用户名: 密码: 验证码:
大坝变形分析多测点统计模型的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝的变形监测工作是获取大坝变形信息的最直接、最重要的方式之一,因此,对变形监测资料的深入分析工作,不仅仅是相关规范的要求,更是人们认清大坝变形规律、发现大坝安全隐患的重要信息来源之一,并为后续监测工作提供指导意义。本文在前人研究的基础之上,从统计学的角度出发,围绕“整体分析”这一主题,从全局的观点对大坝变形监测资料进行研究分析,主要研究工作及成果包括以下几个方面:
     (1)大坝变形与环境因素关系的研究。
     根据生存分析中的多事件风险比例模型的特点,对监测数据的转换,结合Cox比例风险模型以及多事件分层模型,从多测点的角度,对大坝变形的效应量与特征原因量的关系进行分析,突破以往所采用的统计模型仅能对单测点进行建模分析的局限,并应用该模型,对我国黄河小浪底水利枢纽工程的主坝区监测资料进行了分析研究。
     (2)大坝自身变形规律的研究。主要包括:
     ①根据主坝上监测点分布的情况,结合所有监测点的位移量及速率变化情况,并参考目前诸多“强度”的概念,定义一个能够恰当反映变形体变形活动情况的新概念——位移强度,来反映大坝在外观上长期变形积累下的活动情况;并绘制了我国黄河小浪底水利枢纽工程的主坝体的位移强度分布图;
     ②分形理论中的“非倾向振荡分析(Detrended Fluctuation Analysis, DFA)方法”是诊断非平稳时间序列分形标度特征和长期相关行为的有力工具,应用该分析法,对在特殊监测环境条件下的变形数据结果进行分析,从而可以得到变形体内在的活动规律。
     (3)中小型大坝的监测数据处理分析方案的研究。
     对我国特殊条件下产生的中小型水坝在管理方面现存的问题进行分析,并对我国现行大坝安全管理规范及技术标准进行总结,在技术层面上,提出针对我国中小型水坝的变形监测数据处理分析的方案:对现存的多年监测数据,以“点”—>“线”—>“体”为主线,逐步发掘有价值的“知识”,从全局的角度上对大坝在不同运行期间的变形活动情况进行评估分析,并且将此过程形成严格的监测数据处理分析的方案,为未来更好地开展大坝(尤其是中小型大坝)的监测工作提供科学依据。
Dam deformation monitoring is one of the most direct and important ways to obtaining the information of its deformation. Therefore, the work of deformation monitoring data in-depth analysis is not just the requirements of relevant norms, but also the one of important information sources to recognize the dam deformation laws, and find out its safety problems, which can provide guidance for follow-up monitoring work. This paper, based on previous studies, and a statistical point of view, focuses on the theme of "holistic analysis" to study on the dam deformation monitoring data from the global point of view. The main research work and achievements include the following aspects:
     (1) Study on the environmental factors impact on the dam deformation
     According to features of the multi-event proportional hazard model in survival analysis, the monitoring data is converted. Then the environmental factors impact on the dam deformation is calculated and analyzed from the perspective of multi-points, which can break through the limitations of single-point modeling analysis. And the analysis of main dam monitoring data in the China's Yellow River Xiaolangdi water and hydropower project in the paper is based on the proposed model.
     (2) Research on the deformation law of the dam itself. Include mainly:
     ①According to of the distribution of monitoring points on the dam, the displacement of all monitoring points and their change of displacement rate, and referring to some concepts about "strength", a new concept—to reflect the deforming situation of the dam fittingly—is proposed, called "displacement strength", which can show the activity of the dam deformation accumulated in a long time. And the distribution image of the dam's displacement strength in China's Yellow River Xiaolangdi water and hydropower project is drawn.
     ②The method called detrended fluctuation analysis (DFA) in the theory of fractal, can diagnose the fractal scaling features of the non-stationary time series and its long-termed-related behavior. For the monitoring data in the unusual environmental conditions, this method can find out the inner law of the dam.
     (3)Research on the analysis program about monitoring data of medium-sized and small dams
     The paper discusses and analyzes the problems about management in medium-sized and small dams, and sum up current dam safety management standards and technical standards in our country. From a technical point of view, the paper proposes the analysis program about monitoring data of medium-sized and small dams:along the main line from "point"->"line"->"body", mining the valuable knowledge progressively. Then the deformation activity in deferent phases can be analyzed and assessed from the overall point of view, which can offer the scientific basis for the future work of dam deformation monitoring, especially for the medium-sized and small dam.
