用户名: 密码: 验证码:
场地有机物污染土壤的脉冲放电等离子体修复方法和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业生产的快速发展和城市化进程的加快,大批化工企业搬迁或退役导致企业周边场地存在严重污染,特别是有机物污染。这些污染场地面临快速的商业化开发利用,场地土壤中残留的大量有机污染物严重危害人居环境安全健康,因此,亟需对这类污染土壤进行高效快速的修复。然而,传统土壤修复方法无法满足高效快速的修复要求,迫切需要发展高效快速的有机物污染土壤修复方法。放电等离子体技术作为一种高级氧化技术,在环境污染物降解方面具有效率高、速度快、对污染物无选择性、以及无二次污染等优点,受到研究者的广泛关注。基于此,本论文提出采用脉冲放电等离子体技术修复有机物污染土壤,主要围绕脉冲放电等离子体修复有机污染土壤过程中污染物的降解特性、活性物质的产生和作用途径、污染物的降解机理、污染物和活性物质的扩散迁移行为、放电等离子体与催化剂的协同作用等方面开展研究。主要的工作及研究结果如下:
     1.采用脉冲放电等离子体修复五氯酚(pentachlorophenol, PCP)污染土壤,借助电气参数、反应器结构参数、载气参数和土壤特征考察了土壤中PCP降解特性。发现:脉冲放电等离子体对土壤中PCP具有快速高效的降解能力,放电处理60min, PCP降解率高达83.5%。增加脉冲峰值电压、脉冲重复频率和减小电极间距促进PCP降解;不同载气中PCP降解梯度为:氧气>空气>氮气;存在最优的气体流量使得上壤中PCP降解效果较好:土壤有机质抑制PCP降解;碱性土壤和适当土壤湿度有利于PCP降解。
     2.通过活性物质的定性和定量分析,并借助总有机碳分析仪(TOC)、紫外-可见光谱、傅立叶变换红外光谱(FT-IR)、离子色谱(IC)以及高效液相色谱-质谱联用(HPLC/MS)等分析了PCP降解产物,探讨了PCP污染土壤修复机理。发现含氧活性基团(如03,·OH自由基等)氧化是修复PCP污染土壤主要的作用途径。强氧化性活性物质攻击PCP的C-Cl键,产生羟基化中间产物,伴随脱氯反应的发生,这些中间产物被进一步氧化开环,生成小分子有机酸,并最终矿化为C02和H20。
     3.研究了脉冲放电等离子体对七层中对硝基苯酚(p-nitrophenol, PNP)的降解特性和活性物质的扩散行为,考察了媒质材料、土壤特性、脉冲峰值电压和PNP初始浓度等参数对PNP降解和主要活性物质O3扩散穿透能力的影响。结果表明:不同土层中氧化环境差异,使得土层中PNP降解、矿化和中间产物显著不同。PNP降解率随土层增加而降低。上层中PNP降解受土壤特征、脉冲峰值电压和污染物浓度影响。土壤内含物、土壤特性和O3浓度影响O3在土壤中的扩散。
     4.采川脉冲放电等离子体修复PCP和PNP复合污染土壤,探讨了污染组分之间的相互影响行为。发现:脉冲放电等离子体能够高效修复复合污染土壤,一定条件下土壤中PCP和PNP降解率分别高达94.1%和86.0%。复合污染土壤修复过程中,PCP和PNP相互制约。提高脉冲峰值电压和土壤pH可以显著提高复合污染土壤修复效果。
     5.采用脉冲放电等离子体TiO2催化联合体系修复PNP污染土壤,借助脉冲峰值电压、土壤pH和载气湿度研究了联合体系中PNP的降解特性。通过比较单一放电体系和联合体系中PNP降解、矿化、活性物质生成、中间产物演化等差异,探讨了联合体系对PNP污染土壤的协同修复机理。研究发现:与单一放电体系相比,联合体系产生了更多的活性物质,促进了PNP降解和矿化,并加速中间产物的生成与矿化。
With the quick development of industrial production and urbanization, lots of relocated or closed industrial enterprises caused serious soil pollution, especially organic pollutants contaminated soil. These polluted sites need quick commercial utilization, but lots of organic pollutants in soil bring dangers to people's living. Therefore, rapid and high efficient remediation for these sites is becoming a necessary. Lots of methods had been proposed, such as physical remediation, traditional chemical remediation, and bioremediation; however, there exist some drawbacks, and can not meet remediation requirements of high efficiency and speed, and thus development of new methods for soil remediation is important. Discharge plasma, one of advanced oxidation processes, has been received great attention in pollution control, showing advantages of high efficiency, high speed, no selective for pollutants, and no secondary pollution. Therefore, pulsed discharge plasma was proposed to remediate organic pollutants contaminated soil in this paper. The main work was conducted in terms of pollutants degradation characteristics, generation and roles of active species, pollutants degradation mechanisms, transport of pollutants and active species in soil, synthetic effects of discharge plasma and catalyst for pollutants removal. The detailed work and the summarized results are as follows:
     1. Pulsed discharge plasma was used to remediate pentachlorophenol (PCP) contaminated soil. PCP degradation characteristics in soil were studied by evaluating the effects of electrical parameters, reactor configuration parameters, carrier gas atmospheres, and soil properties on its degradation. The experimental results showed that pulsed discharge plasma was an efficient and quick method for PCP contaminated soil remediation.83.5%of PCP could be removed within60min's discharge treatment. Increasing pulsed discharge voltage and pulsed frequency, and decreasing electrode distance could improve PCP removal. The greatest PCP removal efficiency was obtained in O2atmosphere, followed by air atmosphere, and the lowest in N2atmosphere. There existed an optimal value for gas flow rate to obtain high PCP removal. Soil organic matter inhibited PCP removal. Alkaline soil and certain water content in soil benefited PCP removal.
