用户名: 密码: 验证码:
生物质燃烧氯的析出与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物质燃烧过程中由氯引起的沉积、结渣和腐蚀问题已引起人们的关注。本文首次系统地对生物质氯的测试方法、生物质氯的赋存形态、生物质燃烧过程氯化物的析出规律、燃烧固氯机理与技术等一系列基础问题进行理论与实验研究,旨在开发出以工业废弃物为固氯剂的生物质燃烧固氯新技术。主要研究成果如下:
     1)首次系统研究了高温燃烧水解——氯离子选择电极法和艾氏卡剂熔样——硫氰酸钾滴定法测定生物质氯的影响因素,分析测量精度,确定最优测量参数。得出高温燃烧水解法的最优测试条件为燃烧温度900℃、燃烧时间20min、水蒸气量2mL/min、试样量0.5克、氧气量400~500mL/min;艾氏卡剂熔样法的最优测试条件为生物质试样1.5克,艾氏卡剂5克,从室温加热到500~600℃然后保持2小时。确定高温燃烧水解法为本研究所采用的测氯方法。
     2)采用统计和浸提实验研究了我国生物质氯的赋存形态。结果表明,生物质氯与挥发份和碳成指数减小,与灰分和硫成指数增加;且生物质氯的水浸提、酸浸提和碱浸提的浸出率普遍较高。得出生物质氯主要以无机态存在的结论。
     3)建立了固定床管式炉生物质燃烧氯化物析出实验装置和研究方法;确定了生物质燃烧过程氯析出的影响因素和影响关系;初步建立生物质燃烧过程氯析出的动力学模型。结果表明:生物质中氯析出率随燃烧温度的升高而增加,在不同温度区间,温度对氯析出率的影响程度不同;随着燃烧时间的增加氯析出率明显增加;随炉内气氛氧化性减弱,氯析出率明显降低;燃燃烧过程烟气中水蒸气可促进生物质氯的析出;生物质粒径对氯含量和氯析出都有一定的影响,随着试样粒径的增加,氯析出率呈降低趋势;生物质燃烧过程中氯的析出可用一级反应动力学模型来描述,棉秆和烟草氯析出的反应活化能分别为18.8437kJ/mol和19.7956kJ/mol,则它们可在较低温度下析出氯化物。
     4)通过固定床管式炉燃烧实验,研究了生物质燃烧过程氧化钙的固氯作用及影响因素,并对粉煤、赤泥和磷石膏的固氯效果进行实验研究;从化学反应热力学和动力学两方面分析氧化钙燃烧固氯机理。结果表明,在生物质燃烧过程中氧化钙、粉煤、赤泥和磷石膏都有较好的脱氯效果,高温和较长的燃烧时间大大降低了其脱氯效率,而较小的粒径和较多的固氯剂添加量有利于提高脱氯效果;在298K~1200K温度范围内,CaO-HCl脱氯反应可自发进行,反应限度很深,但生物质水分和空气中水分会使脱氯反应向水解反应方向进行,降低脱氯效率;收缩核模型可以较好地反映脱氯反应的动力学,预测反应温度、HCl气体浓度和CaO粒径对反应的影响。
     5)详细阐述生物质微米燃料特性及其燃烧技术;进行微米燃料悬浮燃烧固氯技术小试和中试研究。得出不同固氯剂的固氯效果、固氯剂添加量的影响与在管式炉实验条件下的固氯效果基本一致,在900℃燃烧时不同固氯剂的固氯效果依次为:磷石膏>赤泥>氧化钙>粉煤;加入固氯剂不同程度改善了生物质燃烧灰结渣问题,且对烟气中二氧化硫的量影响不大;粉煤是理想的固氯剂,加入适量的粉煤不仅起到固氯作用,而且能改善灰的结渣问题,同时提高燃料燃烧热值。
The chlorine-related problem of ash deposition and slagging and corrosion is interesting.In this paper,a series of key problems on the method of measuring chlorine in biomass,the occurrence characteristics of chlorine in biomass,the chlorine emission properties and the mechanism and technology of removal chlorine during biomass combustion were systemically studied by the intergation of theory and experiment. The technology of removal chlorine using industrial waste was presented.The results are following:
     1)The methods of measuring chlorine in biomass such as pro-hydrolysis—chlorine ion-selective electrode method (PHCIE) and aldrin melt sample—potassium thiocyanate titration method (AMST) were systemically studied for the first time,as well as these factors affecting determination of chlorine in biomass.At the same time,the precision and the optimal parameters of the two methods were presented.The results are as follows: the optimal parameters of PHCIE are combustion temperature of 900℃,combustion time of 20 minutes,steam flow of 2mL/min,biomass sample quality of 0.5g,oxygen flow of 400~500mL/min.The optimal parameters of AMST are biomass sample quality of 1.5g, aldrin quantity of 5g,heating from room temperature to 500~600℃and retaining 2 hours.The PHCIE was selected to serve the work.
