用户名: 密码: 验证码:
珊瑚菜耐盐生理机制及液泡膜Na~+/H~+逆向转运蛋白基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化是人类面临的重要环境问题,它对农牧业的可持续发展构成了严重威胁。了解植物耐盐机制和培育具有一定经济价值的耐盐作物资源,对扼制土地的盐渍化和提高盐荒地的利用具有重要意义。
     本研究在解除珊瑚菜种子休眠的基础上,针对种子萌发期和幼苗生长期建立了珊瑚菜耐盐性评价体系,并对其耐盐能力进行了鉴定;明确了珊瑚菜耐盐的类型和对盐胁迫的生理响应机制;获得了珊瑚菜液泡膜Na~+/H~+逆向转运蛋白基因,并分析了其生物学特性。为进一步完善植物耐盐机制,开发和利用耐盐植物资源奠定了前期工作基础。主要研究成果如下:
     1.珊瑚菜种子具有较强的休眠特性。在变温层积条件下,100mg·L~(-1)6-BA溶液可显著促进北沙参种子萌发,在第90d时发芽率达到最高为63.3%。离体萌发试验表明,胚乳因素对珊瑚菜种子萌发具有显著抑制作用,保留1/3胚乳的珊瑚菜种子萌发率最高,可以达到31%。而TDZ、6-BA和GA3处理不仅对解除珊瑚菜种子休眠的作用不大,同时容易导致出现畸形苗。
     2.珊瑚菜种子萌发阶段具有较好的耐盐特性。NaCl溶液处理的半致死浓度为0.68%,致死浓度在为1.52%。当NaCl浓度大于1.5%时则显著抑制其种子的萌发。NaCl处理可以延迟种子发芽的初始时间,降低种子总发芽率。复水试验表明,珊瑚菜种子仍保持着较高的萌发潜力,萌发潜力与处理浓度呈显著正相关。
     3.珊瑚菜幼苗生长期具有较强的耐盐特性。溶液培养条件下,100mmol·L~(-1)NaCl处理的珊瑚菜幼苗生长状态和生长量正常。当溶液中NaCl浓度超过200mmol·L~(-1)时生长开始受到抑制,在300mmol·L~(-1)NaCl处理条件下开始出现植株死亡,存活率为50%左右。
     4.珊瑚菜幼苗生长期的相关生理指标表明,当珊瑚菜受到较低浓度(100mmol·L~(-1))NaCl处理时,可溶性糖作为渗透调节物质首先发挥主要调节作用。随着盐浓度和处理时间的增加,抗氧化酶系统也逐渐启动。当NaCI浓度超过植物自身调节能力时,植物的单位反应中心数量会明显降低,从而影响植物的生长。经过多元统计分析表明,丙二醛含量、Fv/Fm、ETo/ABS、叶绿素a含量、DIo/RC和RC/CSo共同构成了珊瑚菜耐盐性指标的有效评价体系。
     5.土壤盆栽条件下,随着NaCl处理浓度的增加,珊瑚菜生长状况变化明显。0.5%和1.0%NaCl处理浓度时,珊瑚菜受到轻微影响,当土壤NaCl浓度达到1.5%时,干物质积累率下降明显,个别植株死亡。
     6.珊瑚菜不同器官中Na~+、K~+、Ca~(2+)和Mg~(2+)含量的测定结果表明,叶柄是珊瑚菜贮存Na~+的主要器官;正常条件下,叶柄中Na~+含量分别是叶片和根中的2.7倍和79倍。与Na~+不同,根中的K~+、Ca~(2+)和Mg~(2+)含量受NaCl处理的影响较小,含量均较稳定,与对照相比均不存在显著性差异;叶柄和叶片中的K~+随着NaCl处理浓度的增加呈降低趋势,Ca~(2+)含量则正相反,呈升高趋势;叶柄中Mg~(2+)也随着NaCl处理浓度的增加而降低,叶片中Mg~(2+)含量则变化不大;Na~+/K~+离子比在1.5%NaCl处理条件下,增加幅度较大,与其他处理相比存在极显著差异。
     7. NaCl处理对珊瑚菜K~+、Na~+、Ca~(2+)和Mg~(2+)离子选择性吸收和运输的结果表明,NaCl处理过程中,由土壤选择吸收K~+、Ca~(2+)和Mg~(2+)的能力均呈先升高后降低趋势;由根向叶柄选择运输中,三种离子均不断增加;由叶柄向叶片选择运输中,K~+和Mg~(2+)降低幅度明显,而Ca~(2+)含量变化不大。
     8.珊瑚菜的光合作用受NaCl影响较大,0.5-1.0%NaCl处理条件下,气孔限制值导致光合效率的降低,而在1.5%NaCl处理条件下,光合效率的降低主要受叶肉细胞本身光合活性降低的影响。底物氧化途径和电子传递途径均表现出适应盐渍环境的特性。
     9.呼吸速率和呼吸途径的测定结果表明,在0-1.0%NaCl处理条件下,珊瑚菜呼吸速率较稳定;当NaCl处理浓度提高到1.5%时,珊瑚菜呼吸速率下降幅度明显;EMP+TCA是珊瑚菜的主要底物氧化途径,随着NaCl处理浓度的增加,两者所占比例增加明显,而PPP则相反,降低趋势明显;电子传递途径中以CP为主,NaCl处理对CP和AP途径的影响不大。
     10.珊瑚菜NHX的cDNA全长为2553bp,5′非翻译区为531bp,3′非翻译区为361bp,开放阅读框为1662bp,编码554个氨基酸。将珊瑚菜NHX编码区1662bp核苷酸序列在GenBank中进行比对后发现,与番茄的同源性为96%,矮牵牛为95%;与葡萄、杨树、番薯等几种植物部分序列相比同源性在80%以上,可以证明从珊瑚菜中克隆的是NHX基因。氨基酸预测和同源性分析表明,珊瑚菜NHX有11个跨膜结构区域,珊瑚菜NHX与矮牵牛、菊苣、刺槐等植物液泡膜型Na~+/H~+逆向转运蛋白亲缘关系较近。
Soil salinization is an important environmental issues facing humanity, and it constitute aserious threat to the sustainable development of agriculture and animal husbandry (Ma Qing,2011). Understand the mechanism of salt tolerance in plant and cultivate salt tolerant cropswith a certain economic value of resources have great significance to curb land salinizationand salt wasteland.
     In this study, the salt-tolerance evaluation system in seed germination and seedlinggrowth period has been established based on the seed dormancy breaking of Glehnia littoralis,mean while, the salt-tolerance ability was identified and the type of salt-tolerance and saltstress physiological response mechanisms were cleared.We obtained tonoplast Na~+/H~+antiporter geneand its expression characteristics and theeffect in resistance to salt stress wereanalyzed. This study applies the basis of preliminary work to further improve plantsalt-tolerance mechanisms and the development and utilization of salt-tolerant plantresources. The main findings are as follows:
