用户名: 密码: 验证码:
小麦籽粒灌浆期淀粉合成酶学机制及基因表达模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用糯性和非糯性两种不同类型小麦为材料,通过田间试验考察了它们在灌浆过程中直、支链淀粉和总淀粉的积累量、积累速率变化及参与淀粉合成的关键酶活性变化;应用葡聚糖凝胶层析的方法研究了支链淀粉不同链长的积累动态过程;应用荧光实时定量技术研究了淀粉合成关键酶编码基因在转录水平上的调节机制,并分析了它们之间的相互关系。结果表明:
     1.灌浆期,糯性和非糯性小麦籽粒中的直(非糯)、支链淀粉和总淀粉的积累量均呈“S”形曲线变化;直、支链淀粉和总淀粉的积累速率均呈先增加后降低的单峰曲线变化,并且均在花后20天左右达最大积累速率;另外,直、支链淀粉的最终积累量主要取决于最大积累速率和平均积累速率的大小,与淀粉积累的起始时间关系不大。
     2.糯性和非糯性小麦籽粒淀粉合成过程中催化淀粉合成的关键酶:腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)、可溶性淀粉合成酶(SSS)、束缚态淀粉合成酶(GBSS)和淀粉分支酶(SBE)的活性变化均呈单峰曲线,活性峰值基本上都出现在花后20~25天左右;
     3.相关性分析结果表明,灌浆期直链淀粉积累速率与AGPP、SSS、GBSS和SBE活性变化呈显著或者极显著正相关,支链淀粉和总淀粉积累速率与AGPP、SSS和SBE活性变化显著或极显著正相关。
     4.在异淀粉酶作用下,支链淀粉的分支链裂解,可分为A链和短B链(DP<29),中等长度B链(2965.8)。不同长度的支链淀粉分支链相对含量在小麦籽粒发育期不断地变化,并且在糯性与非糯性小麦材料中的积累动态过程存在差异。灌浆期,AGPP、SSS、GBSS和SBE酶与支链淀粉分支链关系密切。
     5.控制淀粉合成的关键酶有四大类:AGPP、GBSS、SS和SBE,相应的其编码基因也分为四类,第一类是AGPP大亚基和小亚基的编码基因AGPP-L和AGPP-S;第二类是GBSS的编码基因GBSSI;第三类是SSS的编码基因SSI、SSII和SSIII;第四类是SBE的编码基因SBEI、SBEIIa和SBEIIb。应用实时荧光定量的方法研究各淀粉合成酶编码基因在灌浆期不同时期的实时表达,结果表明:除GBSSI外,其它淀粉合成酶编码基因在两个小麦材料中的表达模式基本相似,大致为低-高-低的单峰曲线和高-低-高-低的双峰曲线模式。GBSSI在非糯性小麦中呈现双峰曲线的表达模式,而在糯性小麦中一直处于低效表达的状态。根据小麦胚乳中的各个淀粉合成酶编码基因在籽粒灌浆不同时期的表达特性,我们可将其分为四类:第一类是在整个灌浆期均高效表达,即参与种皮中临时性淀粉的合成,也参与胚乳淀粉的合成,SSII;第二类是在籽粒种皮合成初期高效表达,参与临时性淀粉的合成,SBEIIa;第三类是在胚乳淀粉合成时期高效表达,有AGPP-L、AGPP-S、GBSSI、SSIII和SBEIIb;第四类是在灌浆初期低效表达,在胚乳合成时快速增长,淀粉合成中后期恒定表达,且在胚乳淀粉合成中起着重要作用的基因,有SSI和SBEI。因此,淀粉合成酶编码基因的表达存在时序性和组织特异性,在淀粉合成过程中起着不同的调控作用
     6.比较各基因在两种不同类型小麦中的表达量差异,结果表明GBSSI、SSIII在非糯性小麦中高效表达,在糯性小麦中低效表达;SBEI、SBEIIb在糯性小麦中高效表达,在非糯性小麦中低效表达。
     7.通过以上结果得出,淀粉合成酶编码基因在灌浆期小麦籽粒发育过程中的表达规律是:SSI基因在灌浆中-后期恒定的表达,而SSII在早期和中期高效表达,SSIII基因在中期高效表达,GBSSI基因则在整个灌浆期高效表达;SBEIIa基因在灌浆初期-中期高效表达,SBEIIb在灌浆中期高效表达,SBEI则在灌浆中-后期高效表达。
     8.以下实验结果证明支链淀粉的合成早于直链淀粉:
     (1)非糯小麦在花后5天前时未检测到直链淀粉存在,而此时已经检测到支链淀粉含量,并且糯小麦仅含有支链淀粉;
     (2)在灌浆早期,可以检测到SSS酶活性,而此时却没有检测到GBSS酶活性,灌浆期主要参与支链淀粉合成的SSS酶活性均大于主要参与直链淀粉合成的GBSS酶活性;
     (3)用异淀粉酶水解花后5天左右的支链淀粉α-1,6糖苷键,结果证明,支链淀粉的分支链已经形成,此时无直链淀粉。
     (4)淀粉合成酶编码基因在灌浆期的表达研究结果表明,在灌浆初期,SSII和SBEIIa的表达量较高,而这两个基因均属于支链淀粉合成酶编码基因,虽然GBSSI在非糯性小麦中也有表达,但是由于GBSSI属于转录后调控基因,根据在糯性小麦后期GBSSI的表达量可知,其在灌浆初期的表达量并不能合成直链淀粉。
Two different wheat varieties were used to study the dynamic changes of theaccumulations of amylose and amylopectin, starch accumulation rate, the activity changes ofkey enzymes involved in starch biosynthesis, the accumulations of different amylopectinchain length and the expression profiles of genes which encoded starch synthase in the kernelduring grain filling. The results observed were:
     1. The changes of amylose and amylopectin accumulating rates of both waxy andnon-waxy wheat varieties showed a single peak curve. The accumulation courses of bothamylopectin and amylose were well fitted to the logistic equation by relating amylopectin andamylose contents against days post anthesis. The simulation parameters revealed that thehigher contents of amylopectin and amylose resulted from greater accumulation rate andmean accumulation rate, but accumulation duration probably played a less important role forthem.
