用户名: 密码: 验证码:
重型商用车驾驶室轻量化分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着能源危机和全球气候变暖等问题的出现,汽车轻量化已经是炙手可热的话题。降低汽车的整备质量,不仅可以降低汽车的燃油消耗,减少有害物质排放,还可以提高汽车的装载量或载客量,提高汽车运输效率。汽车结构的轻量化,可以从材料、工艺和结构设计三个方面入手。结构轻量化设计是汽车轻量化的重要途径之一,是轻量化汽车产品开发的基础和前提,通过轻量化设计使合适的材料、最优的结构形状和尺寸用在汽车结构合适的位置,使每部分材料都能发挥出其最大的承载、吸能和加刚作用,可提高材料利用率、降低车重,减少材料成本,实现节能、减排、降耗。
     本文结合省科技科技发展计划重大项目“商用车驾驶室轻量化分析与应用”(20086007),对重型商用车驾驶室的轻量化设计与评价方法及其应用进行了系统、深入的理论分析与试验研究。通过对重型商用车驾驶室白车身结构进行轻量化设计与试验,取得良好的减重效果。
     首先应用有限元方法,分别建立了驾驶室白车身的有限元模态分析、强度、刚度和被动安全性分析模型,分析了驾驶室在自由状态下的固有振动特性;确定了重型商用车在转向、制动、加速和直线行驶四种典型工况下驾驶室所承受最大动载荷,分析了驾驶室在上述四种工况下的强度、刚度;基于ECE R29法规规定的试验方法,对驾驶室的前摆锤冲击、顶压和后推的被动安全性进行了分析和评价,为驾驶室轻量化设计改进后的对比分析提供了依据。
     应用拓扑优化和形貌优化方法,对驾驶室白车身结构进行了轻量化优化设计,确定了驾驶室白车身的轻量化结构设计方案,通过对轻量化驾驶室的强度、刚度、振动特性和被动安全性进行有限元分析,并与轻量化前原驾驶室结构的相应性能进行对比,检验了轻量化驾驶室结构的性能。
     提出了用轻量化系数来评价驾驶室白车身轻量化水平方法,并对驾驶室白车身进行了轻量化分析与评价。
     为了考核轻量化设计后驾驶室的性能是否满足使用要求,研制了轻量化驾驶室样件,测量了轻量化驾驶室前10阶弹性模态频率和振型及其静态弯曲和扭转刚度特性;对轻量化前后驾驶室一阶扭转频率和刚度特性进行了分析对比。结果表明,虽然轻量化后驾驶室一阶扭转频率和静态弯扭刚度有所降低,但其一阶扭转频率仍>16Hz,弯曲刚度>14000N/mm,扭转刚度>35000Nm/°,可以满足对驾驶室刚度和振动特性要求。依据ECE R29法规要求,对轻量化驾驶室进行了被动安全性仿真分析和试验研究,结果表明,轻量化驾驶室的正面摆锤冲击、顶静压和后推的被动安全性满足ECER29法规要求。
     轻量化驾驶室装车后8000km可靠性强化道路试验结果表明,轻量化驾驶室在试验过程中未出现异常,说明轻量化驾驶室可靠性满足使用要求。
     减重后的轻量化驾驶室在保持其材料不变、满足使用要求的情况下实现减重46kg。
     提出并设计开发出一种框架式商用车轻量化驾驶室,优化了框架式驾驶室的结构和尺寸,对框架式驾驶室进行了有限元模态分析、强度、刚度和被动安全性分析,并与原驾驶室相应特性进行了对比评价;结果表明所开发的框架式驾驶室不仅在强度和刚度上有明显的提高,也具有优越的振动特性,并能更好满足ECER29被动安全性要求,与原驾驶室相比可减重95kg,达到了更好的轻量化效果。
     项目研发轻量化驾驶室已经用于重型商用车驾驶室的产品生产和销售,取得了良好的减重和节能效果。论文的研究结果作为一种共性技术可广泛应用于不同商用车驾驶室的轻量化设计。对于提高国产重型商用车驾驶室的正向开发设计能力和轻量化水平,节能减排,增强国际市场竞争力,促进汽车工业技术进步具有重要作用。
Accompanied by the emergence of the energy crisis and global warming issues,Vehicle weight reduction is a hot topic. Reduce the curb weight of the car, not onlycan reduce a car's fuel consumption and reduce emissions of harmful substances, butalso can improve the car loading or patronage to improve the efficiency of automobilemotor transport. The Lightweight analysis of the vehicle structure can be startedwiththe using of light materials, new processing method and structureoptimization.Structural lightweight design is the most important approaches of vehicle lightweightanalysis, it is the basis and prerequisite for lightweight automotive productdevelopment. Through the lightweight design, we can not only use the suitablematerial, shape and size of the optimal structure at suitable position in automotivestructures, so that every part of the material play its right role such asloading,energy-absorbing and stiffness improving, but also can improve material utilizationand reduce vehicle weight,material costs and emission, saveenergy.