     2. By qualitative and quantitative analysis of active species, and analysis of PCP degradation intermediates by TOC, UV-VIS, FT-IR, IC, and HPLC-MS, PCP degradation mechanisms were proposed. O-containing active species oxidation (such as O3and·OH) was the main process for PCP degradation. The attacks of these active species to C-Cl bonds in PCP molecule initiated PCP degradation process, generating hydroxylated intermediates, accompanied by dechlorination reactions, and then the hydroxylated intermediates were further degraded into small organic acids, CO2and H2O.
     3.p-Nitrophenol (PNP) degradation in soil by pulsed discharge plasma was investigated, and the transfer of O3in soil was also studied. The effects of matrix, soil properties, discharge voltage, and PNP concentration on PNP degradation and O3breakthrough were evaluated. The results presented that due to the different oxidative conditions in soil layers, PNP degradation, mineralization, and intermediates were quite different in different soil layers. PNP degradation efficiency decreased with increase of soil depth. Soil properties, discharge voltage, and PNP concentration affect PNP degradation. Soil organic matter and metal oxides, soil properties, and O3concentration affect its diffusion in soil layer.
     4.Pulsed discharge plasma was used to remediate PCP and PNP mixtures contaminated soil. The mutual effects between reactants were discussed. The results showed that pulsed discharge plasma presented great performance for mixtures contaminated soil remediation.86.0%of PNP and94.1%of PCP could be removed in certain conditions. There existed mutual suppressant effects between PCP and PNP during soil remediation. Alkaline soil and high discharge voltage were both beneficial for mixtures contaminated soil remediation.
     5. Pulsed discharge plasma and TiO2catalyst were combined to remediate PNP contaminated soil. The effects of discharge voltage, soil pH and gas moisture on PNP degradation were studied. The synthetic mechanisms were discussed by comparing PNP degradation, mineralization, active species generation, and evolution of intermediates with single discharge system. The results showed that more active species were generated in pulsed discharge plasma/TiO2system, resulting in higher PNP degradation and mineralization, and then accelerated generation and mineralization of intermediates.
引文
[1]LU M., ZHONG Z. Z., QIAO W., et al. Removal of residual contaminants in petroleum contaminated soil by Fenton-like oxidation [J]. Journal of Hazardous Materials,2010,179(1):604-611.
    [2]LIU W. X., LUO Y. M., TENG Y., et al. Prepared bed bioremediation of oily sludge in an oil field in northern China [J]. Journal of Hazardous Materials,2009,161(1):479-484.
    [3]EEA. Progress in management of contaminated sites [EB/OL],2007. http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/pr ogress-in-management-of-contaminated-1.
    [4]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [5]GURSKA J., WANG W., GERHARDT K. E., et al. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste [J]. Environmental Science & Technology,2009,43(12):4472-4479.
    [6]夏坤堡.腊芙运河污染事件[J].环境与可持续发展,1981,2:6-7.
    [7]MANSUROV Z. A., ONGARBAEV E. K., TULEUTAEV B. K. Contamination of soil by crude oil and drilling muds:Use of wastes by production of road construction materials [J]. Chemistry and Technology of Fuels and Oils,2001,37(6):441-443.
    [8]KAO C. M., PROSSER J. Evaluation of natural attenuation rate at a gasoline spill site [J]. Journal of Hazardous Materials,2001,82(3):275-289.
    [9]ZHOU Q., SUN F., LIU R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons [J]. Environment International,2005,31(6):835-839.
    [10]MIHELCIC J. R., LUTHY R. G. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems [J]. Applied and Environmental Microbiology,1988, 54(5):1182-1187.
    [11]KALF D. F., CROMMENTUIJN T., VAN DE PLASSCHE E. J. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs) [J]. Ecotoxicology and Environmental Safety,1997, 36(1):89-97.
    [12]JONSSON S., PERSSON Y., FRANKKI S., et al. Comparison of Fenton's reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils [J]. Journal of Soils and Sediments,2006,6(4):208-214.
    [13]VALLECILLO A., GARCIA-ENCINA P. A., PEN A M. Anaerobic biodegradability and toxicity of chlorophenols [J]. Water Science and Technology,1999,40(8):161-168.
    [14]MIYAZAKI A., AMANO T., SAITO H., et al. Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms [J]. Chemosphere,2002,47(1):65-69.
    [15]LI T. P., YUAN S. H., WAN J. Z., et al. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin [J]. Chemosphere,2009, 76(9):1226-1232.
    [16]KONG W. D., ZHU Y. G., FU B. J., et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J]. Environmental Pollution, 2006,143(1): 129-137.
    [17]VACLAVIK E., HALLING-SORENSEN B., 1NGERSLEV F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil [J]. Chemosphere, 2004, 56(7): 667-676.
    [18]DARNERUD P. O., ERIKSEN G. S., JOHANNESSON T., et al. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology [J]. Environmental Health Perspectives, 2001, 109(1): 49-68.
    [19]KALANTZI O. I., MARTIN F. L., THOMAS G. O., et al. Different levels of polybrominated diphenyl ethers (PBDEs) and chlorinated compounds in breast milk from two UK regions [J]. Environmental Health Perspectives, 2004, 112(10): 1085-1091.
    [20]FUENTES S., COLOMINA M. T., RODRIGUEZ J., et al. Interactions in developmental toxicology: Concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice [J]. Toxicology Letters, 2006, 164(1): 81-89.