     2)The occurrence characteristics of chlorine in biomass were studied by statistics and extracting tests. The results show that there are exponentially decreasing relationship of chlorine and volatile and carbon element, exponentially increasing relationship of chlorine and the content of ash and sulfur element.The extracting rate of chlorine in biomass by water,acid and alkali is obviously high.The results show that chlorine in biomass is mainly inorganic.
     3)The experimental system of tube furnace was set up.The emission characteristics of chlorine during biomass combustion was studied by the test system,and the mechanism of gas chlorine formation and chlorine precipitation kinetic model during biomass combustion were also presented.The results are as follows: precipitation rate of chlorine in biomass increases with combustion temperature, the effect of temperature on the precipitation rate of chlorine are differen in various temperature range. The precipitation rate of chlorine increases with combustion time and water content in flue gas. At the same time ,the precipitation rate of chlorine decreases with oxidation combustion atmosphere decreasing and biomass particle size increasing.The chlorine precipitation kinetic model during biomass combustion is to obey fisrt-order reaction kinetics.The activaton energy of the samples of cotton and tobacco are respectively 18.8437kJ·mol~(-1) and 19.7956 kJ·mol~(-1),showing chlorine in the samples can release in a low temperature. 4)The effect of calcium oxide,powdery coal,red mud and phosphogypsum on removal chlorine were studied in detail by the combustion experimental system of tube furnace. Based on chemical reaction thermodynamics and kinetics, the mechanism of removal chlorine by calcium oxide was studied. The results are as follows:The removal chlorine performances of calcium oxide ,powdery coal,red mud and phosphogypsum are good.Especialy, less particle size and more additive increase the removal chlorine performance.But a high temperature and a long combustion time decrease the performance.In the temperature range of 298K~1200K,the removal chlorine reaction of CaO - HCl is spontaneous chemical reaction , and the reaction limits are deep.But water in biomass and air can decrease performance of removal chlorine.The chemical reaction model of shrinking core can well explain the kinetics of removal chlorine,forecast the effects of temperature and HCl-content and particle size of calcium oxide.
     5)The biomass micron fuel (BMF) and the suspension technology of BMF combustion were presented in detail,and the technical studies on removal chlorine during BMF combustion were carried by small-scale and pilot-scale tests.The results of the tests are consistent with that of tube furnace.In the temperature of 900℃,the performances of different additive are following: phosphogypsum> red mud >calcium oxide>powdery coal.The additives improve the ash slagging and slightly affect the content of sulfur dioxide in flue gas.Comparing the different additives,powdery coal is an better additive for not only removal chlorine,but increasing the value of biomass.
引文
[1]吴创之,马隆龙.生物质能现代化利用技术[M].化学工业出版社:北京,2003.
    [2]常春.生物质制备新型平台化合物乙酞丙酸的研究.浙江大学博士论文,2006.
    [3]张炎治,聂锐.我国可再生能源发展战略思考[J].煤炭经济研究,2005,11:32-33.
    [4]朱俊生.世界新能源和可再生能源发展[J].太阳能,2001, 4:2-4.
    [5]孙孝仁.21世纪世界能源发展前景[J].中国能源,2001,2:19-20.
    [6]张明,袁益超,刘聿拯.生物质直接燃烧技术的发展研究[J].能源研究与信息.2005,21(1):15-20.
    [7]Mckendry, P.Energy production from biomass (part 1): overview of biomass.Bioresource Technology[J].2002,83:37-46.
    [8]Ayhan Demirbas.Sustainable con-firing of biomass with coal.Energy Conversion and Management[J].2003,44:1465-1479.
    [9]别如山,李炳熙,陆慧林,等.燃生物质废料流化床锅炉[J].热能动力工程,2000, 15(4): 344-347.
    [10]刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报,2001, 32(3): 290-294.
    [11]陈喜龙,谭跃辉,王义强,等.我国生物质颗粒燃料推广应用中存在的问题与发展策[J].可再生能源,2005(1):41-43.
