用户名: 密码: 验证码:
放电等离子烧结制备陶瓷颗粒/晶须增韧WC复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WC-Co硬质合金具有优良的综合性能,在现代刀具材料、耐磨材料等方面得到广泛应用。WC-Co合金中的WC相具有极高的硬度和优异的耐蚀性和耐高温性,金属类粘结剂(Co)的加入虽然可以提高合金的强韧性,但同时会使合金的硬度下降和耐腐蚀性变差,而且在高温下粘结相会发生软化等特性还限制了其在高温环境下的应用。利用放电等离子烧结等新技术可以制备出致密的无粘结相纯WC材料,但其偏低的韧性是此类材料获得广泛应用的最大障碍。为了提高无粘结相WC材料的韧性,传统陶瓷材料的增韧手段对此具有很重要的借鉴价值。
     本文以无粘结相WC材料为研究对象,研究了该材料在不同SPS烧结工艺下的致密化行为、相组成、显微组织以及力学性能;针对该种材料偏低的断裂韧性,借鉴传统陶瓷材料的增韧手段,引入相变ZrO_2颗粒、Al_2O_3颗粒对其进行了增韧研究,还首次成功地运用“原位生成”技术制备了由原位自生β-Si_3N_4晶须增韧的无粘结相WC材料,并且扩展了“两步烧结法”的理论内容及应用范围,将其成功地应用于SPS烧结WC-Si_3N_4材料中,将β-Si_3N_4晶须生成过程与WC晶粒快速生长过程分离开来;另外还研究了VC与Cr_3C_2晶粒生长抑制剂对上述材料体系的影响。通过研究分析,主要的研究结果如下:
     (1)采用SPS制备了无粘结相的纯WC材料、WC-x wt.%ZrO_2(x=1,2,3,6,8,10)复合材料、WC-x vol.%Al_2O_3(x=0,6.8,12.4,16.7,43.6)复合材料以及WC-xwt.%Si_3N_4(x=1,3,6,8,10,12,15)复合材料。ZrO_2/Al_2O_3/Si_3N_4(93wt.%Si_3N_4-6wt.%Y_2O_3-1wt.%Al_2O_3)的加入均可以促进WC材料的致密化过程。
     (2)WC-ZrO_2材料经过SPS烧结后,试样里的ZrO_2颗粒仍以四方结构为主,均匀弥散分布在WC晶粒之间;随ZrO_2含量从0增加到10wt.%,WC-ZrO_2材料的硬度从~24GPa下降至~18GPa,而断裂韧性则从~6.0MPa·m~(1/2)提高至~10.60MPa·m~(1/2),主要增韧机制为四方ZrO_2颗粒的相变增韧。对于WC-8wt.%ZrO_2材料,在1500~1700°C烧结温度范围内,随温度升高,WC晶粒与ZrO_2颗粒都逐渐长大,而VC和Cr_3C_2添加剂的加入可以完全抑制住WC晶粒与ZrO_2颗粒的生长;材料组织越细,则材料的硬度越高,但断裂韧性对材料组织的粗细度变化不敏感;采用含有VC和Cr_3C_2添加剂的细小WC粉末(~0.2μm)作为原料,经过在1600°C保温5min烧结得到的WCVCr-8ZrO_2试样其硬度和断裂韧性分别为22.20GPa和11.40MPa·m~(1/2)。对于WC-ZrO_2复合材料,在维氏硬度测试(10kg)中,当ZrO_2含量较低时(≤3wt.%),材料所对应的裂纹系统为半圆型系统,而随着ZrO_2含量的增多(≥6wt.%),其所对应的裂纹系统会向巴氏裂纹系统发生转变。
     (3)Al_2O_3颗粒的加入对WC材料有一定的增韧作用,但效果并不显著,WC-Al_2O_3材料的断裂韧性最高仅为6.49MPa·m~(1/2);增韧机制主要为Al_2O_3颗粒对裂纹的桥接作用以及材料断裂模式从沿晶断裂转变为部分穿晶断裂。
     (4)对于WC-Si_3N_4材料,在100°C/min升温速率下,β-Si_3N_4在1700°C以上会发生“快速熟化”现象——α→β-Si_3N_4快速转变、β-Si_3N_4晶须快速长成,与此同时WC基体晶粒也迅速发生长大;在1550~1600°C进行长时间保温,由于β-Si_3N_4熟化过程进行得比WC晶粒生长过程快,因而可以将WC晶粒快速长大过程与β-Si_3N_4晶须长成过程分离开来,从而实现抑制WC晶粒快速生长的目的;采用两步烧结方式(先升温到1700°C随即冷却至1600°C保温30min)可以制备出WC晶粒相对细小而且生成了大量β-Si_3N_4晶须的WC-10wt.%Si_3N_4材料。致密的WC-10wt.%Si_3N_4材料其硬度与WC基体晶粒平均尺寸成反相关,其断裂韧性主要随β-Si_3N_4晶须数量的增多而增大,β-Si_3N_4晶须对WC材料的增韧机制主要包括晶须拔出和裂纹桥接。采用两步烧结的WC-x wt.%Si_3N_4(x=1~15)复合材料,随着Si_3N_4含量的增多,α→β-Si_3N_4相转变率先增大后减小,材料的断裂韧性也呈现出同样的规律,当Si_3N_4含量为10wt.%时相转变率达到最大,为~100%,其断裂韧性值也达到最大,为10.94MPa·m~(1/2),与此同时材料的硬度为17.65GPa。VC与Cr_3C_2添加剂的存在对α→β-Si_3N_4相转变过程的影响并不大,却对WC晶粒的生长具有显著的抑制作用,因而可以在相同的烧结条件下提高WC-Si_3N_4材料的硬度;含VC与Cr_3C_2添加剂的WC-10wt.%Si_3N_4材料经过在1900°C不保温烧结后,其硬度和断裂韧性分别为17.43GPa和10.07MPa·m~(1/2)。
WC-Co cemented carbides have been widely used as cutting tools and wear-resistantcomponents due to a singular combination of mechanical properties. The addition of Cometallic binder phase to the WC which possesses extremely high hardness and excellentcorrosion-resistance as well as high temperature performance, increases the strength andtoughness of the composite considerably. However, the metallic binders in cemented carbidesare deleterious on hardness and corrosion-resistance, and also be an obstacle for theapplication at elevated temperature where it does soften. Pure WC can be densified by somenewly developing sintering techniques such as spark plasma sintering (SPS), but the lowtoughness of which limits the application of it. To improve the toughness of WC withoutmetallic binder phase, attention should be attracted to the toughening methods used intraditional ceramics.