     According to the major projects of the Provincial Science and TechnologyScience and Technology Development Plan "Lightweight Analysis and ApplicationsofCommercial VehicleCab ", this paper performed deeply theoretical analysis andexperimental research on lightweight design, evaluation methods and itsapplicationsystems of heavy-duty commercial vehicle cab.Through the lightweightdesign and testing of heavy commercial vehicle cab white body structure to achievegood weight reduction results.
     Firstly, using the finite element method, some FEA models of white Cab werebuiltto perform modal analysis, strength, stiffness and passive safetyanalysisrespectively. The natural vibration characteristics of the cab in the free statewas analyzed, the maximum dynamic load on the cab was determined as the heavy commercial vehicles in the four typical operating conditions steering,braking,acceleration and driving straight. The strength and stiffness analysis were performedunder the above four operating conditions.Based on ECE R29regulations, the cabpassive safety analysis and evaluation was made on front pendulumimpact, roofstrength and rear wall strength,toprovide a reference for comparative analysis of cablightweight design and improvement.
     Applying topology optimization and topography optimization methods,lightweight design of white cab structure was performed and the lightweight plan wasdetermined. According to the strength, stiffness, vibration characteristics and passivesafety finite element analysis results on lightweight white cab and thecompartmentswith the original cab performance, the performance of the lightweight white cab wasverified.
     A new proposal of using lightweight coefficient as lightweight evaluatingmethod was made, and had been used to analysis and evaluates the lightweight levelof the white cab.
     In order to assesswhether the lightweight design can meet the operatingrequirements, we developed a lightweight cab sample, measured the first10elasticmodal frequencies and mode shapes and their static bending and torsional stiffnesscharacteristics of the lightweight cab; the first torsional frequency and stiffnesscharacteristics were analyzedand compared between the original and lightweight cab.Although lightweight cab first torsional frequency and static bending and torsionstiffness decreased, but the first torsional frequencywas larger than16Hz, the bendingstiffness>14000N/mm and torsional stiffness35000Nm/°, which meaned that itcan meet the driving chamber stiffness and vibration characteristics requirements.Based on ECE R29Regulatory requirements, lightweight cab passive safetysimulation analysis and experimental research were performed, the results showedthat the lightweight cab can meet the ECER29regulatory requirement of frontpendulum impact, roof strength and rear wall strength.
     The8000km road test results showed that the lightweight cab performed well during the test, the lightweight cab reliability can meet the reliability requirements.
     After lightweight analysis and optimization, the cab reduced weight46kg in thecase of maintaining the same material and meeting the operating requirements.
     Proposed and developed a frame-type lightweight commercial vehicle cab,optimized the structure and size of the cab frame, performed the model state analysis,strength, stiffness and passive safety analysis of the cab frame, and compared thecorresponding characteristics withthe original cab; The results showed that thedeveloped frame-type lightweight cab significantly improved the strength andstiffness, superior vibration characteristics, and can better meet ECER29passivesafety requirements. It was lighter95kg than the original cab.
     The cab developed in this paper has been used for the production and sales ofheavy commercial vehicle cab and got good weight reduction and energy-savingeffect. The research results can be widely used as a common technology lightweightdesign on different commercial vehicle cab and play an important role to improvethe forward design capabilities of domestic heavy commercial vehicle cab,implementthe energy saving and emission reduction, enhanced competitiveness in internationalmarkets and promote industry technological progress.
引文
[1]王智文.汽车轻量化技术的发展.趋势跟踪,2009(1):45-54.
    [2]马鸣图;易红亮;路洪洲,论汽车轻量化.中国工程科学.2009(9):20-27
    [3]朱宏敏.汽车轻量化关键技术的应用及发展.应用能源技术.2009(2):10-13
    [4]曹建宏,程振东,贾会星,田晋跃.重型商用汽车安全.重型汽车,2005(1):15-16.