     2. The activity changes of the adenosine diphosphorate glucose pyrophrylase (AGPP),soluble starch synthase (SSS), Granule-bound starch synthase (GBSS) and starch branchingenzyme (SBE) were all in the pattern of a single-peak curve, and peaked at20~25days afteranthesis.
     3. The accumulation rate of amylose was significantly or highly significantly correlatedwith the activities of AGPP, SSS, GBSS and SBE the accumulation rate of amylopectin wassignificantly correlated with the activity of SSS, and the accumulation rate of starch wassignificantly or highly significantly correlated with the activities of AGPP and SSS.
     4. Amylopectin were de-branched with isoamylase and named by different chains A andshort B (DP<29), mid-length B (2965.8). Different amylopectinchain contents changed continually during grain development and varied differently betweenthe two types of wheat. Moreover, the AGPP, SSS, GBSS, and SBE activities exhibited aclose correlation with the different chains of amylopectin.
     5. A comprehensive analysis of the transcript levels of genes which encodestarch-synthesis enzymes was fundamental for the assessment of the function of each enzymeand the regulatory mechanism for starch biosynthesis in sink organs. Using quantitativereal-time RT-PCR, an examination was made of the expression profiles of9wheat genesencoding three classes of enzymes, i.e. ADPglucose pyrophosphorylase, starch synthase, andstarch branching enzyme in developing grain, which were AGPP-L and AGPP-S encoded thelarge and small subunit of AGPP, GBSSI was encoded GBSS, SSI, SSII and SSIII wereencoded SS, SBEI, SBEIIa and SBEIIb were encoded SBE. The results showed that theexpression profiles of AGPL, AGPP-S, SSI, SSII, SSIII, SBEI, SBEIIa and SBEIIb weresimilar between non-waxy and waxy types of wheat, except GBSSI. Four patterns ofexpression in the seed were identified: group1gene, SSII, which was highly expressedthroughout granule development; group2gene, SBEIIa, which was expressed very early ingrain formation and are presumed to be involved in the construction of fundamental cellmachineries, de novo synthesis of glucan primers, and initiation of starch granules; group3genes, AGPP-L、AGPP-S, GBSSI, SSIII and SBEIIb, which are highly expressed throughoutendosperm development; group4genes, SSI and SBEI which have transcripts that are low atthe onset but which rise steeply at the start of starch synthesis in the endosperm and arethought to play essential roles in endosperm starch synthesis, Thus, The modes of geneexpression were tissueand developmental stage-specific.
     6. During the whole stage of gain development, GBSSI and SSIII genes higher expressedin non-waxy while SBEI and SBEIIb were lower expressed in non-waxy wheat.
     7. During the whole stage of grain development, SSI was generally expressed over themid-late grain development, while SSII was higher expressed over the early-mid graindevelopment, SSIII was higher expressed at the middle of grain development, and the GBSSIwas higher expressed during whole stage of grain development; SBEIIa was expressed overthe early-mid grain development, SBEIIb was higher expressen at the middle of graindevelopment, and SBEI was higher expressed over mid-late grain development.
     8. The results showed that the beginning biosynthesis of amylopectin was earlier thanamylose, based on the results as below:
     (1) The amylopectin appeared at5days after anthesis in non-waxy type of wheat;meanwhile, we did not found the amylose at5days after anthesis. The amylose content wasdetected about10days after anthesis, and the accumulation of amylopectin was increasedrapidly at this time. Moreover, we did not found amylose in the waxy type of wheat.
     (2) At5days after anthesis, we detected SSS activity which mainly was involved inamylopectin synthesis, but GBSS activity which mainly was involved in amylose synthesiswas not detected.
     (3) The amylopectin which were obtained at5days after anthesis were de-branched withisoamylase, we found that the different chains of amylopectin were synthsized at this time.
     (4) The expression level of genes which encoded starch snthase told us that the SSII andSBEIIa, which encoded the starch synthase maily involved in amylopectin synthesis, werehigher expressed at the initiation of grain development. Even though the GBSSI wereexpressed at this time, it probably belonged to post-transcriptional control gene. According tothe espression levele of GBSSI in waxy type of wheat, we speculated that the expression levelwere too lower to amylose synthesis.