     In this study binderless WC were sintered at different SPS conditions with focus on thedensification behavior, phase constitution, microstructure and mechanical properties of thematerial. In order to elevate the fracture toughness of the binderless WC,transformation-toughening by partially stabilized ZrO_2(PSZ) and particle toughening byAl_2O_3were adopted, as well as whisker toughening by in-situ grown elongated β-Si_3N_4grains, which have not been investigated to date. Moreover,“two-step sintering” wasextended and successfully applied to preparation of WC-Si_3N_4composites with largeelongated β-Si_3N_4grains in a fine WC matrix. In addition, effects of VC and Cr_3C_2additionson the material systems mentioned above were also studied. The main research results are asfollows.
     (1) Pure WC, WC-x wt.%ZrO_2(x=1,2,3,6,8,10) composites, WC-x vol.%Al_2O_3(x=0,6.8,12.4,16.7,43.6) composites, and WC-x wt.%Si_3N_4(x=1,3,6,8,10,12,15) composites are fabricated by SPS. The addition of ZrO_2/Al_2O_3/Si_3N_4(93wt.%Si_3N_4-6wt.%Y_2O_3-1wt.%Al_2O_3) to WC facilitates sintering of the composites.
     (2) After SPSed, most of the tetragonal ZrO_2remain until room temperature, and theZrO_2-particles are homogeneously dispersed in the WC matrix. As the ZrO_2content increasesfrom0to10wt.%, the hardness of the WC-ZrO_2composites decreases from~24GPa to~18 GPa, and the fracture toughness of the WC-ZrO_2composites increases from~6MPa m~(1/2)to~10.6MPa m~(1/2). The transformation toughening is believed to be the most importanttoughening mechanism. For the WC-8wt.%ZrO_2composites sintered at1500~1700°C, theaverage size of WC and ZrO_2grains increases with sintering temperature, however, theaddition of VC and Cr_3C_2significantly suppresses the growth of WC and ZrO_2grains. Themicrostructure coarsening at elevated temperatures causes degradation in hardness, whereasthe fracture toughness seems insensitive to the coarseness of microstructure. TheWCVCr-8ZrO_2specimen sintered at1600°C for holding5min using fine WC powder (~0.2μm) with VC and Cr_3C_2possesses hardness and fracture toughness of22.20GPa and11.40MPa·m~(1/2)respectively. For the WC-ZrO_2composites, the Palmqvist cracks are typicallyobserved in the high ZrO_2-content grade composites (≥6wt.%), while the median cracks,corresponding to the half-penny cracks system, are involved for the low ZrO_2-content grade(≤3wt.%).
     (3) The toughening effect exerted by Al_2O_3particles is not significant, and the fracturetoughness of the WC-Al_2O_3composites reaches6.49MPa·m~(1/2)only. The tougheningmechanisms include the crack-bridging by Al_2O_3particles and the local change in fracturemode from intergranular to transgranular.
     (4) For the WC-Si_3N_4composites sintered with a heating rate of100°C/min, fasttransformation of Si_3N_4from α to β and the β-Si_3N_4grain fast-growth resulted from“dynamic ripening” happen at above1700°C, accompanied with WC-grain fast-growth. Byexploiting the difference in kinetics between WC grain-growth and β-Si_3N_4grain-growththrough sintering at1550~1600°C for holding a long time, the separation of β-Si_3N_4grain-growth from WC-grain fast-growth and the suppression of WC-grain fast-growth areachieved. The WC-10wt.%Si_3N_4specimen after heated to1700°C and treated at1600°C for30min (two-step sintering) obtains large elongated β-Si_3N_4grains in fine WC matrix. For thedense WC-10wt.%Si_3N_4specimen, the hardness increases against the WC-grain size, andthe fracture toughness increases with the amount of elongated β-Si_3N_4grains. The majortoughening mechanisms are found to be elongated Si_3N_4grain-pullout and crack-bridging byelongated Si_3N_4grain. For the two-step sintered WC-x wt.%Si_3N_4(x=1~15) composites,the α→β-Si_3N_4transition rate and the fracture toughness increase with the Si_3N_4content, and then decrease as the Si_3N_4content exceeds10wt.%. As the Si_3N_4content reaches10wt.%,the α→β-Si_3N_4transition rate reaches~100%, and the hardness and fracture toughness of thespecimen reaches17.65GPa and10.94MPa·m~(1/2)respectively. Addition of VC and Cr_3C_2donot hinder the transformation of α to β-Si_3N_4or the growth of elongated β-Si_3N_4grains, butshows an inhibitory effect against WC grain growth, which results in higher hardness for theWC-Si_3N_4composites. The WC-10wt.%Si_3N_4specimen containing VC and Cr_3C_2sinteredat1900°C without holding possesses hardness and fracture toughness of17.43GPa and10.07MPa·m~(1/2).
引文
[1]株洲硬质合金厂.硬质合金的生产[M].北京:冶金工业出处社;1976.