    [12]陶珍东,郑少华主编.粉体工程与设备[M].北京:化学工业出版社,2003.
    [13]林志杰,刘皓,黄琳.稻谷壳流化床的燃烧特性[J].华中理工大学学报,1994,22(3): 21-24.
    [14]陈冠益,方梦祥,骆仲泱.燃用稻壳流化床锅炉的试验研究及35t.h-1锅炉的设计[J].动力工程,1997,17(6):47-54.
    [15]田宜水,张鉴铭,陈晓夫.秸秆直燃热水锅炉供热系统的研究设计[J].农业工程学报,2002,18(2):87-90.
    [16]翟学民.甘蔗渣锅炉设计新构思[J].工业锅炉,2000,(2):9-12.
    [17]何育恒.燃烧油、木屑、木粉绿色新型锅炉的开发设计[J].工业锅炉,2001,(3):20-23.
    [18]余有芳,盛奎川,Hassan Gomaa.生物质成型燃料的热解燃烧特性实验研究[J].浙江大学学报,2005,31(5):663-667.
    [19]盛奎川,钱湘群,吴杰.切碎棉秆高密度压缩成型的试验研究[J].浙江大学学报(农业与生命科学版),2003,2:139-142.
    [20]马志刚,吴树志,白云峰.生物质能利用技术现状及进展[J].能源工程,2008,5:21-27.
    [21]杨小明,何屏,刘文光,夏家群,徐远纲.生物质成型燃料锅炉产业化可行性研究[J].昆明理工-大学学报(理工版),2006, 31 (1): 29-32.
    [22]何方,王华,包桂蓉,胡建杭.生物质复合型煤固硫特性研究[J].热能动力工程,2002,17(7):40-44.
    [23]刘圣勇.生物质(秸秆)成型燃料燃烧设备研制及试验研究.河南农业大学博士论文.2003.
    [24]袁超,张明,秦立臣,刘圣勇,王文灿,李荫,谢海红,李建才.秸秆成型燃料锅炉的热损失试验及分析[J].河南农业大学学报.2005,39(3):345-348.
    [25]王惺,李宝凯,倪维斗,李政,张鹤丹.生物质压缩颗粒的燃烧特性[J].燃烧科学与技术.2007,13(1):86-90.
    [26]王淮东,王晓东,武少菁,刘圣勇,王森,刘小二,陈立国.生物质成型燃料炉灶结渣特性及影响因素试验研究[J].河南农业大学学报,2008,42(2):206-209.
    [27]刘稳廷,赵迎芳,刘圣勇.生物质成型燃料热风采暖炉的设计与研究[J].河南农业大学学报,2006,40 (2) : 201-204.
    [28]肖波,邹先枚.生物质粉体燃烧特性的研究[J].可再生能源,2007,25(1): 47-50.
    [29]Guo XJ,Xiao B,Hu ZQ,Luo SY,He MY.Gasification characteristics of biomass micronfuel(BMF)-studyonsteam gasification forhydrogen-richgas products[J].Fresenius environmental bulletin.2008,17(5):341-345.
    [30]郭献军,肖波,刘石明,罗思义,贺茂云.生物质粉体燃烧炉实验研究[J].环境科学与技术,2009,8:35-38.
    [31]郭献军,胡智泉,肖波,罗思义,贺茂云,刘石明.生物质微米燃料(BMF)空气水蒸汽气化实验研究[J].太阳能学报,2009.
    [32]肖波,邹先枚,杨家宽,马承荣,阮渊.生物质燃料的破碎研究[J].能源研究与信息.2006,22(1):6-11.
    [33]Guo XJ,Xiao B,Liu SM,Hu ZQ,Luo SY,He MY.An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier[J].International Journal of Hydrogen Energy,2009,34(3):1265-1269.
    [34]Guo XJ,Xiao B, Zhang XL,Luo SY,He MY.Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier[J].Bioresource Technology.2009,100(2):1003-1006.
    [35]陆景陵.植物营养学[M].中国农业大学出版社,1994.
    [36]Vassilev SV, Eskenazy GM, Vassileva CG.Contents, modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations [J].Fuel,2000,79:92 3-937.
    [37]Gibb WH.Corrosion resistant materials for coal conversion systems.Applied science, London, 1983.
    [38]Bjoerkman E and Stroemberg B.Releaseofchlorinefrombiomassat pyrolysisand gasification conditions[J].Energy Fuel, 1997, 11:1026-1032.