引文
陈新民.糯性小麦(Waxy Wheat)研究进展[J].麦类作物学报,2000,20(3):82-85
    陈东升,C.Kiribuchi-Otobe,徐兆华等.Waxy蛋白缺失对小麦淀粉特性和中国鲜面条品质的影响[J].中国农业科学2005,38(5):865-873
    戴忠民,王振林,高凤菊.两种供水条件下两穗型小麦品种籽粒淀粉积累及相关酶活性的变化特征[J].作物学报,2007,33(4):682-685
    何照范.粮油籽粒品质及其分析技术[M].北京:农业出版社,1985:144-294
    康国章,王永华,郭天财,朱云集,官春云.植物淀粉合成的调控酶[J].遗传,2006,28(1):110-116
    吕冰,郭志刚,梁建生.水稻胚乳中淀粉合成相关酶活性的变化对支链淀粉精细结构的影响[J].中国科学C辑:2008,51(10):863-871
    罗毅,姜玉梅,刘海英.不同优质小麦子粒淀粉积累动态及其酶活性变化[J].(河南农业大学学报),2005,39(2):135-138
    李太贵,沈波,陈能,罗玉坤.Q酶对水稻籽粒白垩质的影响[J].作物学报,1997,23(3):338-344
    李继刚,梁荣奇,张义荣,李保云,刘广田.糯性普通小麦的产生及其淀粉性状的研究[J].麦类作物学报,2001,21(2):10-13
    李世清,邵明安,李紫燕,伍维模,张兴昌.小麦籽粒灌浆特征及影响因素的研究进展[J].西北植物学报,2003,23(11):2031-2039
    师凤华,徐杰,李保云等.小麦胚乳Wx蛋白缺失对籽粒淀粉含量的影响[J].中国农业大学学报,2006,11(6):41-44.
    谭彩霞,郭静,陈静,封超,郭文善,朱新开,李春燕,彭永欣.弱筋小麦籽粒淀粉合成特性与酶基因表达的关系[J].扬州大学学报(农业与生命科学版),2009,30(1):84-89
    王月福,马东辉,赵长星,林琪,于振文.施氮量和花后土壤含水量对强筋小麦籽粒淀粉合成及品质的影响[J].西北植物学报,2008,28(9):1803-1810
    王文静,何金环.不同类型土壤上种植的小麦籽粒中与淀粉合成相关的酶活性变化[J].植物生理学通讯,2006,42(5):894-896
    王文静,高桂立,罗毅.三个不同品质类型冬小麦品种籽粒淀粉积累动态及其有关酶的活性变化[J].作物学报,2005,31(10):1305-1309
    王月福,李尚霞,于振文.小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应[J].作物学报,2003,29(1),75-81
    王江春,严美玲,刘学卿.鲁麦14空间诱变后代的籽粒淀粉积聚及相关酶活性的变化[J].麦类作物学报,2007,27(6):1059-1063
    闫素辉,王振林,戴忠民.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较[J].作物学报,2007,33(1):84-89
    张元培.展望新世纪的优质小麦品种研究与开发(二)[J].粮食与饲料工业,1998,(8):1-3
    张海艳,董树亭,高荣岐,李玉全.玉米籽粒淀粉积累及相关酶活性分析[J].中国农业科学,2008,41:2174-2181
    Ball S, Guan H P, James, M. cell,1996,86:349-352
    Aime D B, Arntfield S D, Malcolmson L J, Ryland D.2001. Textural analysis of fat reduced vanillaice cream products. Food Research International,34:237-246
    Ainsworth C, Tarvis M, Clark J.1993. Isolation and analysis of a cDNA clone encoding the smallsubunit of ADP-glucose pyrophosphorylase from wheat. Plant Molecular Biology,23:23-33
    Ainsworth C, Hosein F, Tarvis M, Weir F, Burrell M, Devos K M, Gale M D.1995. Adenosinediphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping. Planta,197:1-10
    Andersen J M, Larsen R, Laudencia D, Kim W T, Morrow D, Okita T W, Preiss J.1991. Molecularcharacterization of the gene encoding a rice endosperm-specific ADPglucose pyrophosphorylase subunitand its developmental pattern of transcription. Gene,97:199-205
    Ao Z, Simsek S, Zhang G, Venkatachalam M, Reuhs B L, Hamaker B R.2007. Starch with a SlowDigestion Property Produced by Altering Its Chain Length, Branch Density, and Crystalline Structure.Journal of Agricultural and Food Chemistry,55:4540-4547
    B ga M, Nair R B, Repellin A, Scoles G J, Chibbar R N.2000. Isolation of a cDNA Encoding aGranule-Bound152-Kilodalton Starch-Branching Enzyme in Wheat. Plant Physiology,124:253-264
    Ball S G, van de Wal M H B J, Visser R G F.1998. Progress in understanding the biosynthesis ofamylose. Trends in Plant Science,3:462-467
    Ballicora M A, Dubay J R, Devillers C H, Preiss J.2005. Resurrecting the Ancestral Enzymatic Roleof a Modulatory Subunit. Journal of Biological Chemistry,280:10189-10195
    Bao J S, Xiao P, Hiratsuka M, Sun M, Umemoto T.2009. Granule-bound SSIIa Protein Content andits Relationship with Amylopectin Structure and Gelatinization Temperature of Rice Starch. Starch-Starke,61:431-437
    Bertoft E, Koch K.2000. Composition of chains in waxy-rice starch and its structural units.Carbohydrate Polymers,41:121-132
    Bertoft E, Turku, Finland.1986. Respective on the arrangment of cluster in amylopectin5:1-9
    Blauth S L, Yao Y, Klucinec J D, Shannon J C, Thompson D B, Guiltinan M J.2001. Identification ofMutator Insertional Mutants of Starch-Branching Enzyme2a in Corn. Plant Physiology,125:1396-1405
    Blauth S L, Kim K-N, Klucinec J, Shannon J C, Thompson D, Guiltinan M.2002. Identification ofMutator insertional mutants of starch-branching enzyme1(sbe1) in Zea mays L. Plant Molecular Biology,48:287-297
    Blazek J, Copeland L.2008. Pasting and swelling properties of wheat flour and starch in relation toamylose content. Carbohydrate Polymers,71:380-387
    Blazek J, Copeland L.2009. Effect of monopalmitin on pasting properties of wheat starches withvarying arnylose content. Carbohydrate Polymers,78:131-136
    Blennow A, Engelsen S B, Munck L, Mqller B L.2000. Starch molecular structure andphosphorylation investigated by a combined chromatographic and chemometric approachCarbohydr.Polym,41:163-174
    Burton R A, Jenner H, Carrangis L, Fahy B, Fincher G B, Hylton C, Laurie D A, Parker M, Waite D,Van Wegen S, Verhoeven T, Denyer K.2002. Starch granule initiation and growth are altered in barleymutants that lack isoamylase activity. The Plant Journal,31:97-112
    Cao H, James M G, Myers A M.2000. Purification and Characterization of Soluble Starch Synthasesfrom Maize Endosperm. Archives of Biochemistry and Biophysics,373:135-146
    Cao H, Imparl-Radosevich J, Guan H, Keeling P L, James M G, Myers A M.1999. Identification ofthe Soluble Starch Synthase Activities of Maize Endosperm. Plant Physiology,120:205-216
    Chen M H, Bergman C J.2007. Method for determining the amylose content, molecular weights, andweight-and molar-based distributions of degree of polymerization of amylose and fine-structure ofamylopectin. Carbohydrate Polymers,69:562-578