    [21]CASCHILI S., DELOGU F., CONCAS A., et al. Mechanically induced self-propagating reactions: Analysis of reactive substrates and degradation of aromatic sulfonic pollutants [J]. Chemosphere, 2006, 63(6): 987-995.
    [22]HIGARASHI M. M., JARDIM W. E. Remediation of pesticide contaminated soil using TiO2 mediated by solar light [J]. Catalysis Today, 2002, 76(2-4): 201-207.
    [23]FRANK M. P., GRAEBING P., CHIB J. S. Effect of soil moisture and sample depth on pesticide photolysis [J]. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2607-2614.
    [24]GONG A., YE C. M., WANG X. J., et al. Dynamics and mechanism of ultraviolet photolysis of atrazine on soil surface [J]. Pest Management Science, 2001, 57(4): 380-385.
    [25]GRAEBING P., FRANK M., CHIB J. S. Effects of fertilizer and soil components on pesticide photolysis [J]. Journal of Agricultural and Food Chemistry, 2002, 50(25): 7332-7339.
    [26]HUSTERT K., MOZA P. N., KETTRUP A. Photochemical degradation of carboxin and oxycarboxin in the presence of humic substances and soil [J]. Chemosphere, 1999, 38(14): 3423-3429.
    [27]ROMERO E., DIOS G., MINGORANCE M. D., et al. Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surfaces exposed to sunlight [J]. Chemosphere, 1998, 37(3): 577-589.
    [28]SILVAA.,DELERUE-MATOSC, FIUZA A. Useof solventextraction toremediatesoils contaminated with hydrocarbons [J]. Journal of Hazardous Materials, 2005, 124(1-3): 224-229.
    [29]LIJ.L., CHENB.H.Solubilization of model polycyclic aromatichydrocarbons by nonionic surfactants [J]. Chemical Engineering Science, 2002, 57(14): 2825-2835.
    [30]BOGAN B. W., TRBOVIC V., PATEREK J. R. Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils [J]. Chemosphere, 2003, 50(1): 15-21.
    [31]KHODADOUST A. P.,BAGCIII R.,SUIDAN M.T., et al. Removalof PAHsfromhighly contaminated soils found at prior manufactured gas operations [J]. Journal of Hazardous Materials, 2000,80(1-3): 159-174.
    [32]VIGLIANTI C., HANNA K., BRAUER C. D., et al. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study [J]. Environmental Pollution, 2006, 140(3): 427-435.
    [33]KAWAHARA F. K., DAVILA B., ALABED S. R., et al. Polynuclear aromatic hydrocarbon (PAH) release from soil during treatment with Fentons reagent [J]. Chemosphere,1995,31(9):4131-4142.
    [34]FERRARESE E., ANDREOTTOLA G., OPREA I. A. Remediation of PAH-contaminated sediments by chemical oxidation [J]. Journal of Hazardous Materials,2008,152(1):128-139.
    [35]HAWTHORNE S. B., GRABANSKI C. B. Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot [J]. Environmental Science & Technology, 2000,34(19):4103-4110.
    [36]HABE H., OMORI T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria [J]. Bioscience Biotechnology and Biochemistry,2003,67(2):225-243.
    [37]Li X. J., Li P. J., Lin X., et al. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases [J]. Journal of Hazardous Materials,2008,150(1):21-26.
    [38]PARRISH Z. D., BANKS M. K., SCHWAB A. P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil [J]. Environmental Pollution, 2005,137(2):187-197.
    [39]SMITH M. J., FLOWERS T. H., DUNCAN H. J., et al. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues [J]. Environmental Pollution,2006,141(3):519-525.
    [40]COFIELD N., BANKS M. K., SCHWAB A. P. Lability of polycyclic aromatic hydrocarbons in the rhizosphere [J]. Chemosphere,2008,70(9):1644-1652.
    [41]SUN B., SATO M., CLEMENTS J. S. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution [J]. Environmental Science & Technology,2000,34(3): 509-513.
    [42]HAO X. L., ZHOU M. H., LEI L. C. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water [J]. Journal of Hazardous Materials,2007,141(3):475-482.
    [43]YAMAMOTO T., RAMANATHAN K., LAWLESS P. A., et al. Control of volatile organic-compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor [J]. IEEE Transactions on Industry Applications,1992,28(3):528-534.
    [44]YANKELEVICH Y., WOLF M., BAKSHT R., et al. NOx diesel exhaust treatment using a pulsed corona discharge:the pulse repetition rate effect [J]. Plasma Sources Science and Technology,2007, 16(2):386-391.
    [45]OKUBO M., MIYASHITA T., KUROKI T., et al. Regeneration of diesel particle filter using nonthermal plasma without catalyst [J]. IEEE Transaction on Industry Applications,2004,6(4): 1451-1458.
    [46]GONG Z. Q., ALEF K., WILKE B. M., et al. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation [J]. Journal of Hazardous Materials,2007,143(1-2):372-378.
    [47]ZHOU W. J., ZHU L. Z. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system [J]. Environmental Pollution,2007,147(1):66-73.
    [48]SUN S. B., INSKEEP W. P., BOYD S. A. Sorption of nonionic organic-compounds in soil-water systems containing a micelle-forming surfactant [J]. Environmental Science & Technology,1995, 29(4):903-913.
    [49]ROY D. K., KOMMALAPATI R. Soil washing potential of a natural surfactant [J]. Environmental Science & Technology,1997,31(3):610-613.
    [50]CARRIGAN C. R., NITAO J. J. Predictive and diagnostic simulation of In-situ electrical heating in contaminated, low-Permeability soils [J]. Environmental Science & Technology,2000,34(22): 4835-4841.