引文
[1]A. De Sortis, P. Paoliani. Statistical analysis and structural identification in concrete dam monitoring [J]. Engineering Structures,2007(29):110~120
    [2]Bonaldi P., Fanelli M. Giusepptti G. Automatic observation and instantaneous control of dam safety [J]. ISMES,1980
    [3]Bossman Aggrey. Dam safety management in the United Kingdom Geography and Planning [D], Paper, No.21. Middlesex,1987
    [4]Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees [M], Belmont:Wadsworth Int Group,1984
    [5]Brown, Graham. Assessing the threat to life from dam failure [J]. Water Resources Bulletin,1988,24(6):1303~1309
    [6]Cevik A. Discussion on "Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model" [J]. Engineering Geology,2008,100(3-4):146~147
    [7]Costa Rogerio L., Vascocelos G. L. Long-range correlations and non-stationary in the Brazilian stock market [J]. Physica A,2003,329:231~248
    [8]Cox D.R. Regression models and life tables (with discussion) [J]. Journal of the Royal Statistical Society, Series B,1972(34):187~220
    [9]Deng N.Y., Tian, Y. J. The New Approach in Data Mining-Support Vector Machines [M]. Science Press,2004
    [10]Dmitry Vjushin. Scaling analysis of trends using DFA [J]. Physica A,2001,302: 234~243
    [11]Dubler J. R., Grigg N. S. Dam safety policy for spillway design floods [J]. Journal of Professional Issues in Engineering Education & Practice. 1996,122(4):163~169
    [12]F.Alcrudo, J.Mulet. Description of the Tous Dam Break Case Study(Spain) [J].Journal of Hydraulic Research,2007(45):45~57
    [13]Fanelli M. Automatic observation for dam safety [J]. International Water Power & Dam Construction. Nov, Dec 1979
    [14]Gomezlaa G., Rodriguez Gonzalez J.A. In search of a deterministic hydraulic monitoring model of concrete dam foundation [C]. XVth ICOLD, Q.58,R.49,1985
    [15]Gueds Q.M., Coelho P.S. Statistical behavior model of dams [C].15th ICOLD congress,1985,Q.56,R.16,Lausanne
    [16]Han J., Kamber M. Data Mining-Concepts and Techniques[M], New York: Morgan Kaufmann,2001
    [17]J.K. Lou, Li Yan. Seismic upgrade of Coquitlam Dam [J]. Chinese Journal of Geotechnical Engineering.Beijing,2008,29(11):1669~1678
    [18]Jan, W.K., K.B. Eva and H.A. Henio et al. Detecting long-rang correlations with detrended fluctuation analysis[J]. Physica A,2001,295:441~454
    [19]Joao Francisco Alves Silveira. Introduction to status que of small dam safety management [J]. Chinese Journal of Geotechnical Engineering. Beijing,2008, 29(11):1713~1721
    [20]Kalkani E.C. Polynomial regression to forecast earth dam piezometer levels [J]. Journal of Irrigation & Drainage Engineering-ASCE (115),1989(8):45-55
    [21]Kantelhardt J.W., A.Z. Stephan and K.B. Eva et al. Multifractal detrended fluctuation analysis of nonstationary time series [J]. Physica A,316:87~114
    [22]Liang R. Y. Nusier. A reliability based approach for evaluating the slope stability of embankment dams [J]. Engineering Geology,1999,54(3):271~285