     1. The seed of Glehnialittoralis has strong dormancy characteristics. Under the conditionof temperature-accelerated stratification, solution of100mg·L~(-1)6-BA may significantlypromote the seed germination. The germination rate was up to63.3%in the first90days.Germination in vitro experiments showed that the factor of endosperm inhibited seedgermination of Glehnialittoralis, and the germination rate of the seed with one thirdendosperm was the highest, could reach31%. Treated by TDZ、6-BA and GA3had no effecton seed dormant breaking, but easily lead to deformity seeding.
     2. It possesses better salt resistence during the stage of Glehnia littoralis seedgermination, and the median lethal concentration(LC50) and the lethal concentration is0.68%and1.52%respectively treated by NaCl. The germination of seed is significantly restrainedwhen the concentration of NaCl is higher than1.5%. NaCltreatmen can extend the initial timeof the seed germination and reduce the whole germination percent of seed. Rehydrationexperiment showed that Glehnialittoralis seed keep higher germination potential which wassignificantly positive correlation with treatment concentration.
     3. Glehnia littoralis seedling possess strong salt resistence in the growth period. Underthe solution culture condition, the growth status and increment of seedling was normal whentheNaClconcentration was100mmol·L~(-1), the growth had been restrained when theconcentration was higher than200mmol·L, the plants began to die when the concentrationwas300mmol L~(-1), and the survival rate was ablut50%.
     4. The related physiological signs of Glehnia littoralis seedling showed that, solublesugar played a major regulatory role firstly as penetration regulating substances under lowNaClconcentration,and antioxidant enzyme systerm gradually started with the increasing ofNaCl concentration and treated time, however, When the NaCl concentration exceeded theregulating ability of the plant, the unit quantity of reaction center was dropped significantly,thus the growth of the plant was affected. Multivariate statistical analysis showed that theeffective evaluation system of salt resistance indexes was consisted by Malondialdehydecontent、Fv/Fm、ETo/ABS、Chlorophyll content DIo/RC and RC/CSo together.
     5. Under the soil potted condition, Glehnialittoralis growth situation changedsignificantly with the increase of NaCl concentration. Glehnia littoralis slightly affected when treated by0.5%and1.0%NaCl, and when soil NaCl concentration was up to1.5%, the ratedry matter accumulation dropped evidently, individual plants appeared death.