    Chung J, Han J, Yoo B, Seib P, Lim S.2008. Effects of molecular size and chain profile of waxycereal amylopectins on paste rheology during retrogradation. Carbohydrate Polymers,71:365-371
    Clarke B, Liang R, Morell M K, Bird A R, Jenkins C L D, Li Z.2008. Gene expression in a starchsynthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Functional&Integrative Genomics,8:211-221
    Commuri P D, Keeling P L.2001. Chain-length specificities of maize starch synthase I enzyme:studies of glucan affinity and catalytic properties. The Plant Journal,25:475-486
    Craig J, Lloyd J R, Tomlinson K, Barber L, Edwards A, Wang T L, Martin C, Hedley C L, Smith A M.1998. Mutations in the Gene Encoding Starch Synthase II Profoundly Alter Amylopectin Structure in PeaEmbr yos. The Plant Cell Online,10:413-426
    Cross J M, Clancy M, Shaw J R, Greene T W, Schmidt R R, Okita T W, Hannah L C.2004. BothSubunits of ADP-Glucose Pyrophosphorylase Are Regulatory. Plant Physiology,135:137-144
    Dai Z, Yin Y, Wang Z.2008. Comparison of starch accumulation and enzyme activity in grains ofwheat cultivars differing in kernel type. Plant Growth Regulation,57:153-162
    Delvallé D, Dumez S, Wattebled F, Roldán I, Planchot V, Berbezy P, Colonna P, Vyas D, ChatterjeeM, Ball S, Mérida á, D'Hulst C.2005. Soluble starch synthase I: a major determinant for the synthesis ofamylopectin in Arabidopsis thaliana leaves. The Plant Journal,43:398-412
    Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith A M.1996. The Major Form of ADP-GlucosePyrophosphorylase in Maize Endosperm Is Extra-Plastidial. Plant Physiology,112:779-785
    Denyer K a y, Johnson P, Zeeman S, Smith A M.2001. The control of amylose synthesis. Journal ofPlant Physiology,158:479-487
    Dian W, Jiang H, Wu P.2005. Evolution and expression analysis of starch synthase III and IV in rice.Journal of Experimental Botany,56:623-632
    Dian W, Jiang H, Chen Q, Liu F, Wu P.2003. Cloning and characterization of the granule-boundstarch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadianrhythm. Planta,218:261-268
    Dinges J R, Colleoni C, Myers A M, James M G.2001. Molecular Structure of Three Mutations at theMaizesugary1Locus and Their Allele-Specific Phenotypic Effects. Plant Physiology,125:1406-1418
    Dinges J R, Colleoni C, James M G, Myers A M.2003. Mutational Analysis of the Pullulanase-TypeDebranching Enzyme of Maize Indicates Multiple Functions in Starch Metabolism. The Plant Cell Online,15:666-680
    Dneyer K, Waite D, Motawia S, Mqller B L, Smith A M.1999. Granule-bound starch synthase I inisolated starch granules elongates malto-oligosaccharides processively. Biochem. J.,340:183-191
    Edwards A, Fulton D C, Hylton C M, Jobling S A, Gidley M, R ssner U, Martin C, Smith A M.1999.A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch oftubers. The Plant Journal,17:251-261
    Fujita N, Hasegawa H, Taira T.2001. The isolation and characterization of a waxy mutant of diploidwheat (Triticum monococcum L.). Plant Science,160:595-602
    Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y.2006. Function andCharacterization of Starch Synthase I Using Mutants in Rice. Plant Physiol.,140:1070-1084
    Fujita N, Kubo A, Suh D-S, Wong K-S, Jane J-L, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y.2003.Antisense Inhibition of Isoamylase Alters the Structure of Amylopectin and the Physicochemical Propertiesof Starch in Rice Endosperm. Plant and Cell Physiology,44:607-618
    Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L,Miyao A, Hirochika H, Nakamura Y.2007a. Characterization of SSIIIa-Deficient Mutants of Rice: TheFunction of SSIIIa and Pleiotropic Effects by SSIIIa Deficiency in the Rice Endosperm. Plant Physiol.,144:2009-2023
    Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L,Miyao A, Hirochika H, Nakamura Y.2007b. Characterization of SSIIIa-Deficient Mutants of Rice: TheFunction of SSIIIa and Pleiotropic Effects by SSIIIa Deficiency in the Rice Endosperm. Plant Physiology,144:2009-2023
    Gao M, Fisher D K, Kim K N, Shannon J C, Guiltinan M J.1997. Independent Genetic Control ofMaize Starch-Branching Enzymes IIa and IIb (Isolation and Characterization of a Sbe2a cDNA). PlantPhysiology,114:69-78
    Gao M, Wanat J, Stinard P S, James M G, Myers A M.1998. Characterization of dull1, a Maize GeneCoding for a Novel Starch Synthase. The Plant Cell Online,10:399-412
    Geigenberger P, Kolbe A, Tiessen A.2005. Redox regulation of carbon storage and partitioning inresponse to light and sugars. Journal of Experimental Botany,56:1469-1479
    Giroux M J, Shaw J, Barry G, Cobb B G, Greene T, Okita T, Hannah L C.1996a. A single mutationthat increases maize seed weight. Proceedings of the National academy of Sciences of the United States ofAmerica,93:5824-5829
    Giroux M J, Shaw J, Barry G, Cobb B G, Greene T, Okita T, Hannah L C.1996b. A single mutationthat increases maize seed weight. Proceedings of the National Academy of Sciences,93:5824-5829