    [39]Zhang Caixiang, Wang Yanxin, Yang Zhihua, Xu Minghou.Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis[J].Fuel,2006,85:2034-2040.
    [40]Hastie JW,Bonnell DW,Plante ER.Experimental and model determinations of coal mineral and slag phase-eqiuilibria and alkali vapor-transport, Mineral Matter and AshDepositionfromCoal.EngineeringFoundationConference,Santa Barbara,1988.
    [41]French RJ, Milne TA.Vapor phase release of alkali species in the combustion of biomass pyrolysis oils[J].Biomass Bioenergy,1994,7: 315-325.
    [42]Dayton DC, French RJ, Milne TA.Direct Observation of Alkali Vapor Release duringBiomassCombustionandGasification.1.Applicationof Molecular Beam/MassSpectrometry toSwitchgrassCombustion[J].Energy Fuel,1995,9:855-865.
    [43] Blander M, Pelton AD. The inorganic chemistry of the combustion of wheat straw[J].Biomass Bioenergy. 1997,12:295-298.
    [44] Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, BelleQudry D, Hill LM.Relrase of inorganic constituents from leached biomasss during thermal conversion[J].Energy Fuel. 1999,13:860-870.
    [45] Andersen KH, Frandsen FJ, Hansen PFB,Wieck-Hansen K, Rasmussen I,Overgaard P, Dam-Johansen K. Deposit formation in a 150 Mwe utility PE-Boiler during co-combustion of coal and straw[J].Energy Fuel. 2000,14:765-780.
    [46] Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B.Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels, 2000,14:1280-1285.
    [47] Kuramochi H, Wu W, Kawamoto K. Prediction of the behaviors of H2S and HC1 during gasification of selected residual biomass fuels by equilibrium calculation[J].Fuel,2005,84: 377-387.
    [48] Hays MD, Fine PM, Geron CD, Kleeman MJ, Gullett BK.Open burning of agriculturalbiomass: Physicaland chemical properties of particle-phase emissions[J].Atmospheric Environment.2005,39: 6747-6764.
    [49] Johansson LS, Tullin C, Leckner B, Sjovall P. Particle emissions from biomass combustion in small combustors[J].Biomass and Bioenergy. 2003, 25:435-446.
    [50] Kanters ML, Vannispen R, Louw R, Mulder P. Chlorine input and chloro-phenol emission in the lab-scale combustion of municipal solid waste[J]. Environ Sci Technol.1996,30:2121-2126.
    [51] Matsuda H, Ozawa S, Naruse K, Ito K, Kojima Y, Yanase T.Kinetics of HC1 emission from inorganic chlorides in simulated municipal wastes incineration conditions[J]. Chem Eng Sci. 2005,60:545-552.
    [52] Edgcombe LJ. State of combination of chlorine in coal. I. Extraction of coal with water[J]. Fuel .1956,35:38-48.
    [53] Hodges N, Marsh M. The effect of salt minerals on deposit formation during fluidized bed combustion of coal[J]. Fuel Process Technol. 1990,24:367-374.
    [54] Raask E. Mineral impurities in coal combustion. Washington: Hemisphere; 1985.
    [55]张乃武.垃圾焚化厂系统工程设计与规划[M],化工出版社,1999.
    [56]周一工.工业垃圾与煤混烧的内循环流化床锅炉[J].节能.1997,3:20-22.
    [57]吴东垠,赵军旗.垃圾焚烧锅炉实例[J].锅炉技术.1998.2:27-32.
    [58]Mura G,Lallai A.Reaction kinetics of gas hydrogen chloride and limestone[J].Chem Eng Sci.1994;49:4491-4500.
    [59]Dou BL, Gao JS, Sha XZ.A study on the reaction kinetics of HCl removal from High-temperature coal gas[J].Fuel Process Technol.2001;72:23-33.
    [60]Duo W, Kirkby NF, Seville JPK, Kiel JHA, Bos A, Den UH.Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning[J].Chem Eng Sci.1996,51:2541-6.
    [61]Wang WY, Ye ZC, Bjerle I.The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulfurization sorbents[J].Fuel 1995,75(2):207-12.
    [62]Verdone N, Filippis P.Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators[J].Chemosphere.2004,54:975-85.
    [63]Brostr(o|¨)m M, Kassman H, Helgesson A, Berg M, Andersson C, Backman R, Nordin A.Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler[J].Fuel Processing Technology ,2007,88:1171-1177.