    [5]马鸣图,路洪洲,李志刚.汽车轻量化和高强度钢的冶现金加工技术[J].机械工程材料,2008,7:5-9
    [6]王利,杨雄飞,陆匠心.汽车轻量化与高强度钢板的合理选用[A].中国汽车工程学会汽车材料分会第十五届年会论文集[C].江阴:2006
    [7]马鸣图,柏建仁.汽车轻量化材料及相关技术的研究进展[J].新材料产业,2006,6:37-42
    [8]景艳,赵培全,何平.汽车新材料的应用)))轻量化[J].现代制造技术与装备,2007(1):75-78.
    [9]冯美斌.汽车轻量化技术中新材料的的发展及应用[J].仪表技术与传感器,2006,28(3):213-220.
    [10]范叶,杨沿平,孟先春,唐杰.汽车轻量化技术及其实现途径[J].汽车工业研究,2006(3):40-42.
    [11]鞠晓峰,陈昌明,吴宪.现代汽车轻量化技术[J].上海汽车,2006(6):31-33.
    [12]范军锋,陈铭.中国汽车轻量化之路初探[M].铸造,2006,55(10):995-1003.
    [13]马鸣图.先进汽车用钢[M].北京:化学工业出版社,2008
    [14] B run o Ludke, M arkus P festor.f轻型车身的功能材料,汽车用铌微合金化钢板[M].北京:冶金工业出版社,2006V
    [15]唐波.<<商用车驾驶室乘员保护>>征求意见稿解读与设计要领.商用汽车,2008(12):77-79.
    [16]豪彦.我国汽车强制性标准发展动态(三).汽车与配件,2004(6):22-23.
    [17]黄宁军.汽车被动安全研究的回顾与展望.上海汽车,2009:24-29.
    [18]张新,马红建,苏海顺,齐靖,叶福恒,张捷. JSM驾驶室满足ECER29碰撞法规适应性改进.吉林省第五届科学技术学术年会,2008,271-274
    [19]陈塑寰,麻凯.板壳加筋结构的组合优化[J].吉林大学学报(工学版),2008,38:387-392.
    [20]杨志军,吴晓明,陈塑寰,孟树兴.多工况约束下客车顶棚拓扑优化[J].吉林大学学报(工学版),2006,36:12-15.
    [21]舒磊,方宗德,董军,陈善志.汽车子结构的复合域拓扑优化[J].汽车工程,2008,5:444-448.
    [22]庄才敖,荣见华,李东斌.考虑应力和频率要求的车架结构拓扑优化设计[J].汽车工程,2008,5:448-452+385.
    [23]范文杰,范子杰,桂良进,刘东.多工况下客车车架结构多刚度拓扑优化设计研究[J].汽车工程,2008,6:531-533.
    [24]上官文斌,蒋翠翠,潘孝勇.汽车悬架控制臂的拓扑优化与性能计算[J].汽车工程,2008,8:708-712.
    [25]曹文钢,曲令晋,白迎春.基于灵敏度分析的客车车身质量优化研究[J].汽车工程,2009,3:277-281.
    [26]陈剑,徐陈夏.发动机悬置系统优化设计及其可靠性分析[J].汽车工程,2009,3:234-238.
    [27]徐岩,杨志军,陈宇东,陈塑寰.载货汽车发动机飞轮壳加强筋布置的优化设计[J].吉林大学学报(工学版),2005,35(4):451-456.
    [28]吕兆平,闫剑滔,李宏庚,许文光,尹亮.基于有限元技术的动力总成悬置支架拓扑优化的研究[J].汽车工程,2009,4:321-325.
    [29]王登峰,张斌,陈静,刘伟,孙兆福,吴永刚.商用车驾驶室白车身焊点缩减拓扑优化研究[J].汽车工程,2009,4:326-330.
    [30]陈茹雯,李守成,吴小平.基于有限元法的拓扑优化技术在某军车车身骨架设计中的应用研究[J].汽车工程,2006,4:390-393.
    [31]潘孝勇,柴国钟,刘飞,徐驰.悬置支架的优化设计与疲劳寿命分析[J].汽车工程,2007,4:341-345.
    [32]李红建,邱少波,林逸,张君媛,刘静岩.汽车车身复杂钣金件的拓扑优化设计[J].汽车工程,2003,3:303-306+30.
    [33]万德安,赵建才.轿车车门刚度有限元分析及结构优化[J].汽车工程,2001,6:385-388.