    [51]KASTANEK P., KANTANEK F., HAJEK M. Microwave-enhanced thermal desorption of polyhalogenated biphenyls from contaminated soil [J]. Journal of Environmental Engineering-ASCE, 2010,136(3):295-300.
    [52]YUAN S. H., TIAN M., LU X. H. Microwave remediation of soil contaminated with hexachlorobenzene [J]. Journal of Hazardous Materials,2006,137(2):878-885.
    [53]LEE W. J., SHIH S. I., CHANG C. Y., et al. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils [J]. Journal of Hazardous Materials,2008,160(1): 220-227.
    [54]ARESTA M., DIBENEDETTO A., FRAG ALE C., et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd-and Rh-supported catalysts [J]. Chemosphere,2008,70(6):1052-1058.
    [55]ANITESCU G., TAVLARIDES L. L. Supercritical extraction of contaminants from soils and sediments [J]. Journal of Supercritical Fluids,2006,38(2):167-180.
    [56]KANEKAR A. S., PATHAK P. N., MOHAPATRA P. K. A rapid online estimation method for radiostrontium in soil samples using crown ether and supercritical fluid extraction [J]. Talanta,2012, 99:744-749.
    [57]LIBRANDO V., HUTZINGER O., TRINGALI G., et al. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from marine sediments and soil samples [J]. Chemosphere,2004,54(8): 1189-1197.
    [58]KHAN F. I., HUSAIN T., HEJAZI R. An overview and analysis of site remediation technologies [J]. Journal of Environmental Management,2004,71(2):95-122.
    [59]CHAI X., JIA J., SUN T. Application of a novel cold activated carbon fiber-solid phase microextraction for analysis of organochlorine pesticides in soil [J]. Journal of Environmental Science and Health:B,2007,42(6):629-634.
    [60]GUERIN T. F., HORNER S., MCGOVERN T., et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater [J]. Water Research,2002,36(1): 15-24.
    [61]BURGESS A. S. New barrier technologies on the horizon[A]. International Ground Water Technology,1995,1(12):23-24.
    [62]HARBOTTLE M. J., LEAR G., SILLS G. C. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics[J]. Journal of Environmental Management,2009, 90(5):1893-1900.
    [63]ACAR Y. B., GALE R. J., ALSHAWABKEH A. N., et al. Electrokinetie remediation-Basies and technology status [J]. Journal of Hazardous Materials,1995,40(2):117-137.
    [64]ZHANG S. P., RUSLING J. F. Dechlorination of polychlorinated-biphenyls on soils and clay by electrolysis in a bicontinuous microemulsion [J]. Environmental Science & Technology,1995,29(5): 1195-1199.
    [65]REDDY K. R., DARKO-KAGYA K., AL-HAMDAN A. Z. Electrokinetic remediation of chlorinated aromatic and nitroaromatic organic contaminants in clay soil [J]. Environmental Engineering Science, 2011,28(6):405-413.
    [66]WAN C. L., DU M. A., LEE D. J., et al. Electrokinetic remediation and microbial community shift of beta-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil [J]. Applied Microbiology and Biotechnology,2011,89(6):2019-2025.
    [67]LUO Q. S., ZHANG X. H., WANG H., et al. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics [J]. Chemosphere,2005,59(9):1289-1298.
    [68]PAZOS M., ROSALES E., ALCANTARA T., et al. Decontamination of soils containing PAHs by electroremediation:A review [J]. Journal of Hazardous Materials,2010,177 (1-3):1-11.
    [69]潘淑颖.土壤中有机氯农药DDT原位降解研究[D].济南:山东大学,2009.
    [70]HEBERT V. R., MILLER G. C. Depth dependence of direct and indirect photolysis on soil surfaces [J]. Journal of Agricultural and Food Chemistry,1990,38(3):913-918.
    [71]AGUER J. P., BOULE P., BONNEMOY F., et al. Phototransformation of napropamide [N,N-diethyl-2-(1-naphthyloxy)propionamide] in aqueous solution:Influence on the toxicity of solutions [J]. Pesticide Science,1998,54(3):253-257.
    [72]LIU P. Y., ZHENG M. H., XU X. B. Phototransformation of polychlorinated dibenzo-p-dioxins from photolysis of pentachlorophenol on soils surface [J]. Chemosphere,2002,46(8):1191-1193.
    [73]MISRA B., GRAEBING P. W., CHIB J. S. Photodegradation of chloramben on a soil surface:A laboratory-controlled study [J]. Journal of Agricultural and Food Chemistry,1997,45(4):1464-1467.
    [74]RABABAH A., MATSUZAWA S. Treatment system for solid matrix contaminated with fluoranthene. II-Recirculating photodegradation technique [J]. Chemosphere,2002,46(1):49-57.
    [75]PASCUAL J. A., GARCIA C., HERNANDEZ T., et al. Soil microbial activity as a biomarker of degradation and remediation processes [J]. Soil Biology & Biochemistry,2000,32(13):1877-1883.
    [76]牛军峰,全燮,陈景文,等.低有机碳含量表层土中Fe2O3对γ-666光解的催化作用[J].环境科学,2002,23(2):92-96.
    [77]TYRE B. W., WATTS R. J., MILLER G. C. Treatment of 4 biorefractory contaminants in soils using catalyzed hydrogen-peroxide [J]. Journal of Environmental Quality,1991,20(4):832-838.
    [78]FLOTRON V., DELTEIL C., PADELLEC Y., et al. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process [J]. Chemosphere,2005,59(10):1427-1437.
    [79]WATTS R. J., DILLY S. E. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils [J]. Journal of Hazardous Materials,1996,51(1-3):209-224.
    [80]WATTS R. J., STANTON P. C., HOWSAWKENG J., et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide [J]. Water Research,2002, 36(17):4283-4292.