    [2] Mori G, Zitter H, Lackner A, et al. Influencing the corrosion resistance of cemented carbides byaddition of Cr3C2, TiC and TaC[C].15th International Plansee Seminar.2001.
    [3] Weidow J, Norgren S, Andrén H-O. Effect of V, Cr and Mn additions on the microstructure ofWC–Co[J]. International Journal of Refractory Metals&Hard Materials,2009.27(5):817-822.
    [4] Sun L, Xiong J, Guo Z X. Effects of nano-Al2O3additions on microstructures and properties ofWC-8Co hard metals[J]. Manufacturing Science and Engineering, Pts1-5,2010.97-101:1649-1652.
    [5] Laptev A V. Theory and technology of sintering, thermal and chemicothermal treatment-Densificationof WC-Co alloys in solid-phase sintering (review)[J]. Powder Metallurgy and Metal Ceramics,2007.46(7-8):317-324.
    [6] Inoue K. Electric-discharge sintering[P]. Office, U.S.P., NO.3241956,1966
    [7]解迎芳,王兴庆,陈立东,等.放电等离子烧结纳米硬质合金的研究[J].硬质合金,2003.20(3):138-142.
    [8]夏阳华,平丰,胡耀波,等. SPS技术的进展及其在硬质合金制备中的应用[J].硬质合金,2003.20(4):216-218.
    [9]赵世贤,宋晓艳,王明胜,等. WC/Co粉体粒径匹配与放电等离子烧结致密化[J].金属学报,2009.45(4):497-502.
    [10]张利平,张国珍,张久兴,等.叠层加压SPS烧结制备梯度硬质合金[J].稀有金属材料与工程,2006.35(1):70-73.
    [11]王凯,宋晓艳,张久兴,等. SPS原位反应快速制备WC-6Co硬质合金的研究[J].稀有金属与硬质合金,2006.34(4):17-21.
    [12]张国珍,张利平,王澈,等.氧化钨直接碳化原位合成WC-Co块体材料[J].材料科学与工艺,2005.13(6):564-566.
    [13] Xi X, Pi X, Nie Z, et al. Synthesis and characterization of ultrafine WC–Co by freeze-drying and sparkplasma sintering[J]. International Journal of Refractory Metals&Hard Materials,2009.27(1):101-104.
    [14] Sun L, Lin C, Jia C, et al. Change in relative density of WC-Co cemented carbides in spark plasmasintering process[J]. Rare Metals,2008.27(1):74-77.
    [15] Sun L, Jia C C, Xian M, et al. Grain growth, microstructure and property of ultrafine WC-Co alloy byspark plasma sintering[J]. Recrystallization and Grain Growth III, Pts1and2,2007.558-559:959-963.
    [16] Huang S G, Vanmeensel K, Li L, et al. Influence of starting powder on the microstructure of WC-Cohardmetals obtained by spark plasma sintering[J]. Materials Science and Engineering A,2008.475(1-2):87-91.
    [17] Huang S G, Vanmeensel K, Li L, et al. Tailored sintering of VC-doped WC-Co cemented carbides bypulsed electric current sintering[J]. International Journal of Refractory Metals&Hard Materials,2008.26(3):256-262.
    [18] Sun L, Jia C C, Lin C G, et al. VC addition prepared ultrarine WC-11Co composites by spark plasmasintering[J]. Journal of Iron and Steel Research International,2007.14:85-89.
    [19]王海北,刘三平,蒋开喜,等.我国钴生产和消费现状[J].矿冶,2004.13(3):54-64.
    [20]孙晓刚.世界钴资源的分布和应用[J].有色金属,2000(1):38-41.
    [21]黄伯云,李成功,石力开,等.有色金属材料工程(下)[M].北京:化学工业出处社;2005.
    [22] Roebuck B, Bennett E G, Almond E A. Partitioning of molybdenum between carbide and binder-phasein WC-Ni cemented carbides Infiltrated with Ni-Cr-Mo alloys[J]. Journal of Materials Science Letters,1986.5(4):473-474.
    [23] Tumanov A V, Gostev Y V, Panov V S, et al. Wetting of TiC-WC system carbides with moltenNi3Al[J]. Powder Metallurgy and Metal Ceramics,1986.25(5):428-430.
    [24] Ahmadian M, Wexler D, Chandra T, et al. Abrasive wear of WC-FeAl-B and WC-Ni3Al-Bcomposites[J]. International Journal of Refractory Metals&Hard Materials,2005.23(3):155-159.
    [25]童国权,王尔德,何绍元.粘结剂成分对WC-20(Fe/Co/Ni)硬质合金力学性能和显微组织的影响[J].粉末冶金技术,1995.13(4):243-248.
    [26] Uhrenius B, Pastor H, Pauty E. On the composition of Fe-Ni-Co-WC-based cemented carbides[J].International Journal of Refractory Metals&Hard Materials,1997.15(1-3):139-149.
    [27] Fernandes C M, Popovich V, Matos M, et al. Carbide phases formed in WC-M (M=Fe/Ni/Cr)systems[J]. Ceramics International,2009.35(1):369-372.
    [28] Imasato S, Tokumoto K, Kitada T, et al. Properties of ultra-fine grain binderless cemented carbide'RCCFN'[J]. International Journal of Refractory Metals&Hard Materials,1995.13(5):305-312.
    [29] Srivatsan T S, Woods R, Petraroli M, et al. An investigation of the influence of powder particle size onmicrostructure and hardness of bulk samples of tungsten carbide[J]. Powder Technology,2002.122(1):54-60.
    [30] Cha S I, Hong S H. Microstructures of binderless tungsten carbides sintered by spark plasma sinteringprocess[J]. Materials Science and Engineering A,2003.356(1-2):381-389.
    [31] Zhao J, Holland T, Unuvar C, et al. Sparking plasma sintering of nanometric tungsten carbide[J].International Journal of Refractory Metals&Hard Materials,2009.27(1):130-139.