    [34] ARORA J S, ELWAKEIL O A, CHAHANDE A I, HSIDH C C. Globaloptimization methods for engineering applications[J]. A Rev. Struct. Optim.,1994,9:137-159.
    [35] Anindya Deba, Ajit Naravanea, Clifford C. Choub. A Practical CAE-DrivenApproach for Weight Optimization of an Existing Vehicle Body. Proceedings ofIMECE2006.2006(11):5-10
    [36] G. Chiandussi, I. Gaviglio, A. Ibba,‘Topology optimisation of an automotivecomponent without final volume constraint specification’, Advances inEngg.Software35(2004)609-617.
    [37] HANSEN J S, LIU Z S, OLHOFF N. Shape sensitivity analysis using a fixedbasis function finite element approach[J]. Struct. Multidisc. Optim.,2001,21:177-195.
    [38] Soo-lyong Leea, Dong-chan Leeb. Integrated process for structural–topologicalconfiguration design of weight-reduced vehicle components. Finite Elements inAnalysis and Design43(2007)620–629
    [39] DEMS K, MROZ Z. On shape sensitivity approaches in the numerical analysisof structures[J]. Struct. Optim.,1993,6:86-93.
    [40] D.-c. Lee, A design of panel structure for the improvement of dynamic stiffness,Proc. Inst. Mech. Eng. Part D; J. Automob. Eng.218(6)(2004)647–654.
    [41] D.-C. Lee, J.-H. Jang, C.-S. Han, Design consideration of a mechanicalstructure with geometric and material non-linearities, Proc. Inst. Mech.Eng. Part D; J.Automob. Eng.220(3)(2006)281–288.
    [42] D.-c. Lee, H.-s. Choi, C.-s. Han, Design of automotive body structure usingmulticriteria optimization, Struc. Multidisc. Optim.32(2)(2006)161–167..
    [43] LUND E, OLHOFF N. Shape design sensitivity analysis of eigenvalues usingexact numerical differentiation of finite element matrices[J]. Struct. Optim.,1994,8:52-59.
    [44] DUYSINX P, BENSOE M P. Topological optimization of continuum structureswith local stress constraints[J]. International Journal for Numerical Methods inEngineering,1998,43:1453-1478.
    [45] PETERSSON J. On the continuity of the design-to state mappings for trusseswith variable topology[J]. International Journal of Engineering Science,2001,39:1118-1141.
    [46] GUO X, CHENG GD, YAMAZAKI K. A new approach for the solution ofsingular optima in truss topology optimization with stress and local buckingconstraints[J]. Structural and Multidisciplinary Optimization,2001,22:364-373.
    [47] R. Ansola, J. Canales, J.A. Tarrago, J. Rasmussen, An integrated approach forshape and topology optimization of shell structures, Comput. Struct.(2002)449–458.
    [48] ROZVANY G I N, BENDSOE M P, KIRSCH U. Layout optimization ofstructures[J]. Appl. Mech. Rev.,1995,48:41-118.
    [49] SUZUKI K, KIKUCHI N. A homogenization method for shape and topologyoptimization[J]. Comput. Mech. Appl. Mech. Engrg.,1991,93:291-318.
    [50] IBRAHIM I M, CROLLA D A, BARTON D C. Effect of frame flexibility onthe ride vibration of trucks[J]. Computers&Structures,1996,58(4):708-713.
    [51]唐靖林;曾大本.面向汽车轻量化材料加工技术的现状及发展.金属加工。2009(11):11-13
    [52]范军锋,冯奇,凌天钧.汽车轻量化与制造工艺.机械设计与制造.2009(7):141-143
    [53] Haight Brent. Advanced Technologies are Opening Doors for New Material[sJ].Automotive Industries,April,2003:14~19
    [54] Yan Zhang.Lightweight design of automobile component using high strengthsteel based on dent resistance[J]. Materials&Design,2006,27:64~68
    [55] CHEN SU HUAN. Matrix perturbation theory in structural dynamic design[M].Science Press, Beijing,2007.
    [56] MEIROVICH L. ELEMENTS OF VIBRATION ANALYSIS[M].MCGRAW-HILL, INC, NEW YORK,1975.