    [81]HOIGNE J. Chemistry of aqueous ozone and transformation pollutants by ozonation and advanced oxidation process [J]. Environmental Chemistry,1998,5:83-141.
    [82]HOIGNE J., BADER H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions [J]. Water Research,1976,10(5):377-386.
    [83]MASTEN S. J. Ozonation of VOCs in the presence of humic-acid and soils [J]. Ozone-Science & Engineering,1991,13(3):287-312.
    [84]MASTEN S. J., DAVIES S. H. R. Efficacy of in-situ ozonation for the remediation of PAH contaminated soils [J]. Journal of Contaminant Hydrology,1997,28(4):327-335.
    [85]O'MAHONY M. M., DOBSON A. D. W., BARNES J. D., et al. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil [J]. Chemosphere,2006,63(2):307-314.
    [86]HSU M.1. Y., MASTEN S. J. The kinetics of the reaction of ozone with phenanthrene in unsaturated soils [J]. Environmental Engineering Science,1997,14(4):207-218.
    [87]SUNG M. H., HUANG C. P. In situ removal of 2-chlorophenol from unsaturated soils by ozonation [J]. Environmental Science & Technology,2002,36(13):2911-2918.
    [88]CHOI H., KIM Y. Y., LIM H., et al. Oxidation of polycyclic aromatic hydrocarbons by ozone in the presence of sand [J]. Water Science and Technology,2001,43(5):349-356.
    [89]KORNMULLER A., WIESMANN U. Ozonation of polycyclic aromatic hydrocarbons in oil/water-emulsions:mass transfer and reaction kinetics [J]. Water Research,2003,37(5):1023-1032.
    [90]LUTHY R. G., DZOMBAK D. A., PETERS C. A., et al. Remediating tar-contaminated soils at manufactured-gas plant sites [J]. Environmental Science & Technology,1994,28(6):A266-A276.
    [91]BOSMA T. N. P., MIDDELDORP P. J. M., SCHRAA G., et al. Mass transfer limitations of biotransformation:quantifying bioavailability [J]. Environmental Science & Technology,1997,31(1): 248-252.
    [92]OHLENBUSCH G., HESSE S., FRIMMEL F. H. Effects of ozone treatment on the soil organic matter on contaminated sites [J]. Chemosphere,1998,37(8):1557-1569.
    [93]YAK H. K., WENCLAWIAK B. W., CHENG I. F., et al. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water [J]. Environmental Science & Technology,1999, 33(8):1307-1310.
    [94]REDDY K. R., KARRI M. R. Removal and degradation of pentachlorophenol in clayey soil using nanoscale iron particles [A]. Geotechnics of Waste Management and Remediation,2008:463-470.
    [95]VARANASI P., FULLANA A., SIDHU S. Remediation of PCB contaminated soils using iron nano-particles [J]. Chemosphere,2007,66(6):1031-1038.
    [96]WANG C. B., ZHANG W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental Science & Technology,1997,31(7):2154-2156.
    [97]ZHANG W. X. Nanoscale iron particles for environmental remediation:An overview[J]. Journal of Nanoparticle Research,2003,5(3-4):323-332.
    [98]SU C. M., PULS R. W. Arsenate and arsenitc removal by zerovalent iron:Kinetics, redox transformation, and implications for in situ groundwater remediation [J]. Environmental Science & Technology,2001,35(7):1487-1492.
    [99]GATES D. D., SIEGRIST R. L., CLINE S. R. Chemical oxidation of volatile and semi-volatile organic compounds in soil[C]. Proceedings of the 88th Annual Air and Waste Management Association Conference, San Antonio, Texas,1995.
    [100]ALDERMAN N. S., N'GUESSAN A. L., NYMAN M. C. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process [J]. Journal of Hazardous Materials,2007,146(3): 652-660.
    [101]FUKUSHIMA M., TATSUMI K. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(Ⅲ) and hydroxypropyl-beta-cyclodextrin [J]. Journal of Hazardous Materials,2007,144(1-2):222-228.
    [102]GAN S., LAU E. V., NG H. K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Journal of Hazardous Materials,2009,172(2-3):532-549.
    [103]SICILIANO S. D., GERMIDA J. J. Enhanced phytoremediation of chlorobenzoates in rhizosphere soil [J]. Soil Biology & Biochemistry,1999,31(2):299-305.
    [104]STEINLE P., THALMANN P., HOHENER P., et al. Effect of environmental factors on the degradation of 2,6-dichlorophenol in soil [J]. Environmental Science & Technology,2000,34(5): 771-775.
    [105]LEONARDI V., SASEK V., PSTRUCCIOLI M., et al. Bioavaliability modification and fungal biodegradation of PAHs in aged industrial soils [J]. International Biodeterioration & Biodegradation, 2007,60(3):165-170.
    [106]VIDALI M. Bioremediation:An overview [J]. Pure and Applied Chemistry,2001,73(7):1163-1172.
    [107]NEWMAN L. A., WANG X., MUIZNIEKS I. A., et al. Remediation of trichloroethylene in a ratified aquifer with trees:A controlled fiels study [J]. Environmental Science & Technology,1999,33(13): 2257-2265.
    [108]REZEK J., WIESCHE C. I. D., MACKOVA M., et al. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil [J]. Chemosphere,2008,70(9):1603-1608.
    [109]LIN Z., LI X. M., LI Y. T. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT [J]. Journal of Environmental Monitoring,2012,14(6):1551-1558.
    [110]SINGER A. C., JURY W., LUEPROMCHAIA E., et al. Contribution of earth-worms to PCB bioremediation [J]. Soil Biology and Biochemistry,2001,33(6):765-776.