    [32] Li T, Li Q, Fuh J Y H, et al. Effects of AGG on fracture toughness of tungsten carbide[J]. MaterialsScience and Engineering A,2007.445:587-592.
    [33] Girardini L, Zadra M, Casari F, et al. SPS, binderless WC powders, and the problem of sub carbide[J].Metal Powder Report,2008.63(4):18-22.
    [34] Huang B, Chen L D, Bai S Q. Bulk ultrafine binderless WC prepared by spark plasma sintering[J].Scripta Materialia,2006.54(3):441-445.
    [35] Liu X Q, Lin T, Guo Z M, et al. Consolidation of ultrafine binderless cemented carbide by sparkplasma sintering[J]. Journal of Iron and Steel Research International,2007.14:82-84.
    [36] Zhang J X, Zhang G Z, Zhao S X, et al. Binder-free WC bulk synthesized by spark plasma sintering[J].Journal of Alloys and Compounds,2009.479(1-2):427-431.
    [37]张国珍,王澈,张久兴,等.配碳量对放电等离子烧结无粘结剂纳米WC硬质合金的影响[J].稀有金属与硬质合金,2005.33(2):12-15.
    [38] Kim H C, Shon I J, Garay J E, et al. Consolidation and properties of binderless sub-micron tungstencarbide by field-activated sintering[J]. International Journal of Refractory Metals&Hard Materials,2004.22(6):257-264.
    [39] Kim H C, Shon I J, Jeong I K, et al. Rapid sintering of ultra fine WC and WC-Co hard materials byhigh-frequency induction heated sintering and their mechanical properties[J]. Metals and MaterialsInternational,2007.13(1):39-45.
    [40] Kim H C, Shon I J, Yoon J K, et al. Consolidation of ultra fine WC and WC-Co hard materials bypulsed current activated sintering and its mechanical properties[J]. International Journal of RefractoryMetals&Hard Materials,2007.25(1):46-52.
    [41] Kim H C, Shon I J, Yoon J K, et al. One step synthesis and densification of ultra-fine WC byhigh-frequency induction combustion[J]. International Journal of Refractory Metals&Hard Materials,2006.24(3):202-209.
    [42] Kim H C, Yoon J K, Doh J M, et al. Rapid sintering process and mechanical properties of binderlessultra fine tungsten carbide[J]. Materials Science and Engineering A,2006.435:717-724.
    [43] Shon I J, Kim B R, Doh J M, et al. Properties and rapid consolidation of ultra-hard tungsten carbide[J].Journal of Alloys and Compounds,2010.489(1): L4-L8.
    [44] Tsai K M. The Effect of Consolidation Parameters on the Mechanical Properties of BinderlessTungsten Carbide[J]. International Journal of Refractory Metals&Hard Materials.2011.29(2):188-201.
    [45] Hugosson H W, Engqvist H. The connection between the electronic structure and the properties ofbinderless tungsten carbides[J]. International Journal of Refractory Metals&Hard Materials,2003.21(1-2):55-61.
    [46]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出处社;2001.
    [47]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社;2002.
    [48]夏傲.氧化锆增韧陶瓷材料的结构性能和应用[J].陶瓷科学与艺术,2005:4-8.
    [49]金志浩,高积强,王永兰,等.二氧化锆增韧三氧化二铝陶瓷的显微结构与性能的研究[J].西安交通大学学报,1989.23(4):47-52.
    [50]牟军,哪创,郭绍义,等.氧化锆增韧陶瓷的相变及相变增韧[J].材料科学与工程,1994.12(3):6-12.
    [51]林广涌,吴柏源,雷廷权,等. ZrO2增韧Al2O3/SiCw陶瓷复合材料研究[J].华南理工大学学报(自然科学版),1996.24(7):83-88.
    [52]安林,韩静涛,陈军. ZrO2(3Y)增韧增强WC-20%Co金属陶瓷复合材料[J].北京科技大学学报,2006.28(10):959-964.
    [53] Biswas K, Mukhopadhyay A, Basu B, et al. Densification and microstructure development in sparkplasma sintered WC-6wt%ZrO2nanocomposites[J]. Journal of Materials Research,2007.22(6):1491-1501.
    [54] Basu B, Venkateswaran T, Sarkar D. Pressureless sintering and tribological properties of WC-ZrO2composites[J]. Journal of the European Ceramic Society,2005.25(9):1603-1610.
    [55] Venkateswaran T, Sarkar D, Basu B. WC-ZrO2composites: Processing and unlubricated tribologicalproperties[J]. Wear,2006.260(1-2):1-9.
    [56] Yang F Z, Zhao J, Ai X. Effect of initial particulate and sintering temperature on mechanicalproperties and microstructure of WC–ZrO2–VC ceramic composites[J]. Journal of MaterialsProcessing Technology,2009.209(9):4531-4536.
    [57] Malek O, Lauwers B, Perez Y, et al. Processing of ultrafine ZrO2toughened WC composites[J].Journal of the European Ceramic Society,2009.29(16):3371-3378.
    [58] Mukhopadhyay A, Chakravarty D, Basu B. Spark plasma-sintered WC–ZrO2–Co nanocompositeswith high fracture toughness and strength[J]. Journal of the American Ceramic Society,2010.93(6):1754-1763.
    [59] Davidge R W. Mechanical behaviour of ceramics[M]. Cambridge: Cambridge University Press;1979.
    [60]徐芝纶.弹性力学[M].北京:高等教育出处社;1982.
    [61] Wei G C, Becher P F. Improvements in mechanical-properties in SiC by the addition of TiCparticles[J]. Journal of the American Ceramic Society,1984.67(8):571-574.
    [62]苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报,2004.14(1):237-242.