    [23]Lou, W.C. Mathematical Modeling of Earth Dam Breaches [D]. Unpublished Ph.D. Dissertation, Colorado State University, Fort Collins, Co.1981
    [24]Luc E. Chouinard et al. Statistical analysis in real time of monitoring data for idukki arch dam[C].2nd International conference on dam safety evaluation, Trivandrum, India.1996:381~385
    [25]Maria. Experimental study of concrete arch dams 40 years of LNEC experience [M]. Lisboa, July 1986
    [26]Marazio P. Behavior of Enel's large dams [R]. Enel's report, Roma,1980
    [27]Marubini E., Valsecchi M.G. Analysing survival data form clinical trials and observational studies [M]. John Wiley & Sons,1994
    [28]Martin Wieland. Earthquake safety of small dams [J].Chinese Journal of Geotechnical Engineering.Beijing,2008,29(11):1679~1682
    [29]Nello Cristianini, John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. London:Cambridge University Press,2000
    [30]Oliver Crepon. An analytical approach to monitoring [J]. International Water Power & Dam Construction. June,1999:52~54
    [31]Onofrio S. A tragic disaster caused by the failure of tailings dams leads to the formation of the stava 1985 foundation [J]. Mine Water & the Environment, 2004,23(2):91~95
    [32]Peng C.K., Buldyrew S.V., Goudberger A.L., et al. Mosale organization of DNA nucleotides [J]. Physical Review E,1994,49(2):1685~1689
    [33]Pedro J.,O. Stress evaluation in concrete dams, the example of verosa dam [C]. International conference on safety of dams, Coimbra,1984
    [34]Purer E., Steiner N. Application of statistical methods in monitoring dam behavior [C]. International Water Power & Dam Construction, December,1986
    [35]Rafal Weron. Estimating long-range dependence:finite sample properties and confidence intervals [J]. Physica A,2002,312:285~299
    [36]Ram P. Sharma. Deterministic forecasting model and retrofit instrumentation for safety monitoring of boundary dam [C].18th Congress ICOLD, Q.86,R.62,1982
    [37]Robin Charlwood, David Bowles, Bruce Muller, et al. Recent Trends in Dam Safety Management in the USA [A], Symposium on Dam Safety Management. Role of State, Private Companies and Public in easigning, Constructing and Operating of Large Dams[C],ICOLD 75th Annual Meeting, Saint Petersburg, Russia,2007
    [38]Rocha M. A quantitative method for the interpretation of the results of the observation of dams [C]. VI Congress on Large Dams, Report on Question 21 New York,1958
    [39]Serafim J.L. Safety aspects in the design and inspection of dams [C]. International Water Power & Dam Construction. May 1982
    [40]Silveria A., F. Pedro, Jose. Quantitative interpretation of the results of the observation of concrete dams [C].8th. ICOLD Congress, Q.29,R.43,1964, Edinburgh
    [41]Tonini D. Observed behavior of several leakier arch dams [J]. Proc. ASCE, Journal of the Power Division,1956,82(12)
    [42]Widmann R. Evaluation of deformation measurements performed at concrete dam [C]. Commission Internationals of Grands Banrages,1967
    [43]Willm G., Beaujoint N.9th Congress ICOLD, R.30, Q.34, Istanbul.