     6. The determination result of Na~+、K~+、Ca~(2+)and Mg~(2+)in different organs of Glehnialittoralis. showed that petiole was the main organ for Na~+storage in Glehnia littoralis. Inordinary conditions, Na~+content in petiole is2.7times and79times of leaves and rootsrespectively. Be different from Na~+, NaCl treatment had smaller effect to K~+、Ca~(2+)and Mg~(2+)contents in root, which were more stable and not exist significant differences with contrast. K~+in petioles and leaves was decreased with NaCl concentration increasing, on the contrary,Ca~(2+)content showed an increasing trend. Mg~(2+)content in petiole was reduced with theincrease of NaCl concentration and Mg~(2+)contents in leaves changed little. The rate of Na~+/K~+increased obviously under1.5%NaCl treatment, exiting a significant difference comparedwith other treatments.
     7. The results of selective absorption and transport of K~+、Na~+、Ca~(2+)and Mg~(2+)whenGlehnia littoralis. treated by NaCl showed that the ability of soil selective absorption of K~+、Ca~(2+)and Mg~(2+)increased at first and then decreased during NaCl treatment, however, thesethree ions were always increasing during the selective transport from roots to the leaf and K~+and Mg~(2+) obvious decrease, while the Ca~(2+)content not much changed as the selectivetransport from petiole to leaf.
     8. NaCl had great impact on Glehnia littoralis. Stomatal limitation resulted inphotosynthetic efficiency reduction under0.5-1.0%NaCl treatment whereas thephotosynthetic efficiency was mainly affected by the reduction of mesophyll cellphotosynthetic activity under1.5%NaCl treatment. The pathway of both substrate oxidationelectron transport had shown the characteristics to adapt to the saline environment.
     9. The determination results of respiratory rate and respiratory pathway showed that, therespiration rate of Glehnia littoralis. was more stable under0-1.0%NaCl treatment whenNaCl concentration increased to1.5%, the respiration rate decreased significantly.EMP+TCA are the main substrate oxidation pathway. With the concentration increasing byNaCl treatment, both of the proportion increased significantly while the PPP, by contrast,decreased significantly. CP is the main way of electron transport, and NaCl treatment hadlittle effect on CP and AP pathway.
     10. A full length cDNA of NHX1gene in Glehnia littoralis.was cloned using RT-PCRand RACE,and this fragment was subsequently cloned,sequenced and analyzed.The datashows that and the full-length of GiNHX cDNA was2553bp,5' non-translation District for531bp in,3'non-translation District for361bp, and an open reading frame was1662bp,encoding554amino acids and its predicted molecular weight is60.059kD.
引文
1.艾力江·麦麦提(2008). NaCI胁迫下三种胡颓子属植物苗期活性氧清除酶、渗透调节及离子吸收、分配特性研究.新疆农业大学:56
    2.安宝燕,罗琰,李加瑞(2008).紫花苜蓿Na+/H+逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性.作物学报,34(4):557-564
    3.柴媛媛,史团省,谷卫彬(2008).种子萌发期甜高梁对盐胁迫的响应及其耐盐性综合评价分析.27(2):43-47.
    4.陈贵林,王晨霞,陈建英(2009).NaCL胁迫对白刺试管苗渗透调节物质及离子含量的影响.西北植物学报,29(6):1233-1239
    5.陈建明,俞晓平,程家安(2006).叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55,
    6.陈洁,林栖凤(2003).植物耐盐生理及耐盐机理研究进展.5(2):68-71
    7.陈沁,刘友良(1999).H-2O2和OH及其清除剂对大麦叶片液泡膜微囊质子转运活性的影响.植物生理学报,3:36-41
    8.邓彦斌,姜彦成(1998).新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究.2:164-170
    9.丁烽,王宝山(2006).NACL对中华补血草叶片盐腺发育及其泌盐速率的影响.西北植物学报,26(8):1593-159
    10.丁效东,张士荣,宋杰(2007).不同抗盐机制对柽柳适应盐渍环境的贡献.干旱区研究,2:207-212
    11.董志刚,程智慧(2009).番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价.生态学报,29(3):1348-1355.
    12.董志刚,程智慧(2009).番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价.生态学报,29(3):1348-1355.
    13.董志刚,孟焕文,程智慧(2008).黄瓜品种资源芽苗期和幼苗期耐盐性及其评价指标研究.干旱地区农业研究,26(4):156-162
    14.范杰英(2005).9个树种抗旱性的分析与评价.西北农林科技大学:7-9
    15.范杰英.9个树种抗旱性的分析与评价.西北农林科技大学,2005:7-9,66-67
    16.冯胜利,马富裕,方志刚,等(2009).水分胁迫对加工番茄光系统Ⅱ的影响.干旱地区农业研究,27(1):164-167
    17.高海波,张富春(2008).藜科盐生植物的形态特征与耐盐分子机理研究进展.生物技术通报,4:22-26
    18.高玉,高志奎,张晓慧,等(2009).通过快速荧光动力学曲线探测白黄瓜光系统Ⅱ的热激胁迫效应.生态学报,6:3336-3341
    19.郭春晓,王文莉,郑成淑,等(2011).盐胁迫下外源SA对菊花体内离子含量和净光合速率的影响.中国农业科学,44(15):3185-3192
    20.郭立泉,王红宇,麻莹,等(2010).星星草响应盐碱胁迫的渗透调节和离子平衡机制.2:120-125
    21.韩军丽,赵可夫(2001).植物盐腺的结构、功能和泌盐机理的探讨.山东师大学报(自然科学版),2001,16(2):195-198
    22.韩清芳,李崇巍,贾志宽(2003).不同苜蓿品种种子萌发期耐盐性的研究.西北植物学报,23(4):597-6O2.