    [63] Zhao J H, Stearns L C, Harmer M P, et al. Mechanical-behavior of alumina silicon-carbidenanocomposites[J]. Journal of the American Ceramic Society,1993.76(2):503-510.
    [64] Niihara K. New design concept of structural ceramics-ceramic nanocomposites[J]. NipponSeramikkusu Kyokai Gakujutsu Ronbunshi,1991.99(10):974-82.
    [65] Perez-Rigueiro J, Pastor J Y, Llorca J, et al. Revisiting the mechanical behavior of alumina siliconcarbide nanocomposites[J]. Acta Materialia,1998.46(15):5399-5411.
    [66] Wang H Z, Gao L, Guo J K. The effect of nanoscale SiC particles on the microstructure of Al2O3ceramics[J]. Ceramics International,2000.26(4):391-396.
    [67] Gao L, Wang H Z, Hong J S, et al. Mechanical properties and microstructure of nano-SiC-Al2O3composites densified by spark plasma sintering[J]. Journal of the European Ceramic Society,1999.19(5):609-613.
    [68] Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC-TiC by high frequency inductionheating sintering[J]. International Journal of Refractory Metals&Hard Materials,2008.26(1):48-54.
    [69] Huang S G, Vanmeensel K, Van der Biest O, et al. Binderless WC and WC-VC materials obtained bypulsed electric current sintering[J]. International Journal of Refractory Metals&Hard Materials,2008.26(1):41-47.
    [70] Kim H C, Park H K, Jeong I K, et al. Sintering of binderless WC-Mo2C hard materials by rapidsintering process[J]. Ceramics International,2008.34(6):1419-1423.
    [71] Becher P F, Wei G C. Toughening behavior in SiC-whisker-reinforced alumina[J]. Journal of theAmerican Ceramic Society,1984.67(12):267-269.
    [72]彭晓峰,黄校先,张玉峰.碳化硅晶须补强氧化铝复合材料的制备及其力学性能[J].无机材料学报,1998.13(4):469-476.
    [73] Buljan S T, Baldoni J G, Huckabee M L. Si3N4-SiC composites[J]. American Ceramic SocietyBulletin,1987.66(2):347-352.
    [74] Shalek P D, Petrovic J J, Hurley G F, et al. Hot-pressed SiC whisker Si3N4matrix composites[J].American Ceramic Society Bulletin,1986.65(2):351-356.
    [75]张长瑞,李永清,陈朝娜,等.碳化硅晶须增强Si3N4复合材料[J].兵器材料科学与工程,1995.15(12):26-30.
    [76] Lange F F. Fracture toughness of Si3N4as a function of the initial alpha-phase content[J]. Journal ofthe American Ceramic Society,1979.62(7-8):428-430.
    [77] Pyzik A J, Beaman D R. Microstructure and properties of self-reinforced silicon nitride[J]. Journal ofthe American Ceramic Society,1993.76(11):2737-2744.
    [78] Drew P, Lewis M H. Microstructures of silicon-nitride ceramics during hot-pressingtransformations[J]. Journal of Materials Science,1974.9(2):261-269.
    [79] Luo X, Yuan R. Preparation of A high-performance Si3N4ceramic using self-reinforcingtechnology[J]. High Technology Letters,1997.3(2):84-88.
    [80]李凤梅,管葆青,赵家培.自增韧热压氮化硅陶瓷的研究[J].复合材料学报,1997.14(2):30-34.
    [81]罗学涛,张立同.氮化硅陶瓷自增韧技术进展[J].复合材料学报,1997.14(3):1-8.
    [82] Morisada Y. SiC-coated carbon nanotubes and their application as reinforcements for cementedcarbides[J]. Materials Science and Engineering A,2004.381(1-2):57-61.
    [83] Zhang F. Processing and properties of carbon nanotubes-nano-WC-Co composites[J]. MaterialsScience and Engineering A,2004.381(1-2):86-91.
    [84] Shi X, Yang H, Wang S, et al. Fabrication and properties of WC–10Co cemented carbide reinforcedby multi-walled carbon nanotubes[J]. Materials Science and Engineering A,2008.486(1-2):489-495.
    [85] Sugiyama S, Kudo D, Taimatsu H. Preparation of WC-SiC whisker composites by hot pressing andtheir mechanical properties[J]. Materials Transactions,2008.49(7):1644-1649.
    [86]曹玉军,刘杰. SiC晶须增韧WC陶瓷刀具材料的研究[J].稀有金属与硬质合金,2005.33(4):13-17.
    [87] Anstis G R, Chantikul P, Lawn B R, et al. A Critical-evaluation of indentation techniques formeasuring fracture toughness.1. Direct crack measurements[J]. Journal of the American CeramicSociety,1981.64(9):533-538.
    [88] Garay J E. Current-activated, pressure-assisted densification of materials[J]. Annual Review ofMaterials Research,2010(40):445-468.
    [89] Bock A, Schubert W D, Lux B. Inhibition of grain growth on submicron cemented carbides[J]. PowderMetallurgy International,1992.24(1):20-26.
    [90] Choi K, Hwang N M, Kim D Y. Effect of VC addition on microstructural evolution of WC-Co alloy:mechanism of grain growth inhibitio[J]. Powder Metallurgy,2000.43(2):168-172.
    [91] Li N, Qiu Y X, Zhang W. Influence and function of inhibitor VC/Cr3C2on the grain growth in superfine WC–Co cermets[J]. Rare Metal Materials and Engineering,2007.36:1763-1766.
    [92] Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2grain growth inhibitors onsintering of binderless tungsten carbide[J]. International Journal of Refractory Metals and HardMaterials,2012.31(0):218-223.
    [93] Ouyang C, Zhu S, Qu H. VC and Cr3C2doped WC–MgO compacts prepared by hot-pressingsintering[J]. Materials&Design,2012.40(0):550-555.