    Guan H, Li P, Imparl-Radosevich J, Preiss J, Keeling P.1997. Comparing the Properties ofEscherichia coli Branching Enzyme and Maize Branching Enzyme. Archives of Biochemistry andBiophysics,342:92-98
    Hanashiro I, Abe J, Hizukuri S.1996. A periodic distribution of chain length of amylopectin asrevealed by high-performance anion-exchange chromatography. Carbohydr res283:151-159
    Hannah L C, Greene T.(2009) The Complexities of Starch Biosynthesis in Cereal Endosperms, in: A.L. Kriz and B. A. Larkins (Eds.), Molecular Genetic Approaches to Maize Improvement, Springer BerlinHeidelberg. pp.287-301.
    Harn C, Knight M, Ramakrishnan A, Guan H, Keeling P L, Wasserman B P.1998. Isolation andcharacterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. PlantMolecular Biology,37:639-649
    Hirose T, Terao T.2004. A comprehensive expression analysis of the starch synthase gene family inrice (Oryza sativa L.). Planta,220:9-16
    Huang X Q, Brule-Babel A.2010. Development of genome-specific primers for homoeologous genesin allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivumL.) as examples. BMC Res Notes,3:140
    Huber K C, BeMiller J N.2000. Channels of maize and sorghum starch granules. CarbohydratePolymers,41:269-276
    Imparl-Radosevich J M, Li P, Zhang L, McKean A L, Keeling P L, Guan H.1998. Purification andCharacterization of Maize Starch Synthase I and Its Truncated Forms. Archives of Biochemistry andBiophysics,353:64-72
    Izumo A, Fujiwara S, Sakurai T, Ball S G, Ishii Y, Ono H, Yoshida M, Fujita N, Nakamura Y, BuleonA, Tsuzuki M.2011. Effects of granule-bound starch synthase I-defective mutation on the morphology andstructure of pyrenoidal starch in Chlamydomonas. Plant Science,180:238-245
    James M G, Denyer K, Myers A M.2003. Starch synthesis in the cereal endosperm. Current Opinionin Plant Biology,6:215-222
    Jane J-l, Shen J J.1993. Internal structure of the potato starch granule revealed by chemicalgelatinization. Carbohydrate Research,247:279-290
    Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T.1999a.Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and PastingProperties of Starch. Cereal Chemistry,76:629–637
    Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T.1999b.Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and PastingProperties of Starch1. Cereal Chemistry,76:629-637
    Jenkins P J, Donald A M.1995. The influence of amylose on starch granule structure. InternationalJournal of Biological Macromolecules,17:315-321
    Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y.2010. Starch biosynthesis in cereal endosperm.Plant Physiol Biochem,48:383-92
    Jiang D, Cao W, Dai T, Jing Q.2003a. Activities of key enzymes for starch synthesis in relation togrowth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant GrowthRegulation,41:247-257
    Jiang H, Dian W, Wu P.2003b. Effect of high temperature on fine structure of amylopectin in riceendosperm by reducing the activity of the starch branching enzyme. Phytochemistry,63:53-9
    Johnson P E, Patron N J, Bottrill A R, Dinges J R, Fahy B F, Parker M L, Waite D N, Denyer K.2003.A Low-Starch Barley Mutant, Ris16, Lacking the Cytosolic Small Subunit of ADP-GlucosePyrophosphorylase, Reveals the Importance of the Cytosolic Isoform and the Identity of the PlastidialSmall Subunit. Plant Physiology,131:684-696
    Jun M, Dong-feng M, Wen-bo M, Feng-ying X.2004. Changes in Starch Accumulation and Activityof Enzymes Associated with Starch Synthesis of Rice at Different N Supplying Dates. AgriculturalSciences in China,3:738-745
    Kossmann J, Lloyd J.2000. Understanding and influencing starch biochemistry. Critical Reviews inPlant Sciences,35:141-96
    Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y.1999. The Starch-DebranchingEnzymes Isoamylase and Pullulanase Are Both Involved in Amylopectin Biosynthesis in Rice Endosperm.Plant Physiology,121:399-410
    Lü B, Guo Z, Liang J.2008. Effects of the activities of key enzymes involved in starch biosynthesison the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci. China, Cer. C.,51:863-871
    Lee S K, Hwang S K, Han M, Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S, An G, HahnT R, Okita T, Jeon J S.2007. Identification of the ADP-glucose pyrophosphorylase isoforms essential forstarch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology,65:531-546
    Leman P, Goesaert H, Delcour J A.2009. Residual amylopectin structures of amylase-treated wheatstarch slurries reflect amylase mode of action. Food Hydrocolloids,23:153-164
    Li L, Blanco M, Jane J-l.2007. Physicochemical properties of endosperm and pericarp starches duringmaize development. Carbohydrate Polymers,67:630-639
    Li Q-F, Zhang G-Y, Dong Z-W, Yu H-X, Gu M-H, Sun S S M, Liu Q-Q.2009. Characterization ofexpression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed developmentand germination in rice. Plant Physiology and Biochemistry,47:351-358
    Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell M K.1999a. Cloning andcharacterization of a gene encoding wheat starch synthase I. TAG Theoretical and Applied Genetics,98:1208-1216