    [111]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [112]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [113]SHI J., BIAN W., YIN X. Organic contaminants removal by the technique of pulsed high-voltage discharge in water [J]. Journal of Hazardous Materials,2009,171(1-3):924-931.
    [114]SHI Y., RUAN J., WANG X., et al. Decomposition of mixed malodorants in a wire-plate pulse corona reactor. Environmental Science & Technology [J],2005,39(17):6786-6791.
    [115]KIRKPATRICK M. J., FINNEY W. C., LOCKE B. R. Plasma-catalyst interactions in the treatment of volatile organic compounds and NOx with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes [J]. Catalysis Today,2004,89(1-2):117-126.
    [116]XU F., LUO Z., CAO W., et al. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Science [J],2009,21(3):328-332.
    [117]DINELLI G., CIVITANO L., REA M. Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue-gas [J]. IEEE Transactions on Industry Applications,1990,26(3):535-541.
    [118]SUGIARTO A. T., ITO S., OHSHIMA T., et al. Oxidative decoloration of dyes by pulsed discharge plasma in water [J]. Journal of Electrostatics,2003,58(1-2):135-145.
    [119]CHEN Y. S., ZHANG X. S., DAI Y. C., et al. Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution [J]. Separation and Purification Technology,2004,34(1-3):5-12.
    [120]YEE D. C., CHAUHAN S., YANKELEVICH E. Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation [J]. Biotechnology and Bioengineering,1998,59(4):438-444.
    [121]JOSHI A. A., LOCKE B. R., ARCE P., et al. Formation of hydroxyl radicals, hydrogen-peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution [J]. Journal of Hazardous Materials,1995,41(1):3-30.
    [122]WEN Y. Z., JIANG X. Z., LIU W. P. Degradation of 4-chlorophenol by high-voltage pulse corona discharges combined with ozone [J]. Plasma Chemistry and Plasma Processing,2002,22(1):175-185.
    [123]MALIK M. A., UBAID-UR-REHMAN, GHAFFAR A. Synergistic effect of pulsed corona discharges and ozonation on decoloration of methylene blue in water [J]. Plasma Sources Science and Technology,2002,11(3):236-240.
    [124]GRYMONPRE D. R., FINNEY W. C., LOCKE B. R. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation:model-data comparison[J]. Chemical Engineering Science,1999,54(15-16):3095-3105.
    [125]WANG H. J., LI J., QUAN X., et al. Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis[J]. Journal of Hazardous Materials,2007,141(1):336-343.
    [126]PEURRUNG L. M., PUERRUNG A. J. The in situ corona for treatment of organic contaminants in soils [J]. Journal of Physics D-Applied Physics,1997,30(3):432-440.
    11271 REDOLFI M., MAKHLOUFI C., OGNIER S., et al. Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor [J]. Process Safety and Environmental Protection,2010, 88(3):207-212.
    [128]HATTEMERFREY H. A., TTAVIS C. C. Pentachlorophenol-environmental partitioning and human exposure [J]. Archives of Environmental Contamination and Toxicology,1989,18(4):482-489.
    [129]OUBINA A., PUIG D., GASCON J., et al. Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatography [J]. Analytica Chimica Acta,1997,346(1):49-59.
    [130]PARK S. K., BIELEFELDT A. R. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil[J]. Water Research,2003,37 (19):4663-4672.
    [131]LARRY K., WILLIAM T. ES&T Special Report:Priority pollutants:Ⅰ-a perspective view. Environmental Science & Technology,1979,13(4),416-423.
    [132]WANG H., LI J., QUAN X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water[J]. Journal of Electrostatics,2006,64 (6):416-421.
    [133]LAWLESS P. A., YAMAMOTO T., SHOFRAN S. P., et al. Characteristics of a fast rise time power supply for a pulsed plasma reactor for chemical vapor destruction[J]. IEEE Transactions on Industry Applications,1996,32(6):1257-1265.
    [134]MOK Y. S. Efficient energy delivery condition from pulse generation circuit to corona discharge reactor. Plasma Chemistry and Plasma Processing,2000,20(3):353-364.
    [135]YAN K., VAN HEESCH E. J. M., NAIR S. A., et al. A triggered spark-gap switch for high-repetition rate high-voltage pulse generation [J]. Journal of Electrostatics,2003,57(1):29-33.
    [136]http://baike.baidu.com/view/868773.htm.
    [137]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1997.
    [138]CHUNG J. W., CHO M. H., SON B. H., et al. Study on reduction of energy consumption in pulsed corona discharge process for NOx removal [J]. Plasma Chemistry and Plasma Processing,2000,20(4): 495-509.
    [139]王敬贤.土壤中部分酚类污染物的光化学行为研究[D].大连:大连理工大学,2006.
    [140]LIAO C. J., CHUNG T. L., CHEN W. L., et al. Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide [J]. Journal of Molecular Catalysis A-Chemical,2007,265(1-2):189-194.
    [141]FUKUSHIMA M., SAW ADA A., KAWASAKI M., et al. Removal of pentachlorophenol from contaminated soil by catalytic oxidation with iron (Ⅲ)-porphyrin complexes and potassium monopersulfate [J]. Toxicology and Environmental Chemistry,2003,85,39-49.
    [142]MIKESELL M. D., BOYD S. A. Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage-sludge [J]. Environmental Science & Technology,1988,22(12):1411-1414.
    [143]高树香,陈宗柱.气体导电[M].南京:南京工学院出版社,1988.
    [144]ZHANG Y. Z., ZHENG J. T., QU X. F., et al. Design of a novel non-equilibrium plasma-based water treatment reactor [J]. Chemosphere,2008,70(8):1518-1524.