    [64]Henderson P, Kassman H,Andersson C, H(o|¨)gberg J.The use of fuel additives in wood and waste wood-fired boilers to reduce corrosion and fouling problems[J], VGB PowerTech, 2004, 84: 58-65.
    [65]Henderson P,Szakalos P,Pettersson R, Andersson C,H(o|¨)gberg J.Reducing superheater corrosion in wood-fired boilers[J], Materials and Corrosion, 2006, 57:128-135.
    [66]Iisa K, Lu Y,Salmenoja K.Sulfation of potassium chloride at combustion conditions [J].Energy Fuel.1999,13:11-84.
    [67]Davidsson KO,(?)mand LE, Steenari BM,Elled AL, Eskilsson D, Leckner B.Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler[J].Chemical Engineering Science, 2008,63:5314-5329.
    [68] Shemwell B, Levendis YA, Simons GA. Laboratory study on the high-temperature capture of HC1 gas by dry injection of calciumbased sorbents[J]. Chemosphere,2001,42:785-796.
    [69] DuoW, Kirkby NF, Seville JPK, Clift R. Alteration with reactions of the rate limiting step for solid-gas reactions of Ca-compounds with HC1[J]. Chem Eng Sci,1995,50(13):2017-2027.
    [70] Steciak J, Levendis YA, Wise DL. The effectiveness of calcium magnesium acetate as a dual SO2-NOx emission control agent[J]. Am Ins Chem Eng,1995,41:712-722.
    [71] Steciak J, Levendis YA, Wise DL, Simons GA. Dual SO2-NOx concentration reduction by calcium salts of carboxylic acids[J]. Environ Eng,1995,121:595-602.
    [72] Courtemanche B, Levendis YA. Control of the HC1 emissions from the combustion of PVC by in-furnace injection of calcium/magnesium based sorbents[J]. Environ SciTechnol,1998,134(1-6):407-432.
    [73] Gullett BK, Jozewicz W, Stefanski LA. Reaction Kinetics of Ca-based sorbents with HCl[J]. Ind Eng Chem Res,1992,31:2437-2346.
    [74] Weinell CE, Jensen PI, Dam-Johansen K, Livbjerg H. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity [J]. Ind Eng Chem Res,1992,31:164-171.
    [75] Demirbas Ayhan. Sustainable cofiring of biomass with coal[J]. Energy Conversion and Management,2003, 44:1465-1479.
    [76] Robinson ALJunker H,Buckley SG,Sclipp G,Baxter L.Interaction between coal and biomass when cofiring[J].Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998: 1351-1359.
    [77] Xie W, Liu K, Pan WP, Riley JT. Interaction between emissions of SO_2 and HC1 in fluidized bed combustors[J]. Fuel,1998,78:1425-36.
    [78] Scheidl K, Wurst F,Kuna RP. Dioxin and furan emissions from a fluidized-bed incinerator during the combustion of paper recycling residues[J]. Chemosphere,1986,17:2089-2092.
    [79] Born M,Bachhiesl M.Thermodynamics and mechanismen of high temperatur Chlorine corrosion during biomass combustion[J].Mater. Corros,2003,60:121-131.
    [80] Michelsen HP,Framdsen F, Dam-Johansen K,Larsen OH.Deposition and high temperature corrosion in a 10MW straw fired boiler, Fuel Process. Technol[J].1998,54:95-108.
    [81] Montgomery M,Karlsson A,Larsen OH.Field test corrosion experiments in Denmark with biomass fuels Part 1: Straw-firing[J].Mater.Corros.2002,53:121-131.
    [82] Montgomery M,Karlsson A,Larsen OH. Field test corrosion experiments in Denmark with biomass fuels Part 2: Co-firing of straw and coal[J].Mater.Corros.2002,53 :185-194.
    [83] Kuen-sheng Wang, Kung-Yuh Chiang, Shin-Ming Lin. Effect of chlorides on emissions of hydrogen chloride formation in waste incineration[J].Chemosphere, 1999,38: 1571-1582.
    [84] Montgomery M,Karlsson A, In-situ corrosion investigation at Masned0 CHP plant-a straw-fired power plant[J]. Mater. Corros. 1999,50:579-584.
    [85] Usitalo MA,Vuoristo PMJ,Mantyla TA.High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits[J],Corros. Sci.2004,46:1311-1331.
    [86] Miles TR,Baxter LL,Bryers RW,Jenkins BM,Oden LL.Boiler deposits from firing biomass fuels[J].Biomass and Bioenergy.1996,10(3):125-138.