    [57]董绍斌.激光拼焊板技术在汽车车身制造中的应用.汽车工艺与材料.2006(5):9-11
    [58]谷诤巍;姜超;单忠德.超高强度钢板冲压件热成形工艺.汽车工艺与材料.2009(4):15-17
    [59]郭立群,王登峰。车架刚度对商用车乘坐舒适性的影响。吉林大学学报(工学版),2010,40(4)。
    [60]汪树玉,刘国华,包志仁.结构优化设计的现状与进展.基建优化,1999,20(4):2-14.
    [61]李晶,鹿晓阳,陈世英.结构优化设计理论与方法研究进展.工程建设,2007,39(6):21-31.
    [62]许素强,夏人伟.结构优化方法研究综述.航空学报,1995,16(4):385-396.
    [63]张胜兰,郑冬黎,郝琪,李楚琳.基于HyperWorks的结构优化设计技术.北京:机械工业出版社,2007.
    [64] Masataka Yoshimura, Shinji Nishiwaki; A Multiple Cross-Sectional ShapeOptimization Method for Automotive Body Frames; Journal of Mechanical DesignJANUARY2005, Vol.127/51
    [65] Rajan R. Chakravarty. Study of Topography Optimization on Automotive BodyStructure. SAE Paper No.2008-01-1233.
    [66] Srinivasan Laxman, Raj Mohan Iyengar, Shawn Morgans. AchievingLight-Weight Design of Automotive Bodies with Advanced High Strength Steels viaStructural Optimization. SAE Paper No.2008-01-0795.
    [67]高云凯,姜欣,张荣荣.电动改装轿车车身结构优化设计分析;汽车工程,2005,27(1):115-118.
    [68]崔岸,王龙山,兰凤崇.结构优化有限元分析在客车概念开发中的应用研究.机械强度,2004,26(6):710~714.
    [69]刘江,桂良进,王青春,范子杰.全承载式大客车车身结构多目标优化.汽车工程,2008,30(2):170-174.
    [70] Michael S.Varat and Stein E.Husher.Vehicle. Crash Severity Assessment inLateral Pole Impacts. SAE Paper No.1998-01-0100.
    [71] Edit J.Kaminsky and Andre Rog. The National Crash Survival Data Bank: AResource for Modelers. SAE Paper No.1998-01-1903.
    [72] M. Li· J. Hamel· S. Azarm. Optimal uncertainty reduction formulti-disciplinary multi-output systems using sensitivity analysis.Struct MultidiscOptim (2010)40:77–96
    [73] Acar E, Haftka RT, Johnson TF. Tradeoff of uncertainty reduction mechanismsfor reducing weight of composite laminates.J Mech Des.2007.129(3):266–274.
    [74] Kokkolaras M, Mourelatos ZP, Papalambros PY Design optimization ofhierarchically decomposed multilevel systems under uncertainty. J Mech Des.2006(2):503–508.
    [75] Li M. Robust optimization and sensitivity analysis with multi-objective geneticalgorithms: single-and multidisciplinary applications. Ph.D. Dissertation, Universityof Maryland.2007, College Park, Maryland
    [76] Li M, Azarm S. Multiobjective collaborative robust optimization (McRO) withinterval uncertainty and interdisciplinary uncertainty propagation. J MechDes.2008.130(8):081402/1–081402/11.
    [77]钟志华.汽车耐撞性分析的有限元法.汽车工程,1994,16(1):1-6.
    [78] Daniel Schmit, Design of a Medium and Heavy-Duty Truck Cab Shell. SAEPaper No.2004-01-2637.
    [79] Mikio Shibaoka, Kaoru Kusaka, Yasushi Nakanishi and Yoshiharu Itai. NewApproach to High Rigidity Body Construction Using Dynamic Analysis. SAE PaperNo.2003-01-1332.
    [80] Naesung Lyu, Kazuhiro Saitou. Decomposition-Based Assembly Synthesis forStructural Stiffness. Journal of Mechanical Design,2003,125:452-463.
    [81]王志亮,刘波,马莎莎,曹洪娜.基于弯曲刚度和扭转刚度的白车身优化分析.机械科学与技术,2008,27(8):1021-1024.
    [82]迟瑞丰.概念车身智能化CAE分析—模态分析.长春:吉林大学汽车工程学院,2005.
    [83]刘文平.重型商用车驾驶室的模态分析与试验研究.长春:吉林大学汽车工程学院,2007.
    [84]李龙.车身梁截面优化方法的研究.长春:吉林大学材料科学与工程学院,2008.