    [94] Engqvist H, Botton G A, Axen N, et al. A study of grain boundaries in a binderless cementedcarbide[J]. International Journal of Refractory Metals&Hard Materials,1998.16(4-6):309-313.
    [95] Wang J, Stevens R. Zirconia-toughened alumina (ZTA) ceramics[J]. Journal of Materials Science,1989.24(10):3421-3440.
    [96] Lange F F. Transformation toughening: Part1, Size effects associated with the thermodynamics ofconstrained transformation[J]. Journal of Materials Science,1982.17(1):225-234.
    [97] Tuan W H, Chen R Z, Wang T C, et al. Mechanical properties of Al2O3/ZrO2composites[J]. Journalof the European Ceramic Society,2002.22(16):2827-2833.
    [98] Cain M G, Lewis M H. Microstructure and fracture toughness of hot-pressed zirconia-toughenedsialon[J]. Journal of the American Ceramic Society,1993.76(6):1401-1408.
    [99] Ma W M, Wen L, Guan R G, et al. Sintering densification, microstructure and transformation behaviorof Al2O3/ZrO2(Y2O3) composites[J]. Materials Science and Engineering A,2008.477(1-2):100-106.
    [100] Gao L, Wang H Z, Hong J S, et al. SiC-ZrO2(3Y)-Al2O3nanocomposites superfast densified byspark plasma sintering[J]. Nanostructured Materials,1999.11(1):43-49.
    [101] Basu B, Lee J H, Kim D Y. Development of WC-ZrO2nanocomposites by spark plasma sintering[J].Journal of the American Ceramic Society,2004.87(2):317-319.
    [102] Niihara K, Morena R, Hasselman D P H. Evaluation of KIcof brittle solids by the indentation methodwith low crack-to-indent ratios[J]. Journal of Materials Science Letters,1982.1(1):13-16.
    [103] Hsieh C L, Tuan W H. Elastic properties of ceramic-metal particulate composites[J]. MaterialsScience and Engineering A,2005.393(1-2):133-139.
    [104] Ogilvy I M, Perrott C M, Suiter J W. On the indentation fracture of cemented carbide part1—Survey of operative fracture modes[J]. Wear,1977.43(2):239-252.
    [105] Shetty D K, Wright I G, Mincer P N, et al. Indentation fracture of WC-Co cermets[J]. Journal ofMaterials Science,1985.20(5):1873-1882.
    [106] Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containingceramics[J]. Journal of the American Ceramic Society,2000.83(3):461-487.
    [107] Zheng D H, Li X Q, Ai X, et al. Bulk WC–Al2O3composites prepared by spark plasma sintering[J].International Journal of Refractory Metals&Hard Materials,2012.30(1):51-56.
    [108] Zheng D H, Li X Q, Li Y Y, et al. In-situ elongated β-Si3N4grains toughened WC compositesprepared by one/two-step spark plasma sintering[J]. Materials Science and Engineering A,2013.561(0):445-451.
    [109] Kim H C, Kim D K, Ko I Y, et al. Sintering behavior and mechanical properties of binderlessWC-TiC produced by pulsed current activated sintering[J]. Journal of Ceramic Processing Research,2007.8(2):91-97.
    [110] Anselmi-Tamburini U, Gennari S, Garay J E, et al. Fundamental investigations on the spark plasmasintering/synthesis process: II. Modeling of current and temperature distributions[J]. Materials Scienceand Engineering A,2005.394(1–2):139-148.
    [111] Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J].Nature,2000.404(6774):168-171.
    [112] Swain M V. Grain-size dependence of toughness and transformability of2mol%Y-TZP ceramics[J].Journal of Materials Science Letters,1986.5(11):1159-1162.
    [113] Becher P F, Swain M V. Grain-size-dependent transformation behavior in polycrystalline tetragonalzirconia[J]. Journal of the American Ceramic Society,1992.75(3):493-502.
    [114] Ruiz L, Readey M J. Effect of heat treatment on grain size, phase assemblage, and mechanicalproperties of3mol%Y-TZP[J]. Journal of the American Ceramic Society,1996.79(9):2331-2340.
    [115] Becher P F, Alexander K B, Bleier A, et al. Influence of ZrO2grain size and content on thetransformation response in the Al2O3─ZrO2(12mol%CeO2) system[J]. Journal of the AmericanCeramic Society,1993.76(3):657-663.
    [116] El-Eskandarany M S. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractorymaterials at room temperature[J]. Journal of Alloys and Compounds,2000.296(1-2):175-182.
    [117] El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3materialsby room temperature ball milling and subsequent consolidation[J]. Journal of Alloys and Compounds,2005.391(1-2):228-235.
    [118] Evans A G. Perspective on the development of high-toughness ceramics[J]. Journal of the AmericanCeramic Society,1990.73(2):187-206.
    [119] Schmid H K, Aslan M, Assmann S, et al. Microstructural characterization of Al2O3-SiCnanocomposites[J]. Journal of the European Ceramic Society,1998.18(1):39-49.
    [120] Birchall J D, Stanley D R, Mockford M J, et al. Toxicity of Silicon Carbide Whiskers[J]. Journal ofMaterials Science Letters,1988.7(4):350-352.
    [121] Chen S, Ye F, Zhou Y. Low temperature hot-pressed BAS matrix composites reinforced with in situgrown Si3N4whiskers[J]. Ceramics International,2002.28(1):51-58.
    [122] Quander S W, Bandyopadhyay A, Aswath P B. Synthesis and properties of in situ Si3N4-reinforcedBaO·Al2O3·2SiO2ceramic matrix composites[J]. Journal of Materials Science,1997.32(8):2021-2029.
    [123] Sun E Y, Becher P F, Plucknett K P, et al. Microstructural design of silicon nitride with improvedfracture toughness: II, Effects of yttria and alumina additives[J]. Journal of the American CeramicSociety,1998.81(11):2831-2840.