    [87] Miles TR,Miles JT,Bryers RW,Baxter LL,Jenkins BM,Oden LL.Alkalis in alternative biofuels. FACT 18, Combustion modeling, scaling,and air toxins. New York:ASME,1994: 211-220.
    [88] Jenkins BM, Baxter LL, Miles TR, Miles TR,Oden LL,Bryers RW,Winther E.Composition of ash deposits in biomass fueled boilers:results of full-scale experiments and laboratory simulations. Kansas City,Kansas: ASAE International Summer Meeting, 1994.
    [89] Thy P,Jenkins BM,Grundvig S,Shiraki R,Lesher CE.High temperature elemental losses and mineralogical changes in common biomass shes[J].Fuel,2006,85:783-795.
    [90] Aho M, Silvennoinen J.Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive[J].Fuel,2004,83:1299-1305.
    [91]Tran Khanh-Quang,Iisa Kristiina,Britt-Marie Steenari,Oliver Lindqvist.A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector[J].Fuel.2005,84:169-175.
    [92]Nielsena HP,Baxter LL, Sclippab G,Morey C,Frandsen FJ,Dam-Johansen K.Deposition of potassium salts on heat transfer surfaces in straw-fired boilers: a pilot-scale study[J].Fuel,2000,79:131-139.
    [93]Glarborg P,Marshall P.Mechanism and modeling of the formation of gaseous alkali sulfates [J].Combustion and Flame.2005,141:22-39.
    [94]Jenkins BM,Bakker RR,Wei JB.On the properties of washed straw[J].Bionmss and Biomergy.1996,10(4):177-200.
    [95]Arvelakis S,Koukios EG.Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods[J].Biomass and Bioenergy.2002,22: 331-348.
    [96]何杰.煤燃烧过程中氯化氢的排放特性研究.浙江大学硕士论文,2002.
    [97]Thy P,Jenkins BM,Grundvig S,Shiraki R,Lesher CE.High temperature elemental losses and mineralogical changes in common biomass shes[J].Fuel, 2006,85:783-795.
    [98]齐庆杰.煤中氟赋存形态、燃烧转化与污染控制的基础和试验研究.浙江大学博士论文,2002.
    [99]Ganliang G,Yan B,Yang L.Determination of Total Fluorine in Coal by the Combustion-Hydrolysis Fluoride Ion-Selective Electrode Method[J].Fuel, 1984,63:1552-1555.
    [100]Martinez-Tarazona R,Geima P.,Jose M.Fluorine in Austurian Coals[J].Fuel, 1994,73:1209-1213.
    [101]李震.煤与废塑料共热解过程中氯的变迁规律与控制技术研究.山东科技大学硕士论文,2007.
    [102]陆园,黄梓平.离子选择电极法测定盐湖卤水中氯离子含量[J].海湖盐与化 工,2006, 34(5):12-14.
    [103]於丙军,刘友良.植物中的氯、氯通道和耐氯性[J].植物学通报,2004,21(4):402-410.
    [104]Barbier-Brygoo H,Vinauger M,Colcombet J, Ephritikhine G, Frachisse J M, Maurel C.Anion channels in higher plants: functional characterization, molecular structure and physiological role[J].Biochim Biophys Acta, 2000,1465:199-218.
    [105]Cox JA.Chemical,extraction-based,and ion chromatographic methods for the determination of chlorine in coal[J],Coal Science and Technology, 1991,17:31-38
    [106]Daybell GN,Pringle WJS.The mode of occurrence of chlorine in coal[J].Fuel, 1958,37:283-292.
    [107]Frank E.Huggins and Gerald P.Huffman.Chlorine in coal: an XAFS spectroscopic investigation[J]Fuel, 1995,75:556-569
    [108]Edgcomb LE.State of combination of Chlorine in Coal 1-Extraction of Coal with Water[J].Fuel,1956,35:38-48
    [109]Chou CL.Chlorine in Coal[J].Coal Science and Technology, 1991,17:11-29
    [110]李寒旭,Pan Weiping,Jennifer Keene.TGA-MS对煤燃烧氯化氢析出特性研究[J].煤炭转化.1996,3:34-39
    [111]赵峰华,任德贻,张旺.煤中氯的地球化学特征及逐级化学提取[J].中国矿业大学学报.1999,1:61-65.
    [112]Shao Dakang, Pan Weiping.Behavior of Chlorine during coal pyroysis[J].Energy Fuel, 1994,8:399-401.