    Li Z, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale K R, Appels R, Morell M K.2000.The Structure and Expression of the Wheat Starch Synthase III Gene. Motifs in the Expressed Gene Definethe Lineage of the Starch Synthase III Gene Family. Plant Physiol.,123:613-624
    Li Z, Sun F, Xu S, Chu X, Mukai, Yamamoto, Ali S, Rampling L, Kosar-Hashemi B, Rahman S,Morell M.2003. The structural organisation of the gene encoding class II starch synthase of wheat andbarley and the evolution of the genes encoding starch synthases in plants. Functional& IntegrativeGenomics,3:76-85
    Li Z, Chu X, Mouille G, Yan L, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R,Morell M K, Rahman S.1999b. The Localization and Expression of the Class II Starch Synthases of Wheat.Plant Physiology,120:1147-1156
    Liang J, Zhang J, Cao X.2001. Grain sink strength may be related to the poor grain filling ofindica-japonica rice (Oryza sativa) hybrids. Physiologia Plantarum,112:470-477
    Marshall J, Sidebottom C, Debet M, Martin C, Smith A M, Edwards A.1996. Identification of theMajor Starch Synthase in the Soluble Fraction of Potato Tubers. The Plant Cell Online,8:1121-1135
    McCue K, Hurkman W, Tanka C, Anderson O.2002. Starch-branching enzymes sbe1and sbe2fromwheat (Triticum aestivumcv. Cheyenne):molecular characterization, developmental expression, andhomoeologue assignment by differential PCR. Plant Molecular Biology Reporter,20:191-192
    Miller G L.1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar.Analytical Chemistry,31:426-428
    Mizuno K, Kobayashi E, Tachibana M, Kawasaki T, Fujimura T, Funane K, Kobayashi M, Baba T.2001. Characterization of an Isoform of Rice Starch Branching Enzyme, RBE4, in DevelopingSeeds. Plantand Cell Physiology,42:349-357
    Morell M, Rahman S, Abrahams S, Appels R.1995. The Biochemistry and Molecular Biology ofStarch Synthesis in Cereals. Functional Plant Biology,22:647-660
    Morell M K, Myers A M.2005. Towards the rational design of cereal starches. Current Opinion inPlant Biology,8:204-210
    Morell M K, Blennow A, Kosar-Hashemi B, Samuel M S.1997. Differential Expression andProperties of Starch Branching Enzyme Isoforms in Developing Wheat Endosperm. Plant Physiology,113:201-208
    Morell M K, Kosar-Hashemi B, Cmiel M, Samuel M S, Chandler P, Rahman S, Buleon A, Batey I L,Li Z.2003. Barley sex6mutants lack starch synthase IIa activity and contain a starch with novel properties.The Plant Journal,34:173-185
    Mukerjea R, Robyt J F.2005. Starch biosynthesis: the primer nonreducing-end mechanism versus thenonprimer reducing-end two-site insertion mechanism. Carbohydrate Research,340:245-255
    Murai J, Taira T, Ohta D.1999. Isolation and characterization of the three Waxy genes encoding thegranule-bound starch synthase in hexaploid wheat. Gene,234:71-79
    Myers A M, Morell M K, James M G, Ball S G.2000. Recent progress toward understandingbiosynthesis of the amylopectin crystal. Plant Physiology,122:989-97
    Nakamura Y.1996. Some properties of starch debranching enzymes and their possible role inamylopectin biosynthesis. Plant Sci,121:1-18
    Nakamura Y.2002. Towards a better understanding of the metabolic system for amylopectinbiosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol,43:718-25
    Nakamura Y, Yuki K.1992. Changes in enzyme activities associated with carbohydrate metabolismduring the development of rice endosperm. Plant Science,82:15-20
    Nakamura Y, Yuki K, Park S-Y, Ohya T.1989. Carbohydrate Metabolism in the DevelopingEndosperm of Rice Grains. Plant Cell Physiology,30:833-839
    Nakamura Y, Umemoto T, Ogata N, Kuboki Y, Yano M, Sasaki T.1996. Starch debranching enzyme(R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomallocalization of the gene. Planta,199:209-218
    Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T.2002. The fine Structure ofAmylopectin in Endosperm from Asian Cultivated Rice can be largely Classified into two Classes. Starch-St rke,54:117-131
    Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S.2010.Characterization of the Reactions of Starch Branching Enzymes from Rice Endosperm. Plant and CellPhysiology,51:776-794
    NI Y, WANG Z, YIN Y, LI W, YAN S, CAI T.2011. Starch granule size distribution in wheat grainin relation to phosphorus fertilization. The Journal of Agricultural Science, FirstView:1-8
    Nishi A, Nakamura Y, Tanaka N, Satoh H.2001. Biochemical and Genetic Analysis of the EffectsofAmylose-Extender Mutation in Rice Endosperm. Plant Physiology,127:459-472
    Neuffer M G, Coe E H, Wessler S R.1997. In Mutants of Maize. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press:
    Ohdan T, Francisco P B, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y.2005. Expressionprofiling of genes involved in starch synthesis in sink and source organs of rice. Journal of ExperimentalBotany,56:3229-3244
    Ong M H, Jumel K, Tokatczuk P F, Blanshard J M V, Harding S E.1994. Simultaneousdeterminations of the molecular weight distributions of amylose and the fine structures of amylopectins ofnatives starches Carbohydr.Res,260