    23.韩志平,郭世荣,尤秀娜(2010).盐胁迫对西瓜幼苗活性氧代谢和渗透调节物质含量的影响.西北植物学报,30(11):2210-2218
    24.何军贤,韦振泉,林宏辉,梁厚果(1999).水分胁迫对小麦幼曲抗氰呼吸和交替氧化酶基因表达的影响.植物学报,41:340-342.
    25.贺江舟,龚明福,范君华(2010).逐步回归及通径分析在主成分分析中的应用.新疆农业科学,47(3):431-437
    26.贺志理,王洪春(1992).NaCl预处理对盐胁迫下苜蓿中Na+、Cl-和脯氨酸累积分布的影响.植物生理学通讯,28(5):330-334
    27.胡生荣(2008).三种滨藜的旱盐逆境胁迫及其引种适应性评价.内蒙古农业大学:10
    28.胡新生,王世绩(1998).树木水分胁迫生理与耐旱性研究进展及展望.林业科学,34(2):77-89
    29.黄萍,张富春,王瑜,李金耀(2007).跨膜离子转运蛋白与植物耐盐的分子生物学.生物技术通报,2:1-5
    30.惠红霞,许兴,李前荣(2003).外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,23(12):2137-2422.
    31.贾亚雄,李向林,万里强,等(2009).盐胁迫下盐草和高羊茅营养器官的离子微区分布.中国农业科学,42(5):1595-1600
    32.贾亚雄,李向林,万里强,何峰,何丹(2009).盐胁迫下盐草和高羊茅营养器官的离子微区分布.中国农业科学,5:1595-1600
    33.贾亚雄,李向林,袁庆华,万里强,孟芳(2008).披碱草属野生种质资源苗期耐盐性评价及相关生理机制研究.中国农业科学,41(10):2999-3007
    34.贾亚雄,刘荣堂,袁庆华(2007).披碱草野生种质材料芽期耐盐性研究.草原与草坪,2(121):47-52.
    35.江香梅,黄敏仁,王明庥(2001).植物抗盐碱、耐干旱基因工程研究进展.南京林业大学学报(自然科学版),25(5):57-62
    36.姜虎生,张常,钟韩丽娟,等(2001).碱茅抗盐性的研究进展.长春师范学院学报,20(2):50-53.
    37.姜丽丽,连秀芬,樊明寿(2005).细胞程序性死亡在植物适应逆境中的意义.生命科学,17(3):267-270
    38.教忠意,王保松,施士争,等(2008).林木抗盐性研究进展.西北林学院学报,23(5):60-64.
    39.解松峰,Kansaye Aly,杜向红,等(2010).30份引进大麦品种(系)苗期耐盐性综合分析.草业科学,27(4):127-133.
    40.孔英珍,周功克,崔凯荣(2000).盐逆境下转基因耐盐小麦与其受体呼吸途径的动态变化.应用生态学报,11(6):873-877
    41.孔英珍,周功克,崔凯荣,等(2000).盐逆境下转基因耐盐小麦与其受体呼吸途径的动态变化.应用生态学报,11(6):873-877
    42.冷华妮,段红平,陈益泰,等(2010).不同种源枫香磷响应指标的主成分分析.土壤,42(1):82-87
    43.李鹏民,高辉远,等(2005).快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理学与分子生物学学报,31(6):559-566
    44.李瑞梅,周广奇,符少萍,等(2010).盐胁迫下海马齿叶片结构变化.西北植物学报,30(2):0287-0292
    45.李霞,李宪利,高东升,杨秀萍(2005).遮荫对休眠期大樱桃芽呼吸代谢的影响研究.中国生态农业学报,13(1):57-59.