    [145]CHOI H., LIM H. N., KIM J., et al. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation [J]. Journal of Contaminant Hydrology,2002,57(1-2): 81-98.
    [146]SHIN W. T., GARANZUAY X., YIACOUMI S., et al. Kinetics of soil ozonation:an experimental and numerical investigation [J]. Journal of Contaminant Hydrology,2004,72(1-4):227-243.
    [147]WANG C. X., YEDILER A., PENG A., et al. Photodegradation of phenanthrene in the presence of humic substances and hydrogen-peroxide [J]. Chemosphere,1995,30(3):501-510.
    [148]PIERPOINT A. C., HAPEMAN C. J., TORRENTS A. Ozone treatment of soil contaminated with aniline and trifluralin [J]. Chemosphere,2003,50(8):1025-1034.
    [149]ZHAO X., QUAN M., ZHAO H. M., et al. Different effects of humic substances on photodegradation of p,p'-DDT on soil surfaces in the presence of TiO2 under UV and visible light [J]. Journal of Photochemistry and Photobiology A-Chemistry,2004,167(2-3):177-183.
    [150]FARRE M. J., DOMENECH X., PERAL J. Combined photo-fenton and biological treatment for Diuron and Linuron removal from water containing humic acid [J]. Journal of Hazardous Materials, 2007,147(1-2):167-174.
    [151]LUSTER-TEASLEY S., UBAKA-BLACKMOORE N., MASTEN S. J. Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils [J]. Journal of Hazardous Materials,2009, 167(1-3):701-706.
    [152]HONG P. K. A., ZENG Y. Degradation of pentachlorophenol by ozonation and biodegradability of intermediates [J]. Water Research, 2002, 36(17): 4243-4254.
    [153]HOIGNE J., BADER H. Rate constants of reactions of ozone with organic and inorganic-compounds in water .2- Dissociating organic-compounds [J]. Water Research, 1983, 17(2): 185-194.
    [154]THORSTENSEN C. W., LODE 0., EKLO O. M., et al. Sorption of bentazone, dichlorprop, MCPA, and propiconazole in reference soils from Norway [J]. Journal of Environmental Quality, 2001, 30(6): 2046-2052.
    [155]SELLERS R. M. Spectrophotometric determination of hydrogen-peroxide using potassium Titanium (Ⅳ) Oxalate [J]. Analyst, 1980, 105(1255): 950-954.
    [156]SUARASAN I., GHIZDAVU L., GHIZDAVU I., et al. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids [J]. Journal of Electrostatics, 2002, 54(2): 207-214.
    [157]RYU S., PARK H. Inorganic species formation in a discharged water generating system [J]. Journal of Electrostatics, 2009, 67(5): 723-729.
    [158]LAN Q., LI F. B., LIU C. S., et al. Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV Illumination [J]. Environmental Science & Technology, 2008, 42(21): 7918-7923.
    [159]BENITEZ F. J., ACERO J. L., REAL F. J., et al. Kinetics of photodegradation and ozonation of pentachlorophenol [J]. Chemosphere, 2003, 51(8): 651-662.
    |160| DU C. M., SHI T. H., SUN Y. W., et al. Decolonization of Acid Orange 7 solution by gas-liquid gliding arc discharge plasma [J]. Journal of Hazardous Materials, 2008, 154(1-3): 1192-1197.
    [ 161 ]MUKKAVILLI S., LEE C K., VARGHESE K., et al. Modeling of the electrostatic corona discharge reactor [J]. IEEE Transactions on Plasma Science, 1988, 16(6): 652-660.
    [162| LOWKE J. J., MORROW R. Theoretical analysis of removal of oxides of sulfur and nitrogen in pulsed operation of electrostatic precipitators [J]. IEEE Transactions on Plasma Science, 1995, 23(4): 661-671.
    [163]FANNING P. E., VANNICE M. A. A drifts study of the formation of surface groups on carbon by oxidation [J]. Carbon, 1993, 31(5): 721-730.
    [164]MANGUN C. L., BENAK K. R., ECONOMY J., et al. Surface chemistry, pore sizes and adsorption properties of activated carbon Fibers and precursors treated with ammonia [J]. Carbon, 2001, 39(12): 1809-1820.
    [165]CZAPLICKA M., KACZMARCZYK B. Infrared study of chlorophenols and products of their photodegradation [J]. Talanta, 2006, 70(5): 940-949.
    [166]FRISCH M. J., TRUCKS G. W., SCHLEGEL H. B., et al. Gaussian 03, Gaussian Inc., Pittsburgh PA, 2003.
    [167]SAN N., HATIPOGLU A., KOCTURK G., et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates |J|. Journal of Photochemistry and Photobiology A-Chcmistry, 2002, 146(3): 189-197.
    [168]DI PAOLA A., AUGUGLIARO V., PALMISANO L.,et al. Heterogeneous photocatalytic degradation of nitrophenols [J]. Journal of Photochemistry and Photobiology A-Chcmistry, 2003, 155(1-3): 207-214.
    [169]SCHACKMANN A., MULLER R. Reduction of nitroaromatic compounds by different pseudomonas species under aerobic conditions [J]. Applied Microbiology and Biotechnology,1991,34(6):809-813.
    [170]QIU G., CHEN Y. F., CHEN S. J. Effect of different pre-processing methods on reductive degradation of p-nitrophenol in soils by iron chips [J]. Chinese Journal of Environmental Engineering, 2010,4,654-658.
    [171]KIM J., CHOI H. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils [J]. Journal of Contaminant Hydrology,2002,55(3-4):261-285.