    [113]Jimenez A, Martinez-Tarazona M R.The mode of occurrence and origin of chlorine in puertollano coal(Spain)[J], Fuel:1999,78:1559-1565
    [114]梁汉东.中国典型超高硫煤有机相中分子氯存在的实验证据[J].燃料化学学报,2001.5:385-389
    [115]王晓华.煤的溶剂分级萃取与萃取物的组成结构分析.中国矿业大学北京研究生部硕士论文,2002.
    [116]范肖南.煤中氯分布的相关分析[J].煤质技术与科学管理.1997,3:28-30
    [117]徐旭,蒋旭光,何杰,严建华,岑可法.煤中氯赋存状态的实验研究[J].煤田地质与勘 探.2002,4:3-6
    [118]Thomas R, Miles JR, Larry L.Bioler deposits from firing Biomass fuels[J].Biomass Bioenergy, 1996,10:125-138.
    [119]蒋旭光,李香排,池涌,严建华.木屑焚烧过程中氯化氢排放特性研究[J].燃料化学学报,2004,32(13):307-311.
    [120]蒋旭光,李香排,池涌,严建华.木屑在固定床焚烧中HCl的控制研究[J].热能动力工程,2004, 19 (5) :487-491.
    [121]李琦.燃煤过程中氯化氢控制机理研究.浙江大学硕士论文,2003.
    [122]郑用熙.分析化学中的数理统计方法[M].北京:科学出版社,1986.
    [123]Martti Aho,Pasi Vainikka, Raili Taipale, Patrik Yrjas.Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters[J].Fuel,2008,87:647-654.
    [124]王锦平,张德祥,高晋生.煤中氯在不同气氛下的热解析出[J].煤炭转化,2003:26(2):29-33.
    [125]Gibb WH,Mayne GF.An Investigate into the British Standards High Temperature Method for the Determination of Chlrine in Coal[J].J Inst Energy,1980,53:47-51
    [126]Deadmore DL.Stability of Inorganic Fluorine Bearing Compounds[J].JAM.Ceram.Soc.,1962,45(3):120-122.
    [127]Bridgeman TC, Darvell LI, Jones JM.Influence of particle size on the analytical and chemical properties of two energy crops[J].Fuel,2007,86:60-72.
    [128]李寒旭,Pan Weiping,Yang Xiaodong,等.煤粒度及变质程度对煤燃烧时氯析出特性的影响[J].煤炭转化,1997,20(2):67-74.
    [129]Sugawara T,Surawara K,Nishitama Y and Mark A S.Dynamic Behaviour of Sulfur Forms in Rapid Hydtopyrolysis of Coal[J].Fue1,1991,70(9):1091-1097.
    [130]Garcia-labiano F,Hampartsoumian E,Williams A.Dedermination of Sulfur Release and Its Kinetics in Rapid Pyrolysis of Coal[J].Fue1,1995,74(7):1072-1079
    [131]曹欣玉,卜成,葛林甫,岑可法.燃煤过程中硫的析出规律及脱硫的研究[J].环境污染与防治,1989,11(6):2-6
    [132]郑瑛.钙基脱硫的机理描述及炉内喷钙脱硫技术的研究.华中理工大学博士论 文,1998.
    [133]Liham D,Rodney R R,Heinz H D,Richard DH,John DS,Ken KH.Environmentally Critical Elements in Channel and Cleaned Samples of Illinois Coals[J].Fuel, 1998,77:95-107.
    [134]Binlin Dou,Jinsheng Gao.A study on the reaction kineties of HCl removal from high-temperature eoal gas[J].Fuel Proeessing Technology, 2001,72:23-33.
    [135]Liang DT,Anthony EJ, Loewen BK.Halogen capture by limestone during fluidized bed combustion[R].The 11Th Int.Conf.on Fluidized Bed Combustion.1991:917-922
    [136]Borgwardt RH.Calcium Oxide Sintering in Atonspheaes Containing Water and Carbon Dioxide[J].Ind.Eng.Chem.Sci.Res.,1989,28(4):493-500.
    [137]Stratis VS,Zarkanitis S.Inaccessible Pore Volume Formation during Sulfation of Calcined Limestone[J].AICHE J., 1992,38(10): 1536-1550
    [138]Xie Wei, Pan Weiping, Riley JT.Behavior of Chloride During Coal Combustion in an A FBC System[J].Energy Fuel,1999, 13 (3):585-591.
    [139]Herod AA, Hodgees NJ.Mass Spectrometic Study of the Release of HCl and Other Volatiles from Coals During M ild Heat Treatment[J].Fuel, 1983, 62: 1331-1336.