    46.李晓芬,尚庆茂,张志刚(2008).多元统计分析方法在辣椒品种耐盐性评价中的应用.园艺学报,35(3):351-356
    47.李晓芬,尚庆茂,张志刚,等(2008).多元统计分析方法在辣椒品种耐盐性评价中的应用.园艺学报,35(3):351-356
    48.李晓晴(2006).盐胁迫诱导蚕豆保卫细胞和细胞程序性死亡的信号调控机理研究.兰州大学:11
    49.李彦强,方升佐,姚瑞玲(2007).NaCl胁迫对不同种源青钱柳幼苗离子分配、吸收与运输的影响.植物资源与环境学报,16(4):29-33
    50.李液(2007).泡膜Na/H逆向转运蛋白研究进展.安徽农学通报,13(5):40-41
    51.李云霞,程晓霞,代小梅(2009).植物在逆境胁迫中的细胞程序性死亡.生物技术通报,4:8-13
    52.李志霞,秦嗣军,高鹤,吕德国,马怀宇(2009).根施酚类物质对东北山樱幼苗呼吸代谢的影响.园艺学报,36(10):1417-1424
    53.利容千,王建波(2002).植物逆境细胞及生理学.武汉:武汉大学出版社
    54.梁五生,梁厚果(1998).马铃薯切片陈化期间抗氰呼吸途径发生及运行的研究.西北植物学报,18(2):172-177
    55.梁永超,丁瑞兴(2002).硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系.中国科学(C版),32(2):113-121.
    56.梁永超,丁瑞兴(2002).硅对大麦根系中离子的微域分布的影响.中国科学,32(2):114-121
    57.林栖凤,李冠一(2000).植物耐盐性研究进展.生物工程进展.20(2):20-25
    58.林栖凤.2004.耐盐植物研究.科学出版社:263
    59.刘爱荣,张远兵,陈登科(2006).盐胁迫对盐芥(Thellungiella halophila)生长和抗氧化酶活性的影响.植物研究,26(2):216-221
    60.刘爱荣,赵可夫(2005).盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分析生物学报,31(4):389-395.
    61.刘振虎,卢欣石,葛军(2002).利用层次分析法综合评价9个草坪品种的耐盐性.草地学报,l0(3):207-216.
    62.刘卓,王志锋,于洪柱(2010).不同苜蓿品种种子萌发期耐盐性的研究.云南农业大学学报,25(3):358-363
    63.刘卓,徐安凯,王志锋(2008).13个苜蓿品种耐盐性的鉴定4个白花苜蓿品系种子萌发期耐盐性研究.草业科学,25(6):51-55.
    64.陆开形(2008).盐胁迫对大豆光合作用和抗氧化系统的影响及其调控机制.浙江大学:32
    65.吕慧颖,李银心,孔凡江,等(2003).植物Na+/H+逆向转运蛋白研究进展.植物学通报,20(3):363-369
    66.麻莹,曲冰冰,郭立泉,等(2007).盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点.草业学报,16(4):25-33.
    67.马洪雨,王瑞君,王显生,等(2009).黄麻种质芽期和苗期耐盐性的鉴定与评价.植物遗传资源学报,10(2):236-243.
    68.马健(2009).几种引进树种耐盐性响应及耐盐性评价研究.南京林业大学:5
    69.马清,包爱科,伍国强,王锁民(2011).质膜Na+/H+逆向转运蛋白与植物耐盐性.植物学报,46(2):206-215.
    70.穆永光,穆春生(2009).紫穗槐在松嫩草原盐碱地区的引种试验.吉林师范大学学报(自然科学版),11(4):79-81.
    71.宁建凤,郑青松,杨少海(2010).高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,21(2):325-330
    72.宁顺斌,宋运淳,王玲,等(2000).药物诱导的王米根尖细胞凋亡.植物学报,42(7):693-696
    73.綦翠华,韩宁,王宝山(2005).不同盐处理对盐地碱蓬幼苗肉质化的影响.2:175-182
    74.史锟,李文翰(2010).野生大豆在盐碱土壤中的生长状态研究.黑龙江农业科学,(7):34-36)
    75.苏国兴,洪法水(2002).桑品种耐盐性的隶属函数法之评价。江苏农业学报,18(1):42-47.
    76.孙明霞(2004).泌盐植物二色补血草渗透调节的特点及机制.山东师范大学:32
    77.孙卫红,王伟青,孟庆伟(2007).植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性.植物生理学通报,41(2):143-147
    78.汤春芳,刘云国,曾光明(2004).镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报,30(4):469-474
    79.吐尔逊娜,高辉远,安沙舟,李卫军(1995).8种牧草耐盐性综合评价.中国草地,1:30-32.
    80.王春梅(2005).Na_在拒盐型小花碱茅_积盐型霸王逆境适应中的作用研究.兰州大学:11
    81.王洪春(1981).植物抗性生理.植物生理学通讯,7(6):72-81.