    [124] Becher P F, Sun E Y, Plucknett K P, et al. Microstructural design of silicon nitride with improvedfracture toughness: I, Effects of grain shape and size[J]. Journal of the American Ceramic Society,1998.81(11):2821-2830.
    [125] Imamura H, Hirao K, Brito M E, et al. Further improvement in mechanical properties of highlyanisotropic silicon nitride ceramics[J]. Journal of the American Ceramic Society,2000.83(3):495-500.
    [126] Kim H D, Han B D, Park D S, et al. Novel two-step sintering process to obtain a bimodalmicrostructure in silicon nitride[J]. Journal of the American Ceramic Society,2002.85(1):245-252.
    [127] Lu H H, Huang J L. Microstructure of silicon nitride containing β-phase seeds: II[J]. Journal of theAmerican Ceramic Society,2002.85(9):2331-2336.
    [128] Tong X, Li J, Yang X, et al. Mechanical property and oxidation behavior of self-reinforced Si3N4doped with Re2O3(Re=Yb, Lu)[J]. Journal of the American Ceramic Society,2006.89(5):1730-1732.
    [129] Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size, I. Y2O3[J].Journal of the American Ceramic Society,2006.89(2):431-437.
    [130] Wang X H, Deng X Y, Bai H L, et al. Two-step sintering of ceramics with constant grain-size, II:BaTiO3and Ni-Cu-Zn ferrite[J]. Journal of the American Ceramic Society,2006.89(2):438-443.
    [131] Bodi ová K, ajgalík P, Galusek D, et al. Two-Stage Sintering of Alumina with SubmicrometerGrain Size[J]. Journal of the American Ceramic Society,2007.90(1):330-332.
    [132] Lee Y-I, Kim Y-W, Mitomo M, et al. Fabrication of dense nanostructured silicon carbide ceramicsthrough two-step sintering[J]. Journal of the American Ceramic Society,2003.86(10):1803-1805.
    [133] Yang D Y, Yoon D Y, Kang S J L. Suppression of Abnormal Grain Growth in WC-Co via Two-StepLiquid Phase Sintering[J]. Journal of the American Ceramic Society,2011.94(4):1019-1024.
    [134] Pigeon R G, Varma A. Quantitative phase analysis of Si3N4by X-ray diffraction[J]. Journal ofMaterials Science Letters,1992.11(20):1370-1372.
    [135] Goto Y, Thomas G. Phase transformation and microstructural changes of Si3N4during sintering[J].Journal of Materials Science,1995.30(9):2194-2200.
    [136] Sarin V K. On the α-to-β phasetransformation in silicon nitride[J]. Materials Science and EngineeringA,1988.105–106, Part1(0):151-159.
    [137] Kolitsch U, Seifert H J, Ludwig T, et al. Phase equilibria and crystal chemistry in theY2O3–Al2O3–SiO2system[J]. Journal of Materials Research,1999.14:447-455.
    [138] Kr mer M, Hoffmann M J, Petzow G. Grain growth kinetics of Si3N4during α/β-transformation[J].Acta Metallurgica Et Materialia,1993.41(10):2939-2947.
    [139] Shen Z J, Zhao Z, Peng H, et al. Formation of tough interlocking microstructures in silicon bitrideceramics by dynamic ripening[J]. Nature,2002.417(6886):266-269.
    [140] Tajima Y, Urashima K, Watanabe M, et al., Fracture toughness and microstructure evaluation ofsilicon nitride ceramics, in Ceramic Transactions, Messing, G.L., Fuller, E.R., Jr., and Hausner, H.,Editors.1988, American Ceramic Society: Westerville, OH. p.1034-1041.
    [141] Mazaheri M, Hesabi Z R, Sadrnezhaad S K. Two-step sintering of titania nanoceramics assisted byanatase-to-rutile phase transformation[J]. Scripta Materialia,2008.59(2):139-142.
    [142] Mazaheri M, Simchi A, Golestani-Fard F. Densification and grain growth of nanocrystalline3Y-TZPduring two-step sintering[J]. Journal of the European Ceramic Society,2008.28(15):2933-2939.
    [143] Mazaheri M, Zahedi A M, Hejazi M M. Processing of nanocrystalline8mol%yttria-stabilizedzirconia by conventional, microwave-assisted and two-step sintering[J]. Materials Science andEngineering A,2008.492(1-2):261-267.
    [144] Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts:effect of temperature on densification and grain growth[J]. Journal of the American Ceramic Society,2008.91(1):56-63.
    [145] Chih-Jen W, Chi-Yuen H, Yu-Chun W. Two-step sintering of fine alumina-zirconia ceramics[J].Ceramics International,2009.35(4):1467-72.
    [146] Fathi M H, Kharaziha M. Two-step sintering of dense, nanostructural forsterite[J]. Materials Letters,2009.63(17):1455-1458.
    [147] Hesabi Z R, Haghighatzadeh A, Mazaheri M, et al. Suppression of grain growth in sub-micrometeralumina via two-step sintering method[J]. Journal of the European Ceramic Society,2009.29(8):1371-1377.
    [148] Mazaheri M, Valefi M, Hesabi Z R, et al. Two-step sintering of nanocrystalline8Y2O3stabilizedZrO2synthesized by glycine nitrate process[J]. Ceramics International,2009.35(1):13-20.
    [149] Li D, Chen S O, Shao W Q, et al. Preparation of dense nanostructured titania ceramic using two stepsintering[J]. Materials Technology,2010.25(1):42-44.
    [150] Manosso M K, de Jesus Agnolon Pallone E M, Chinelatto A L, et al., Two-steps sintering ofalumina-zirconia ceramics, in Advanced Powder Technology Vii, Salgado, L. and Ambrozio, F.,Editors.2010. p.819-825.
