T Kosuge et al. 93-119
    114. Lawton M A, Tierney M A, et al. Expression of a soybean β-conglycinin gene under the control of the Cauliflower Mosaic Virus 35S and 19S promoters in transformed petunia tissues [J]. Plant Mol Biol, 1987,9: 315-325
    115. Lehahardt W F, Gibson F T. Fractionation and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures. U. S. Patent 4, 370, 267, 1983
    116. Lei M G, Tyrell D, Bassette R, et al. Two-dimensional electrophoretic analysis of soybean protein [J]. J Agric Food Chem, 1983,31: 963-968
    117. Lelievre J M, Oliveira L O, Nielsen N C. 5' -CATGCAT-3' elements modulate the expression of glycinin genes [J]. Plant Physiology, 1992, 98:387-391
    118. Mann M, Ronald C, Hendrickson, et al. Analysis of proteins and proteomes by mass spectrometry [J]. Annu Rev Biochem, 2001, 70: 437-473
    119. Marco Y A, Thanh V H, Tumer N E, et al. Cloning and structural analysis of DNA encloding an B_2A_(1a) subunit of glycinin[J]. J Biol Chem, 1984, 259: 13436-13441
    120. Marshall W E, Zarins Z M. Exothermic transitions of glycinin determined by differential scanning calorimetry [J]. J Agric Food Chem, 1989,37: 869-873
    121. Maruyama N, Katsube T, Wada Y, et al. The roles of the N-linked glycans and extension regions of soybean β-conglycinin in folding, assembly and structural features [J]. Eur J Biochem, 1998, 258: 854-862
    122. Maruyama N, Satoh R, Wada Y, et al. Structure-physiochemical function relationships of soybean β-conglycinin constituent subunits [J]. J Agric Food Chem, 1999, 47: 5278-5284
    123. Momma T, Negoro T, Hirano H, et al. Glycinin A_5A_4B_3 mRNA: cDNA cloning and nucleotide sequencing of a splitting storage protein subunit of soybean [J]. Eur J Biochem, 1985, 149: 491-496
    124. Mooney B P, Thelen J J. High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag database for protein identification [J]. Phytochemistry, 2004, 120: 1-12
    125. Moreira M A, Hermodson M A, Larkins B A, et al. Partial characterization of the acidic and bacidic polypeptides of glycinin [J]. J Biol Chem, 1979, 254: 9921-9926
    126. Mori T, Nakamura T, Utsumi S. Formation of pseudoglycinins and their gel hardness. J Agri Food Chem, 1982, 30 (5): 828-831
    127. Mujoo R, Trinh D T, Ng P K W. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture [J]. Food Chemistry, 2003, 82:265 -273
    128. Murphy P A, Chen H P, Hauck C C, et al. Soybean protein composition and tofu quality. Food Technology, 1997,51 (1): 86-88
    129. Nagano T, Hirotsuka M, Mori H, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans [J]. American Chemical Society, 1992, 40:941-944
    130. Naismith W E F. Ultracentrifuge studies of soya bean protein [J]. Biochim Biophys Acta, 1955, 16: 203-210
    131. Naito S, Dube P H, Beachy R N. Differential expression of conglycinin α' and β subunit genes in transgenic plants [J]. Plant Mol Biol, 1988, 11: 109-123
    132. Nakamura T, Utsumi S, Kitamura K, et al. Cultivar difference in gelling characteristics of soybean glycinin [J]. J Agric Food Chem, 1984, 32: 647-651
    133. Nakamura T, Utsumi S, Mori T. Effects of temperature on the different stages in thermal gelling of glycinin. J Agric Food Chem, 1985,33(6): 1201-1203
    134. Nash A M, Kwolek W F, Wolf W J. Extraction of soybean proteins with aqueous [J]. Cereal Chem, 1974,51:220-227
    135. Natarajan S, Chenping Xu, Caperna T J, et al. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins [J]. 2005,342:214-220
    136. Nielsen N C, Dickinson C D, Tae-Ju Cho, et al. Characterization of the glycinin gene family in soybean [J]. Plant Cell, 1989,1: 313-328
    137. Nir I, Feldman Y, Aserin A, et al. Surface properities and emulsification behavior of denatured soy proteins [J]. J Food Sci, 1994, 59: 606-609
    138. Odanaka H, Kaizuma N. Mutants on soybean storage proteins induced with γ-ray irradiation[J]. Japan J Breed [Suppl 1], 1989,39: 430-431
    139. O' Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem, 1975, 250: 4007-4021
    140. Ogawa T E, Tayama, Kitamura K. Genetic improvement of seed storage protein using three variant alleles of globulin subunits in soybean [J]. Japan J Breed, 1989,39: 137-147
    141. Osborne T B. The vegetable proteins [M]. 1924, Longmans, Green and Co. London
    142. Perkins D N, Pappin D J, Creasy D M, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data [J]. Electrophoresis, 1999, 20: 3551-3567
    143. Riblett R C, Herald T J, Schmidt K A, et al. Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes [J]. J Agric Food Chem, 2001, 49: 4983-4989.