    [172]NKEDI-KIZZA P., RAO P. S. C., Hornsby A. G. Influence of organic cosolvent on leaching of hydrophobic organic compounds through soils [J]. Environmental Science & Technology,1987, 21(11):1107-1111.
    [173]GOI A., TRAPIDO M. Degradation of polycyclic aromatic hydrocarbons in soil:the Fenton reagent versus ozonation [J]. Environmental Technology,2004,25(2):155-164.
    [174]IMAMURA S., IKEBATA M., ITO T., et al. Decomposition of ozone on a silver catalyst [J]. Industrial & Engineering Chemistry Research,1991,30(1):217-221.
    [175]LIM H. N., CHOI H., HWANG T. M., et al. Characterization of ozone decomposition in a soil slurry: kinetics and mechanism [J]. Water Research,2002,36(1):219-229.
    [176]HSU I. The use of gaseous ozone to remediate the organic contaminants in the unsaturated soils [D]. America:Michigan State University,1995.
    [177]WANG K. H., HSIEH Y. H., CHOU M. Y., et al. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution [J]. Applied Catalysis B-Environmental,1999,21(1):1-8.
    [178]WANG H. C., LI D., WU Y., et al. Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power [J]. Journal of Electrostatics,2009, 67(4):547-553.
    [179]ALBER T., CASSIDY M. B., ZABLOTOWICZ R. M., et al. Degradation of p-nitrophenol and pentachlorophenol mixtures by Sphingomonas sp UG30 in soil perfusion bioreactors [J]. Journal of Industrial Microbiology & Biotechnology,2000,25(2):93-99.
    [180]WANG T. C., LU N., AN J. T., et al. Multi-tube parallel surface discharge plasma reactor for wastewater treatment [J]. Separation and Purification Technology,2012,100:9-14.
    [181]MILLS A., LEHUNTE S. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A-Chemistry,1997,108(1):1-35.
    [182]KIM H. H., OH S. M., OGATA A., et al. Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst [J]. Applied Catalysis B-Environmental,2005, 56(3):213-220.
    [183]ZHANG Y., LI D., WANG H. Removal of volatile organic compounds (VOCs) mixture by multi-pin-mesh corona discharge combined with pulsed high-voltage [J]. Plasma Science and Technology,2010,12(6):702-707.
    [184]DONG D. B., LI P. J., LI X. J., et al. Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation [J]. Chemical Engineering Journal,2010,158(3):378-383.
    [185]MUNTEANU F. D., KUBOTA L. T., GORTON L. Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilized on zirconium phosphate [J]. Journal of Electroanalytical Chemistry,2001,509(1):2-10.
    [186]TANG D. Y., ZHENG Z., LIN K., et al. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber [J]. Journal of Hazardous Materials,2007,143(1-2):49-56.
    [187]GHEZZAR M. R., ABDEMALEK F., BELHADJ M., et al. Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst [J]. Journal of Hazardous Materials,2009,164(2-3):1266-1274.
    [188]PICHAT P., DISDIER J., HOANG-VAN C., et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis [J]. Catalysis Today,2000,63(2-4):363-369.
    [189]WANG K. H., TSAI H. H., HSIEH Y. H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead [J]. Applied Catalysis B-Environmental,1998,17(4):313-320.
    [190]DATE M., ICHIHASHI Y., YAMASHITA T., et al. Performance of Au/TiO2 catalyst under ambient conditions [J]. Catalysis Today,2002,72(1-2):89-94.
    [191]SIMEK M., CLUPEK M. Efficiency of ozone production by pulsed positive corona discharge in synthetic air [J]. Journal of Physics D-Applied Physics,2002,35(11):1171-1175.
    [192]GHEZZAR M. R., ABDELMALEK F., BELHADJ M., et al. Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2 [J]. Applied Catalysis B-Environmental,2007,72(3-4):304-313.
    [193]ZHANG J. L., XU H S., CHEN H. J., et al. Study on the formation of H2O2 on TiO2 photocatalysts and their activity for the photocatalytic degradation of X-GL dye [J]. Research on Chemical Intermediates,2003,29(7-9):839-848.
    [194]SATO M., OHGIYAMA T., CLEMENTS J. S. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water [J]. IEEE Transactions on Industry Applications,1996,32(1):106-112.
    [195]WANG K H., HSIEH Y. H., CHEN L. J. The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols [J]. Journal of Hazardous Materials,1998,59(2-3):251-260.
    [196]SHI H. X., XU X. W., XU X. H., et al. Mechanistic study of ozonation of p-nitrophenol in aqueous solution [J]. Journal of Environmental Sciences-China,2005,17(6):926-929.
    [197]LIU Y. J., WANG D. G., SUN B., et al. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis [J]. Journal of Hazardous Materials. 2010,181(1-3):1010-1015.
    [198]LOGEMANN F. P., ANNEE J.H. J. Water treatment with a fixed bed catalytic ozonation process [J]. Water Science and Technology,1997,35(4):353-360.
    [199]SANO T., NEGISHI N., SAKAI E., et al. Contributions of pholocatalytic/catalylic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO[J]. Journal of Molecular Catalysis A-Chemical,2006,245(1-2):235-241.
    [200]KIM H. H., OGATA A., FUTAMURA S. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds [J]. Journal of Physics D-Applied Physics, 2005,38(8):1292-1300.
    [201]WALLIS A. E., WHITEHEAD J. C., ZHANG K. Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2 [J]. Catalysis Letters,2007,113(1-2):29-33.
    [202]VAN DURME J., DEWULF J., LEYS C. et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review [J]. Applied Catalysis B-Environmental,2008,78(3-4): 324-333.
    [203]LUKES P., LOCKE B. R. Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor [J]. Industrial & Engineering Chemistry Research,2005,44(9):2921-2930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700