    [151] Ma J, Zhu S, Ouyang C. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts[J].Journal of the European Ceramic Society,2011.31(10):1927-1935.
    [152] Khosroshahi H R, Ikeda H, Yamada K, et al. Effect of cation doping on mechanical properties ofyttria prepared by an optimized two-step sintering process[J]. Journal of the American Ceramic Society,2012.95(10):3263-3269.
    [153] Li B-r, Liu D-y, Liu J-j, et al. Two-step sintering assisted consolidation of bulk titania nano-ceramicsby spark plasma sintering[J]. Ceramics International,2012.38(5):3693-3699.
    [154] Schwarz S, Guillon O. Two step sintering of cubic yttria stabilized zirconia using Field AssistedSintering Technique/Spark Plasma Sintering[J]. Journal of the European Ceramic Society,2013.33(4):637-641.
    [155] Sun Z Q, Zhu X W, Li M S, et al. Tailoring texture of γ-Y2Si2O7by strong magnetic field alignmentand two-step sintering[J]. Journal of the American Ceramic Society,2008.91(8):2521-2528.
    [156] Su H, Tang X, Zhang H, et al. Sintering dense NiZn ferrite by two-step sintering process[J]. Journalof Applied Physics,2011.109(7):07A501-07A501-3.
    [157] Maeda M, Zhao Y, Watanabe Y, et al. Fabrication and superconducting properties of highly denseMgB2bulk using a two-step sintering method[J]. Ieee Transactions on Applied Superconductivity,2009.19(3):2763-2766.
    [158] Wang S, Zhang L, Zhang L, et al. Two-step sintering of ultrafine-grained barium cerate protonconducting ceramics[J]. Electrochimica Acta,2013.87:194-200.
    [159] Zhao B, Zhong C, Zhang S, et al. Influence of two-step sintering method on the properties ofBaZrO3/CaO-B2O3-SiO2composite material[J]. Electronic Components&Materials,2009.28(2):1-4.
    [160] Liu W, Wang G, Cao S, et al. Pyroelectric properties of highly ordered Pb(Sc0.5Ta0.5)O3ceramics bya two-step sintering technique[J]. Journal of the American Ceramic Society,2010.93(12):4030-4032.
    [161] Hoshina T, Kigoshi Y, Furuta T, et al. Shrinkage behaviors and sintering mechanism of BaTiO3ceramics in two-step sintering[J]. Japanese Journal of Applied Physics,2011.50(9):09NC07-09NC07-4.
    [162] Hua S, Xiaoli T, Huaiwu Z, et al. Low-loss NiCuZn ferrite with matching permeability andpermittivity by two-step sintering process[J]. Journal of Applied Physics,2013.113(17):17B301-17B301-3.
    [163] Wang Y, Zhang S, Zhou X. Property study of Ba0.2Sr0.8La4Ti4O15mi crowave dielectric ceramicsprepared by two-step sintering[J].Electronic Components&Materials,2013.32(1):10-13.
    [164] Veljovic D, Palcevskis E, Zalite I, et al. Two-step microwave sintering-A promising technique for theprocessing of nanostructured bioceramics[J]. Materials Letters,2013.93:251-253.
    [165] Kim J, Rosenflanz A, Chen I W. Microstructure control of in-situ-toughened α-SiAlON ceramics[J].Journal of the American Ceramic Society,2000.83(7):1819-1821.
    [166] Huang J-L, Din L-M, Lu H-H, et al. Effects of two-step sintering on the microstructure of Si3N4[J].Ceramics International,1996.22(2):131-6.
    [167] Park Y, Hwang N, Yoon D. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix[J].Metallurgical and Materials Transactions A,1996.27(9):2809-2819.
    [168] Yoon B-K, Lee B-A, Kang S-J L. Growth behavior of rounded (Ti,W)C and faceted WC grains in aCo matrix during liquid phase sintering[J]. Acta Materialia,2005.53(17):4677-4685.
    [169] Kang M-K, Kim D-Y, Hwang N M. Ostwald ripening kinetics of angular grains dispersed in a liquidphase by two-dimensional nucleation and abnormal grain growth[J]. Journal of the European CeramicSociety,2002.22(5):603-612.
    [170] Yoo Y-S, Kim H, Kim D-Y. Effect of SiO2and TiO2addition on the exaggerated grain growth ofBaTiO3[J]. Journal of the European Ceramic Society,1997.17(6):805-811.
    [171] Kwon S K, Hong S H, Kim D Y, et al. Coarsening behavior of tricalcium silicate (C3S) anddicalcium silicate (C2S) grains dispersed in a clinker melt[J]. Journal of the American Ceramic Society,2000.83(5):1247-1252.
    [172] Myung-Koo K, Young-Sung Y, Doh-Yeon K. Growth of BaTiO3seed grains by the twin-planereentrant edge mechanism[J]. Journal of the American Ceramic Society,2000.83(2):385-90.
    [173] Campbell G H, Rühle M, Dalgleish B J, et al. Whisker Toughening: A Comparison BetweenAluminum Oxide and Silicon Nitride Toughened with Silicon Carbide[J]. Journal of the AmericanCeramic Society,1990.73(3):521-530.
    [174] Kleebe H-J, Pezzotti G, Ziegler G. Microstructure and fracture toughness of Si3N4ceramics:Combined roles of grain morphology and secondary phase chemistry[J]. Journal of the AmericanCeramic Society,1999.82(7):1857-1867.
    [175] Wang X, Fang Z Z, Sohn H Y. Grain growth during the early stage of sintering of nanosized WC–Copowder[J]. International Journal of Refractory Metals and Hard Materials,2008.26(3):232-241.
    [176] Schubert W. Hardness to toughness relationship of fine-grained WC-Co hardmetals[J]. InternationalJournal of Refractory Metals and Hard Materials,1998.16(2):133-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700