    82.王磊,隆小华,孟宪法(2011).水杨酸对NaCl胁迫下菊芋幼苗光合作用及离子吸收的影响.生态学杂志,30(9):1901-1907
    83.王磊,隆小华,孟宪法(2011).水杨酸对NaCl胁迫下菊芋幼苗光合作用及离子吸收的影响.生态学杂志,30(9):1901-1907
    84.王丽燕(2003).泌盐盐生植物的盐腺及泌盐机理研究概况.德州学院学报,19(4):73-76
    85.王喜艳,张恒明,张玉龙,等(2009).盐胁迫下硅对黄瓜叶片抗氧化酶活性和膜脂过氧化物的影响.生态环境学报,18(4):1455-1459
    86.王鑫,李志强,谷卫彬,等(2010).盐胁迫下高粱新生叶片结构和光合特性的系统调控.作物学报,36(11):19411949
    87.王学征,李秋红,吴凤芝(2010).NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性.中国农业科学,43(7):1423-1432
    88.吴成龙,周春霖,尹金来,等(2006).NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响.西北植物学报,11:2289-2296
    89.吴成龙,周春霖,尹金来,等(2006).NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响.西北植物学报,26(11):2289-2296.
    90.吴发远,葛江丽(2009).NaCl胁迫对甜高粱幼苗抗性酶活性的影响.中国农学通报,25(06):136-139
    91.吴凤萍,韩清芳,贾志宽(2008).4个白花苜蓿品系种子萌发期耐盐性研究.草业科学,,25(8):57-63
    92.吴强,冯汉青,李红玉,万东石,梁厚果(2006).干旱胁迫对小麦幼苗抗氰呼吸和活性氧代谢的影响.植物生理与分子生物学学报,32(2):217-224.
    93.吴永波,薛建辉(2006).盐胁迫对3种白蜡树幼苗生长与光合作用的影响.南京林业大学学报,5(3):21
    94.伍国强,王强龙,包爱科,王锁民(2008).液泡膜Na/H逆向转运蛋白与植物耐盐性.中国农业科技导报,10(2):13-21
    95.夏尚光(2008).两种美国岩榆的资源培育及抗逆性研究.南京林业大学,17
    96.辛华,丁雨龙(2008).珊瑚菜植株分泌道发育和分布的解剖学观察.植物资源与环境学报,17(2):66-70
    97.许珍,李鹏民,高辉远,等(2007).玉米不同朝向叶片原初光化学反应日变化的差异.作物学报,33(8):1375-1379.
    98.严一诺,孙淑斌,徐国华,等(2007).菊芋Na+/H+逆向转运蛋白基因的克隆与表达分析.西北植物学报,27(7):1291-1298.
    99.阎旭东,赵松山(2010).环渤海湾低平原区耐盐植物资源及环境改良.中国农业科学技术出版社:
    100.彦强,方升佐,姚瑞玲,赵丽霞(2007).NaCl胁迫对不同种源青钱柳幼苗离子分配_吸收与运输的影响.植物资源与环境学报,16(4):29-33
    101.杨帆,丁菲,杜天真(2009).盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征.20(4):767-772
    102.杨洪兵,陈敏,等(2002).小麦幼苗拒Na+部位的拒Na+机理.植物生理与分子生物学学报,3:181-186
    103.杨敏生,裴保华,朱之悌(1997).水分胁迫下白杨无性系生理和生长的数量遗传分析.北京林业大学学报,19(2):50-56
    104.杨晓慧,蒋翌杰,魏珉等(2006).植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报(自然科学版),37(2):302-305.
    105.杨燕,刘庆,林波,等(2005).不同施水量对云杉幼苗生长和生理生态特征的影响.生态学报,25(9):2152-2158.
    106.杨在君,张利,杨瑞武(2008).中药丹参及其近缘种中微量元素的主成分和聚类分析.光谱学与光谱分析,28(10):2441-2445
    107.姚瑞玲,方升佐(2007).NaCl胁迫及钙调节对青钱柳根部组织离子分布的影响.植物资源与环境学报,16,(2):22-26.
    108.衣艳君,李芳柏,刘家尧(2008).尖叶走灯藓叶绿素荧光对复合重金属胁迫的响应.生态学报,28(11):5438-5444
    109.于芹,高东升,徐小明,李瑾,徐臣善(2008).油桃芽体自然休眠诱导与两条主要电子传递途径的关系.中国农业科学,41(12):4149-4154
    110.余叔文.汤章城.植物生理与分子生物学(第2版).北京:科学出版社,1998
    111.郁万文(2005).刺槐无性系耐盐差异性研究.山东农业大学:10-15
    112.张道远,尹林克,潘伯荣(2003).柽柳泌盐腺结构、功能及分泌机制研究进展.西北植物学报,23(1):l90—l94
    113.张耿,王赞,高洪文,等(2008).21份偃麦草属牧草苗期耐盐性评价.草业科学,25(1):51-54.