    144. Saio K, Kamiya M, Watanabi T. Food processing characteristics of soybean 11S and 7S proteins. Part I. Effect of difference of tofu gel [J]. Agric Biol Chem, 1969, 33 (6): 1301-1308
    145. Saio K. Tofu-relationships between texture and fine structure [J]. Cereal Food World, 1979, 24 (3): 342-354
    146. Saio K, Watanabe T. Differences in functional properties of 7S and 11S soybean protein [J].Texture Studies, 1991, (9): 231-241
    147. Saito M, Sugiyama K. Tissue-specific expression of c-series gangliosides in the extraneural system [J]. Biochim Biophys Acta, 2000, 1474 (1): 88-89
    148. Scallon B, Thanh V H, Floener L A, et al. Identification and characterization of DNA clones encoding group-II glycinin subunits [J]. Theor Appl Genet, 1985,70: 510-519
    149. Schuler M A, Schmitt E S, Beachy R N. Closely related families of genes code for the α and α' -subunits of the soybean 7S storage protein complex [J]. Nucleic Acids Res, 1982a, 10: 8225-8244
    150. Schuler M A, Ladin B F, Pollaco J C, et al. Structural sequences are conserved in the genes coding for the α, α' and β -subunits of the soybean 7S seed storage protein [J]. Nucleic Acids Res, 1982b, 10: 8245-8261
    151. Shen Y, Zhao R, Belov M E, et al. Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization fourier transform ion cyclotron resonance mass spectrometry for proteomics [J]. Anal Chem, 2001, 73: 1766-1775
    152. Silvana P., Maria C. A. Soy protein isolate components and their interactions [J]. J Agric Food Chem, 1995,43:1762-1767
    153. Sorgentini D A, Wagner J R, Anon M C. Effects of thermal treatment of soy protein isolates on the characteristics and structure-function relationship of soluble and insoluble fractions, J Agric Food Chem, 1995,43:2471-2479
    154. Spielmann A, Schurmann P, Stutz E. Get electrphoretic characterization of protein fractions from soybean during seed development [J]. Plant Sci Lett, 1982,24: 137-145
    155. Staswick P E, Nielsen N C. Idendification of the acidic and basic subunit complex of glycinin [J]. J Biol Chem, 1981,256: 8752-8755
    156. Staswick P E, Hermodson M A, Nielsen N C. Identification of the cystines which link the acidic and basic components of the glycinin subunits [J]. J Biol Chem, 1984, 259: 13431-13435
    157. Takahashi K, Banba H, Kikuchi A. et al. An induced mutant line lacking the α-subunit of β-conglycinin in soybean (Glycine max (L.) Merri.) [J]. Breed Science, 1994, 46: 65-66
    158. Takahashi M, Uematsu Y, Kashiwaba K, et al. Accumulation of high levels of free amino acids in soybean seeds through integration of mutation conferring seed protein deficiency [J]. Planta, 2003, 217: 577-586
    159. Teraishi K, Takahashi M, Hajika M, et al. Suppression of soybean β-conglycinin genes by a dominant gene, Scg-1 [J]. Theor Appl Genet, 2001; 103: 1266-1272
    160. Tezuka M, Yagasaki K, Ono T. Changes in characters of soybean glycinin groups I, IIa, and IIb caused by Heating [J]. J. Agric Food Chem, 2004, 52: 1693-1699
    161. Tierney M L, Bray E A, Allen R D, et al. Isolation and characterization of a genomic clone encoding the β-subunit of β-conglycinin [J]. Planta, 1987,172: 356-363
    162. Thanh V H, Shibasaki K. Heterogeneity of α-conglycinin [J]. Biochim Biophys Acta, 1976, 469: 326-338
    163. Thanh V H, Shibasaki K. Major proteins of soybean seeds, A straightforward fraction and their characterization [J]. J Agric Food Chem, 1976, 24: 1117-1121
    164. Thanh V H, Shibasaki K. β-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms [J]. Biochim. Biophys. Acta, 1977, 490: 370
    165. Thanh V H, Shibasaki, K. Major proteins of soybean seeds. Subunit structure of β-conglycinin [J]. J Agric Food Chem, 1978,26: 692-695
    166. Timperman A T, Aebersold R. Peptide electroextraction for direct coupling of in-gel digests with capillary LC-MS/MS for protein identification and sequencing [J]. Anal Chem, 2000, 72: 4115-4121
    167. Tsukada Y K, Kitamura K, Harada, et al. Genetic analysis of subunits of two major storage protein (α-conglycinin and glycinin) in soybean seeds [J]. Japan J Breed, 1986, 36: 390-400
    168. Tumer N, Richter J D, Nielsen, et al. Structural characterization of the glycinin precursors [J]. J Biol Chem, 1982,257:4016-4018.