    Otani M, Hamada T, Katayama K, Kitahara K, Kim S H, Takahata Y, Suganuma T, Shimada T.2007.Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potatoplants. Plant Cell Rep,26:1801-7
    Patron N J, Smith A M, Fahy B F, Hylton C M, Naldrett M J, Rossnagel B G, Denyer K.2002. TheAltered Pattern of Amylose Accumulation in the Endosperm of Low-Amylose Barley Cultivars IsAttributable to a Single Mutant Allele of Granule-Bound Starch Synthase I with a Deletion in the5′-Non-Coding Region. Plant Physiology,130:190-198
    Peng M, Hucl P, Chibbar R N.2001. Isolation, characterization and expression analysis of starchsynthase I from wheat (Triticum aestivum L.). Plant Science,161:1055-1062
    Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell M K.1999. Characterisation of a geneencoding wheat endosperm starch branching enzyme-I. TAG Theoretical and Applied Genetics,98:156-163
    Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell M K.2001. Comparison of Starch-Branching Enzyme Genes Reveals Evolutionary Relationships AmongIsoforms. Characterization of a Gene for Starch-Branching Enzyme IIa from the Wheat D GenomeDonorAegilops tauschii. Plant Physiology,125:1314-1324
    Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M.2010. Control of starch branching inbarley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. Journal ofExperimental Botany,61:1469-1482
    Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp P, Morell M,Rahman S.2005. Starch branching enzyme IIb in wheat is expressed at low levels in the endospermcompared to other cereals and encoded at a non-syntenic locus. Planta,222:899-909
    Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S,Morell M.2006. High-amylose wheat generated by RNA interference improves indices of large-bowelhealth in rats. Proceedings of the National Academy of Sciences of the United States of America,103:3546-3551
    Rijven A.1986. Heat inactivation of starch systhase in wheat endosperm. Plant Physiology,81:449
    Rota M, Sorrells M.2004. Comparative DNA sequence analysis of mapped wheat ESTs reveals thecomplexity of genome relationships between rice and wheat. Functional& Integrative Genomics,4:34-46
    Ryoo N, Yu C, Park C S, Baik M Y, Park I, Cho M H, Bhoo S, An G, Hahn T R, Jeon J S.2007.Knockout of a starch synthase gene OsSSIIIa/Flo causes white-core floury endosperm in rice (Oryza sativaL.). Plant Cell Reports,26:1083-1095
    Salman H, Blazek J, Lopez-Rubio A, Gilbert E P, Hanley T, Copeland L.2009. Structure-functionrelationships in A and B granules from wheat starches of similar amylose content. Carbohydrate Polymers,75:420-427
    Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y.2003. Starch-Branching Enzyme I-Deficient Mutation Specifically Affects the Structure and Properties ofStarch in Rice Endosperm. Plant Physiology,133:1111-1121
    Sawada T, Francisco P B, Aihara S, Utsumi Y, Yoshida M, Oyama Y, Tsuzuki M, Satoh H, NakamuraY.2009. Chlorella Starch Branching Enzyme II (BEII) Can Complement the Function of BEIIb in RiceEndosperm. Plant and Cell Physiology,50:1062-1074
    Schwall G P, Safford R, Westcott R J, Jeffcoat R, Tayal A, Shi Y-C, Gidley M J, Jobling S A.2000.Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotech,18:551-554
    Senoura T, isono N, Yoshikawa M, Asoao A, Hamada S, Watanabe K, Ito H, Matsui H.2004.Characterization of starch synthase I and II expressed in early developing seeds of kidney bean (Phaseolusvulgaris L.). Biosci.Biotechnol.Biochem,68:1949-1960
    Seo B-s, Kim S, Scott M P, Singletary G W, Wong K-s, James M G, Myers A M.2002. FunctionalInteractions between Heterologously Expressed Starch-Branching Enzymes of Maize and the GlycogenSynthases of Brewer's Yeast. Plant Physiology,128:1189-1199
    Sestili F, Janni M, Doherty A, Botticella E, D'Ovidio R, Masci S, Jones H D, Lafiandra D.2010.Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol,10:144
    Singh S, Singh N, Isono N, Noda T.2010. Relationship of Granule Size Distribution and AmylopectinStructure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. J. Agric. Food Chem.,58:1180-1188
    Singletary G W, Banisadr R, Keeling P L.1997. Influence of Gene Dosage on Carbohydrate Synthesisand Enzymatic Activities in Endosperm of Starch-Deficient Mutants of Maize. Plant Physiology,113:293-304
    Smidansky E, Martin J, Hannah C, Fischer A, Giroux M.2003. Seed yield and plant biomass increasesin rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta,216:656-664
    Smidansky E D, Clancy M, Meyer F D, Lanning S P, Blake N K, Talbert L E, Giroux M J.2002.Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proceedingsof the National academy of Sciences of the United States of America,99:1724-1729
    Smith A M.1999. Making starch. Current Opinion in Plant Biology,2:223-229
    Smith A M, Denyer K, Martin C R.1995. What Controls the Amount and Structure of Starch inStorage Organs? Plant Physiol,107:673-677
    Sun C, Sathish P, Ahlandsberg S, Jansson C.1998. The Two Genes Encoding Starch-BranchingEnzymes IIa and IIb Are Differentially Expressed in Barley. Plant Physiology,118:37-49