    [140]李文华,熊飞,姜英.微量有害元素在高硫煤中的存在状态[J].煤化工,1994 (4): 20-23.
    [141]Matsukata M,Takeda K, M iyatani T, et al.Simulaneous Chlorination and Sulphation of Calcined L imestone[J].Chem ical Engineering Science, 1996, 51(11):2529-2534
    [142]张淑新.高效低廉燃烧固氟剂的开发与研究[硕士学位论文].浙江大学,2003.
    [143]郭小汾,杨雪莲,李海滨,陈勇,谢克昌.钙化物对氯化氢的脱除动力学研究[J].中国环境科学,2000,20 (3) :211-214
    [144]Daoudi M.A thermogravimetric study of the reaction of hydrogen chloride gas with calcined limestone: determination of kinetic Param[J].The Chemieal Engineering Journal,1991,47:1-9.
    [145]Weinell M.High-temperature scrubbing and halogenated compounds[J].Combust.Sci.Technol.2006,116:317-320.
    [146]丁毓文.含氯化氢废气的净化及综合利用[J].氯碱工业,1998,5:27-31.
    [147]印永嘉.物理化学简明手册[M].北京:高等教育出版社,1988.
    [148]梁英敏,车荫昌.无机物热力学数据手册[M]..沈阳:东北大学出版社,1998.
    [149]李大珍.化学热力学基础[M].北京:北京师范大学出版社,1991.
    [150]Sohn HY,Szekely JA.Structural Model for Gas-Solid Reactions with a Moving Boundary-Ⅲ [J].Chem.Eng.Sci.1972,27:763-778.
    [151]Mazet N.Modeling of Gas-Solid Reactions [J].Int.Chem.Eng.,1992,32(2): 271-284.
    [152]容伟,郑楚光,史学峰,等.石灰石脱除二氧化硫的模型研究[J].华中理工大学学报,1999.27(3):46-48
    [153]李香排,蒋旭光,李琦,池涌,严建华.钙基脱氯剂固定床脱氯动力学模型[J].化工学报,2004,55(8):1280-1284.
    [154]豆斌林,高晋生,鲁军,等.高温煤气净化—高效脱氯剂的研究[J].燃料化学学报,2000,28(3):206-209
    [155]豆斌林,高晋生.高温煤气中HC1气体与脱氯剂的反应动力学[J].华东理工大学 学报(化学与生物工程专辑),2000,4:372-375.
    [156]Lawrence D,Bu J.The reactions between Ca-based solids and gases representative of those found in a fluidized-bed incinerator[J].Chem Eng Sci,2000,55(24): 6129-6137.
    [157]蒋旭光,李琦,李香排,严建华,池涌.CaCl_2的高温稳定性试验研究[J].燃料化学学报,2003,3(6):553-557.
    [158]刘预知.无机物质理化性质及重要反应方程式手册[M].成都:成都科技大学出版社,1993.
    [159]郭小汾,杨雪莲,谢克昌,等.聚氯乙烯燃烧特性及生成机理[J].燃料化学学报,2000,28(1):67-70
    [160]沈兴编.差热、热重分析与非等温固相反应动力学[M].冶金工业出版社1995.
    [161]Hajaligol M, Waymack B, Kellog D.Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials[J].Fuel, 2001,80:1799-1807.
    [162]Gani A and Naruse I.Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass[J].RenewabLe Energy.2007,32:649-661.
    [163]姚向丽,肖波,邹先梅.新型生物质粉体燃料破碎系统[J].中国环保产业.2006,10:18-21.
    [164]姚向丽,肖波,邹先梅,李蓓,王俊.生物质粉体燃料破碎系统的试验研究[J].可再生能源,2006,6:15-17.
    [165]马承荣,肖波,陈英明,江建方,邹先枚.生物质气化制取富氢燃气的实验研究[J].燃烧科学与技术,2007,13(5):461-467.
    [166]李建芬,肖波,杜丽娟,晏蓉,LIANG Tee-David.纳米氧化镍的制备及其对纤维素裂解催化活性的评价[J].燃料化学学报,2008,36(1):42-47.
    [167]岳思,肖波.生物质催化气化制氢技术研究[J].环境科学与技术,2008,31(5):54-58.
    [168]肖波,郭勇,杨加宽,王秀萍,马承荣.生物质粉体燃烧技术的初步研究[J].能源技术,2004,25(5):197-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700