    169. U.S. Regional Soybean Laboratory: Evaluation of maturity groups 00-IV of USDA soybean collection[M], 1969
    170. Utsumi S, Kinsella J E. Strcture-Function Relationship in Food Proteins: Subunit Interactions in Heat-Induced Gelation of 7S, 11S, and Soy Isolate Proteins [J]. J Agric Food Chem, 1985, 33: 297-303
    171. Utsumi S, Kim C, Kohno M, et al. Polymorphism and expression of cDNAs encoding glycinin subunits [J]. Agric Biol Chem, 1987, 51: 3267-3273
    172. Utsumi S. Improvement of nutritional value and functional properties of soybean proteins and protein engineering [J]. New Food Industry, 1990,32 (5): 71-84
    173. Utsumi S, Gidamis A B, Kanamori J, et al. Effects of deletion of disulfide bonds by protein engineering on the conformation and functional properties of soybean proglycinin [J]. J Agric Food Chem, 1993, 41:687-691
    174. Utsumi S, Maruyama N, Satoh R, et al. Structure-function relationships of soybean proteins revealed by using recombinant systems [J]. Enzyme and Microbial Technology, 2002, 30: 284-288
    175. Wang C, Oleschuk O, Ouchen F, et al. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface [J]. Rapid Commun Mass Spectrum, 2000, 14: 1377-1383
    176. Wolf W J, Briggs D R. Ultracentrifuge investigation of the effect of neutral salts on the extraction of soybean proteins [J]. Arch Biochem Biophys, 1956,63:40-49
    177. Wright D J. The seed globulins [A], Hudson B J F. Developments in food proteins. Vol. 5 [M]. London: Elsevier, 1987, 81-157
    178. Wright D J. The seed globulins [A]. Hudson B J F. Developments in food proteins. Vol. 6 [M]. London: Elsevier, 1988,119-178
    179. Wright D J. The seed globulins-part II. In "Developments in Food Proteins" [M]. London: Elsevier Applied Science publishers, 1998, 6: 119-127
    180. Wu S, Murphy PA, Johnson LA, et al. Pilot-plant fractionation of soybean glycinin and β-conglycinin [J]. J Am Oil Chem Soc, 1999, 76: 285-293
    181. Wu S, Murphy P A, Johnson L A, et al. Simplified process for soybean glycinin and β-conglycinin fractionation [J]. J Agric Food Chem, 2000,48: 2702-2708
    182. Yagasaki K, Kaizuma N, Kitamura K. Inheritance of glycinin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.)Merri.) [J]. Breed Science, 1996,46: 11-15
    183. Yashida M, Kohyama K, Nishinari K. Gelation properties of soymilk and soybean 11S globulin from Japanese-grown soybeans [J]. Biosic Biotech Biochem, 1992, 56: 725—728
    184. Yates J R. Mass spectrometry from genomics to proteomics [J]. Trends Genet, 2000,16: 5-8
    185. Yu-liang Ma, Yun Lu, Hui-qing Zeng, et al. Characterization of phosphopeptides from protein digests using matrix-assisted laser desorptiong/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry [J]. Rapid Commun Mass Spectrom, 2001, 15: 1693-1700
    186. Zhong-Tian Xue, Mei-Lin Xu, Wei Shen, et al. Characterization of a Gy_4 glycinin gene from soybean Glycine max cv. Forrest [J]. Plant Mol Biol, 1992,18: 897-908
    187. Z-L Chen, N-S Pan, Beachy R N. A DNA sequence element that confers seed specific enhancement to a constitutive promoter [J]. The EMBO J, 1988,7:297-302
    188. Zhang-Hang Chen, Naito S, Nakamura I, et al. Regulated expression of genes encoding soybean β-conglycinin in transgenic plants [J]. Developmental Genetics, 2005, 10:112-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700