    Takahata Y, Tanaka M, Otani M, Katayama K, Kitahara K, Nakayachi O, Nakayama H, Yoshinaga M.2010. Inhibition of the expression of the the starch synthase II gene leads to lower pasting temperature insweetpotato starch. Plant Cell Reports,29:535-543
    Takeda Y, Guan H-P, Preiss J.1993. Branching of amylose by the branching isoenzymes of maizeendosperm. Carbohydrate Research,240:253-263
    Tetlow I J, Morell M K, Emes M J.2004a. Recent developments in understanding the regulation ofstarch metabolism in higher plants. Journal of Experimental Botany,55:2131-2145
    Tetlow I J, Wait R, Lu Z, Akkasaeng R, Bowsher C G, Esposito S, Kosar-Hashemi B, Morell M K,Emes M J.2004b. Protein Phosphorylation in Amyloplasts Regulates Starch Branching Enzyme Activityand Protein–Protein Interactions. The Plant Cell Online,16:694-708
    Thompson D B.2000. On the non-random nature of amylopectin branching. Carbohydrate Polymers,43:223-239
    Topping D L, Clifton P M.2001. Short-Chain Fatty Acids and Human Colonic Function: Roles ofResistant Starch and Nonstarch Polysaccharides. Physiological Reviews,81:1031-1064
    Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y.2002. Mapping of a gene responsible forthe difference in amylopectin structure between japonica-type and indica-type rice varieties. TAGTheoretical and Applied Genetics,104:1-8
    Utrilla-Coello R G, Agama-Acevedo E, Barba de la Rosa A P, Rodríguez-Ambriz S L, Bello-Pérez LA.2010. Physicochemical and Enzyme Characterization of Small and Large Starch Granules Isolated fromTwo Maize Cultivars. Cereal Chemistry,87:50-56
    van de Wal M, D’Hulst C, Vincken J-P, Buléon A, Visser R, Ball S.1998. Amylose Is Synthesized inVitro by Extension of and Cleavage from Amylopectin. Journal of Biological Chemistry,273:22232-22240
    Vrinten P, Nakamura T, Yamamori M.1999. Molecular characterization of waxy mutations in wheat.Molecular and General Genetics MGG,261:463-471
    Vrinten P L, Nakamura T.2000. Wheat Granule-Bound Starch Synthase I and II Are Encoded bySeparate Genes That Are Expressed in Different Tissues. Plant Physiology,122:255-264
    Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G.2007. Increasing maize seed weight byenhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell,Tissue and Organ Culture,88:83-92
    Wu C, Colleoni C, Myers A M, James M G.2002. Enzymatic properties and regulation of ZPU1, themaize pullulanase-type starch debranching enzyme. Archives of Biochemistry and Biophysics,406:21-32
    Xie F W, Yu L, Su B, Liu P, Wang J, Liu H S, Chen L.2009. Rheological properties of starches withdifferent amylose/amylopectin ratios. Journal of Cereal Science,49:371-377
    Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T.2000. Genetic elimination of a starchgranule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. TAG Theoreticaland Applied Genetics,101:21-29
    Yan S, Li W, Yin Y, Wang Z.2010. Sink strength in relation to growth of superior and inferior grainswithin a wheat spike. Journal of Agricultural Science,148:567-578
    Yang J, Zhang J, Wang Z, Zhu Q, Liu L.2003. Activities of enzymes involved in sucrose-to-starchmetabolism in rice grains subjected to water stress during filling. Field Crops Research,81:69-81
    Yasui T.2006. Waxy and low-amylose mutants of bread wheat (Triticum aestivum L.) and their starch,flour and grain properties. Jarq-Japan Agricultural Research Quarterly,40:327-331
    Yasui T, Ashida K, Sasaki T.2009. Chain-length Distribution Profiles of Amylopectin Isolated fromEndosperm Starch of Waxy and Low-amylose Bread Wheat (Triticum aestivum L.) Lines with CommonGenetic Background. Starch-St rke,61:677-686
    Yoo S-H, Jane J-l.2002. Structural and physical characteristics of waxy and other wheat starches.Carbohydrate Polymers,49:297-305
    Zhang C, Jiang D, Liu F, Cai J, Dai T, Cao W.2010. Starch granules size distribution in superior andinferior grains of wheat is related to enzyme activities and their gene expressions during grain filling.Journal of Cereal Science,51:226-233
    Zhang H Y, Dong S T, Gao R Q, Li Y Q.2007. Comparison of starch synthesis and related enzymeactivities in developing grains among different types of maize. Journal of Plant Physiology and MolecularBiology,33:25-32
    Zhang J, Hu Y, Huang Y.2008a. Relationship between activities of key enzymes involved in starchsynthesis and accumulation in maize inbred lines during grain filling. Russ.J. Plant Physiol.,55:249-255
    Zhang X, Myers A M, James M G.2005. Mutations Affecting Starch Synthase III in ArabidopsisAlter Leaf Starch Structure and Increase the Rate of Starch Synthesis. Plant Physiology,138:663-674
    Zhang X, Colleoni C, Ratushna V, Sirghie-colleoni M, James M, Myers A.2004. Molecularcharacterization demonstrates that the Zea mays gene sugary2codes for the starch synthase isoform SSIIa.Plant Molecular Biology,54:865-879
    Zhang X, Szydlowski N, Delvalle D, D'Hulst C, James M G, Myers A M.2008b. Overlappingfunctions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC PlantBiol,8:96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700