    114.张海艳(2009).盐胁迫诱导的棉花叶片细胞程序性死亡.中国农业科学,25(05):158-159
    115.张俊莲,张金文,陈正华,王蒂(2005).Na+/H+逆向转运蛋白与植物耐盐性关系研究进展.草原与草坪,4:3-6
    116.张立军,等(1999).植物生理学.沈阳:吉林科学技术出版社
    117.张丽娟.刘海学,于秀英,等(2000).不同品种羊草耐盐性模糊综合评价.哲里木畜牧学院学报,10(1):1-5.
    118.张谧,王慧娟,于长青(2009).超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征.生态环境学报,18(6):2272-2277
    119.张年辉,韦振泉,何军贤,梁厚果(2001).小麦幼苗叶片抗氰呼吸对轻度水分胁迫的响应.西北植物学报,21:21-25.
    120.赵可夫(2002).植物对盐渍逆境的适应生物学通报.37(6):7-10
    121.赵可夫,范海(2000).盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报,2:99-105
    122.赵可夫,范海(2005).盐生植物及其对盐渍生境的适应生理.北京:科学出版社
    123.赵可夫,李军(1999).盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报(英文版),12:1287-1292
    124.赵晓惠(2007).盐胁迫下旱稻郑2愈伤组织的生理生化响应.兰州大学:2
    125.郑国琦,许兴,徐兆桢,等(2002).盐胁迫对枸杞光合作用的气孔与非气孔限制.西北植物学报,22(6):1355-1359.
    126.郑青松,刘海燕,刘兆普,等(2010).盐胁迫对油菜幼苗离子吸收和分配的影响.中国油料作物学报,32(1):65-70.
    127.郑青松,刘兆普,刘友良,等(2004).盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应.南京农业大学学报,27(2):16-20.
    128.郑青松,王仁雷,刘友良(2001).钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,27(4):325-330.
    129.周功克,李红玉,文江祁,孔英珍,梁厚果(2000).低温胁迫下甘肃黄花烟草愈伤组织的抗氰呼吸.植物学报,42(7):679-683.
    130.周建,杨立峰(2011).3种木兰科植物在盐碱地的种植栽培及幼苗年生长规律研究.19(3):57-59
    131.朱进,别之龙,李娅娜(2006).黄瓜种子萌芽期及嫁接砧木幼苗期耐盐力评价.中国农业科学,39(4):772-778.
    132. Apse M P,Aharon G S,Snedden W A,et a1.(1999).Salt tolerance conferred by overexpressionof a vacuolar Na+/H+antiporte inArabidopsis.Science,285:1256-1258
    133. Ballesterous:E,Blumwald E,Donairo J P,et a1.(1997).Na+/H+antiport activity in tonoplastvesicles isolated from sun flowe roots induced.by NaC1stress.Physiologia Plantarum,99:328-334.
    134. Blumwald E., Poole R.J(1985). Na+/H+antiport in isolated tonoplast vesicles from storage tissue ofBeta vulgaris. Plant Physiol,78:163-167.
    135. Cheeseman J M(1988).Mechanisms of salinity tolerance in plants.Plant Physiology,87:547-550
    136. Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodríguez-Navarro A, Benito B (2010). The SOS1transporter of Physcomitrella patens mediates sodium efflux in planta.New Phytol188,750-761.
    137. Fukuda A,Chiba K,Maeda M,et a1.(2004).Efiect of salt and us-motic stresses on the expressionof genes for the vacuolar H-pyrophosphatase,H-ATPase subunit A,and Na/H anti-porterfrombarley.J.Exp.But.,55:585-594.
    138. Fukuda A,Chiba K,Maeda M,et a1.(2004).Efiect of salt and us-motic stresses on the expressionof genes for the vacuolar H+-pyrophosphatase,H+-ATPase subunit A,and Na+/H+anti-porterfrombarley.J.Exp.But.,,55:585-594.
    139. Hanana M,Cagnac O,Yamaguchi T,et a1.(2007).A grape berry (Vitis vinifera L.)cation/protonantiporter is associated with berry ripening.Plant CelI Physio1.,48(6):804-811.
    140. Hanana M,Cagnac O,Yamaguchi T,et a1.(2007).A grape berry (Vitis vinifera L.)cation/protonantiporter is associated with berry ripening.Plant CelI Physio1.,48(6):804-811.
    141. Kant S, Kant P, Raveh E, Barak S(2006).Evidence that differential gene expression between thehalophyte,Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of thecompatible osmolyte proline and tight control of Na+uptake in T. halophila. Plant Cell Environ,29,1220-1234.
    142. Li JY, He XW, Xu L, Zhou J, Wu P, Shou HX, et al(2007).Molecular and functional comparisons ofthe vacuolar Na+/H+exchangers originated from glycophytic and halophytic species. J Zhejiang UnivSCIENCE B,9:132-40.