    [85] P. Sivanagendra G. K. Ananthasuresh. Size optimization of a cantilever beamunder deformation-dependent loads with application to wheat stalks. Struct MultidiscOptim,2009(39):327–336.
    [86] Donald M. Baskin, David B. Reed and Thomas N. Seel, A Case Study inStructural Optimization of an Automotive Body-In-White Design. SAE Paper No.2007-01-0880.
    [87] Altair HyperWorks online help.
    [88] C. H. Chuang, S. Zhou, W. Ang, R. J. Yang and M. Lee. Upfront BodyStructural Optimization using Parametric Concept Modeling. SAE Paper No.2008-01-0343.
    [89] Caner Demirdogen, Jim Ridge, Paul Pollock and Scott Anderson. WeightOptimized Design of a Front Suspension Component for Commercial Heavy Trucks.SAE Paper No.2004-01-2709.
    [90] Lothar Harzheim· Gerhard Graf. A review of optimization of cast parts usingtopology optimization. Struct Multidisc Optim,2006(31):388–399.
    [91] M. E. Botkin. Structural Optimization of Automotive Body Components Basedon Parametric Solid Modeling. Engineering with Computers,2008(18):108-115.
    [92]左孔天.连续体结构拓扑优化理论与应用研究.武汉:华中科技大学,2004.
    [93]王永兵,黄诚,王永卫.连续梁体结构拓扑优化的密度惩罚法.公路工程与运输,2008(7):51-53.
    [94]黄昶春,沈光烈,韦志林.基于结构最大刚度的形状优化方法.现代制造工程,2005(01):97-99.
    [95]崔海涛,马海全,温卫东.弹性接触问题的形状优化设计方法.应用力学学报,2004,21(2):83-86.
    [96] M. Ohsaki, H. Tagawa, P. Pan. Shape optimization of reduced beam sectionunder cyclic loads. Journal of Constructional Steel Research,2009(65):1511-1519.
    [97] Nima Bakhtiary, Allinger, Friedrich, Müller, Mulfinger, Puchinger, Sauter.1996SAE PAPER NO. International Congress and Exposition Detroit, MichiganUSA, February26-29.
    [98]孙营,王泽斌.灵敏度方法在汽车设计中的应用.湖北汽车工业学院学报,1999,13(4):1-8.
    [99]夏国林.白车身动态灵敏度分析及优化设计.汽车科技,2008(5):37-40.
    [100]高云凯,蓝晓理,陈鑫.轿车车身模态修改灵敏度计算分析.汽车工程,2001,23(5):352-355.
    [101] V. Apostol, J.L.T. Santos, M. Paiva. Sensitivity analysis and optimization oftruss/beam components of arbitrary cross-section II. Shear stresses. Computers andStructures,2002(80):391-401.
    [102] Chonggang Xu, George Zdzislaw Gertner. A general first-order globalsensitivity analysis method. Reliability Engineering and System Safety,2008(93):1060-1071.
    [103] Shengyong Zhang, GlenPraterJr. A study of the effect of elastic instability onstiffness-based gauge sensitivity indices for vehicle body structure assessment.Thin-Walled Structures,2009(47):1590-1596.
    [104] Glen Prater, Shengyong Zhang, Ali M. Shahhosseini, Gary M. Osborne.Application and Experimental Validation of Gauge Sensitivity Indices for VehicleBody Structure Optimization,SAE Paper No.2007-01-0883.
    [105] ECE R-29,“Protection of Occupant of the Cab of Commercial Vehicle”.
    [106] Julian Neves Tonioli, I. J. Castro, R. R. Ripoli and M. A. Argentino,Computational Simulation of the ECE R-29Safety Test. SAE Paper No.2000-01-3524.
    [107] S. K. Patidar, V. Tandon, R. S. Mahajan and S. Raju. Practical Problems inImplementing Commercial Vehicle Cab Occupant Protection Standard ECE R-29.SAE Paper No.2005-26-041.
    [108] REGULATION No.29. Uniform Provisions Concerning the Approval ofVehicles with Regard to the Protection of the Occupants of the Cab of a CommercialVehicle.
    [109]张建红.商用车驾驶室正面摆锤撞击试验机研究.长春:吉林大学机械科学与工程学院,2007.
    [110]钱立军,董金富,吴阳年.轻型卡车驾驶室顶盖和后围安全性仿真.机械设计与制造,2008(5):65-66.
    [111]刘军,商用车驾驶室摆锤撞击安全性分析与改进,长春:吉林大学汽车工程学院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700