    143. M. Pilar Rodríguez-Rosales, Francisco J. Gálvez, Raúl Huertas, M. Nieves Aranda, Mourad Baghour,Olivier Cagnac and Kees Venema(2009).Plant NHX cation/proton antiporters.Plant Signaling&Behavior4:4,265-276.
    144. Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annu Rev Plant Biol,59,651-681.
    145. Niu X, Narasimhan M L,Salzman R A,et a(l1993). NaCl regulation of plasma menbrane H+-ATPasegene expression in a glycophyte and halophyte. Plant Physiol,106:713-718.
    146. Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A(2009). Theplasma membrane Na+/H+antiporter SOS1is essential for salt tolerance in tomato and affects thepartitioning of Na+between plant organs. Plant Cell Environ,32,904-916.
    147. Olías R, Eljakaoui Z, Pardo JM, Belver A(2009). The Na+/H+exchanger SOS1controls extrusion anddistri-bution of Na+in tomato plants under salinity conditions. Plant Signal Behav,4,973-976.
    148. Pardo J M,Cubero B,Leidi E0,et a1.(2006).Alkali cation ex-changers:roles in cellular homostasisand stress tolerance.J.Exp.Bot.,57:1181-1199.
    149. Pardo J M,Cubero B,Leidi E0,et a1.(2006).Alkali cation ex-changers:roles in cellular homostasisand stress tolerance.J.Exp.Bot.,57:1181-1199.
    150. Q. Wei, Y. J. Guo, H. M. Cao and B. K. Kua(i2011). Cloning and characterization of an AtNHX2-likeNa+/H+antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expressionenhanced drought and salt tolerance in Arabidopsis thaliana.Plant Cell, Tissue and Organ Culture,105(3),309-316.
    151. Qiao w H,Zhao x Y,Li W,et a1.(2007).0verexpressi0n0f AeNHX1,a root-specific vacuolarNa+/H+antiporter from Agropy-ron elongatum,confers salt tolerance to Arabidopsis andFestuc0plants.Plant Cell Rep.,26(9):1663-1672.
    152. Ratner A Jacoby B(1976).Effect of K+its counter anion and pH on sodium efflux from barley roots.JExp Physiol,148:425-433.
    153. Rausch T, Kirsch M, Low R, et al(1996).Salt st ress responses of higher plant: the role of protonpumps and Na+/H+antiporters. Plant Physiol,148:425-433.
    154. Sato Y,Sakaguchi M.(2005).Topogenic properties of transmembrane segments of Arabidopsisthaliana NHX1reveal a common topol-ogy model ofthe Na+/H+exchangerfamily.J Biochem.,138:425-431.
    155. Shi HZ, Ishitani M, Kim C, Zhu JK(2000). The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA,6896-6901.
    156. Strauss A J, Kruger G H J, Strasser R J, et al(2006). Ranking of dark chilling tolerance in soybeangenotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental andExperimental Botany,56:147-157.
    157. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK,ShinozakiK(2004). Comparative genomics in salt tolerance between Arabidopsis andArabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol,135,1697-1709.
    158. Touth S Z, Schansker G, Garab G, et al(2007). Photosynthetic electron transport activity inheat-treated barley leaves: The role of internal alternative electron donors to photosystem II.Biochimica et Biophysica Acta,1767:295-305.
    159. Yamaguchi T,Fukada-Tanaka S,Inagaki Y.et a1.(2001).Genes ell-coding the vacuolar Na+/H+exchanger and flower coloration.Plant Cell Physio1.,42:451-461.
    160. Yokoi S,Quintero F J,Cubero B,et a1.(2002).Differential expres-sion and function of Arabidopsisthaliana NHX Na/H anti-porters in the salt stress response.Plant.J.,30:529-539.
    161. Yokoi S,Quintero F J,Cubero B,et a1.(2002).Differential expres-sion and function of Arabidopsisthaliana NHX Na+/H+anti-porters in the salt stress response.Plant.J.,30:529-539.
    162. Yoshida K,Kawachi M,Mori M,et a1.(2005).The involvement of tonoplast proton pumps andNa+(K+)/H+exchangers in the change of petal color during flower opening of morning glory,Ipomoea tricolor cv.heavenly blue.Plant Cell Physio1.,46:407-415.
    163. Zhang G H,Su Q,An L J,et a1.(2008).Characterization and ex-pression of a vacuolar Na+/H+antiporter from the monocot halophyte Aeluropus littoralis.Plant Physio1.Biochem.,46:117-126.
    164. Zhu JK(2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,53,247-273.
    165. Zorb c,N0II A,Karl S,et a1.(2005).Molecular characterization of Na+/H+antiporters (ZmNHX)ofmaize(Zea mays L.)and their expression under salt.J.Plant Physio1.,162:55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700