    [44]Wu Zhongru, Wang Zhanrui. Dynamic monitoring model of space displacement field of concrete dam[C]. International Symposium on monitoring technology of dam safety,1992:215~224
    [45]Xerez A., Lamas, J.F. Methods of analysis of arch dam behavior [C]. VI Congress on Large Dams, R.39,Q.21, New York,1958
    [46]Yong-Seong Kim, Byung-Tak Kim. Prediction of relative crest settlement of concrete-faced rock-fill dams analyzed using an artificial neural network model [J]. Computers and Geotechnics,2008(35):313~322
    [47]Yoshida M. Mechanical behavior of Kurobe dam and its foundation and safety of the dam [C]. R.2,Q.52 XIVth Congress ICOLD,1982
    [48]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报,2008,39(11):1158~1167
    [49]陈继光,吕学昌.土坝观测数据的模糊人工神经网络分析[J].水利学报,2000(1):19~21
    [50]陈久宇,林见.观测数据的处理方法[M].上海交通大学出版社,1987
    [51]大连市税务局.从美国退役坝管理看我国水库大坝安全管理新问题[EB/OL]. http://www.swj.dl.gov.cn/info/info/Page.aspx?id=10164,2008-08-04
    [52]邓念武.大坝空间位移偏回归模型和神经网络模型研究[D].武汉:武汉大学,2001
    [53]邓念武,邱福清,徐晖.BP模型在土石坝资料分析中的应用[J].武汉大学学报(工学版),2001,34(4):17~20
    [54]邓兴升.统计学习理论在大地测量中的应用[D].武汉:武汉大学,2007.75-88
    [55]邓兴升,王新洲.动态模糊神经网络在大坝变形预报中的应用[J].水电自动化与大坝监测,2007(4):64-67
    [56]邓兴升,王新洲.根据历史位移预报大坝变形的神经网络方法[J].水电自动化与大坝监测,2004,28(2):51-53
    [57]邓淑珍,李建章,张智吾.高度重视水库大坝安全管理工作[J].中国水利,2008(20):1-5
    [58]高平,薛桂玉.基于小波网络的大坝变形监测模型与预报[J].水利学报,2003(7):107~110
    [59]顾冲时,吴中如.应用模糊控制论建立新安江3号坝基扬压力预测模型[J].大坝观测与土工测试,1996(4):7~10
    [60]顾冲时,吴中如,蔡新.探讨混凝土坝空间位移场的正反分析模型[J].工程力学,1997,14(1):138~144
    [61]郭海庆,吴中如,杨杰.堆石坝变形监测的灰色非线性时序组合模型[J].河海大学学报,2001,29(6):51~55
    [62]何金平,李珍照.大坝结构性态多测点数学模型研究[J].武汉水利电力大学学报,1994(2)
    [63]何金平,李珍照,刘亚莲等.初选多测点数学模型预置因子集的灰色关联度分析法[J].武汉水利电力大学学报,1999,32(1):17~20
    [64]何金平,廖文来,周桂林.大坝安全监测灰色-时序动态组合模型[J].水电能源科学,2005,23(3):68~70
    [65]何勇军,沈秋.土石坝渗流的自学习神经网络模型[J].水利水电技术,2002,33(2):26~29
    [66]何勇军,薛宝林.土石坝渗流的神经网络监控模型[J].河海大学学报,2001,29(2):79~82
    [67]黄朝中.中国防汛抗洪指南[M].北京:解放军出版社,1998
    [68]黄铭,李珍照.重力坝安全监测位移多测点二维分布数学模型的研究[J].1997,30(1):1—5
    [69]黄声享,邱文华,马伟等.小浪底水利枢纽外部变形规律研究[M].北京:测绘出版社,2008
    [70]霍斯金C.英国水库的安全检查[J].郎昌清译.水利水电快报,2000(13):10~13
    [71]焦明连,蒋廷臣.基于小波分析的灰色预测模型在大坝安全监测中的应用[J].大地测量与地球动力学,2009,29(2):115~117
    [72]蒋金平,杨正华.中国小型水库溃坝规律与对策[J].岩土工程学报,2008,30(11):1626~1631
    [73]康玲,王乘.混凝土坝裂缝混沌特性的初步研究[J].水电能源科学,2000(1):19~22
    [74]蓝悦明,王新洲.灰色预测用于大坝变形预测的研究[J].武汉测绘大学学 报.1996,21(1):350~354
    [75]赖道平,吴中如,周红.分形学在大坝安全监测资料分析中的应用[J].水利学报,2004(1):100-104
    [76]赖道平,顾冲时.Elman回归神经网络在大坝安全监控中的应用[J].河海大学学报(自然科学版),2003,31(3):255~258
    [77]李波,徐宝松,武金坤等.基于最小二乘支持向量机的大坝力学参数反演[J].岩土工程学报,2008,30(11):1722~1725
    [78]李波,顾冲时,李智录等.基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型[J].水利学报,2008,39(12):1390~1400
    [79]李旦江,张思俊.大坝观测量的混合模型及其应用[J].水电部南京自动化研究所印,1987
    [80]李雷,王仁钟等.大坝风险评价与风险管理[M].北京:中国水利水电出版社,2006
    [81]李水根.分形[M].北京:高等教育出版社,2005
    [82]李雪红,顾冲时,徐洪钟.混凝土坝变形的灰色回归-时序模型[J].河海大学学报(自然科学版),2002,30(6):116~119
    [83]李珍照,张淑丽.大坝观测数据的模糊分析[J].大坝观测与土工测试,1992(1):1~8
    [84]李宗坤,郑晶星.GM(1,1)等维新息模型在土石坝沉降预测中的应用[J].水利水电技术,2003,34(7):74~75
    [85]李宗坤,郑晶星,周晶.误差反向传播神经网络模型的改进及其应用[J].水利学报,2003(7):111~114
    [86]梁循.数据挖掘算法与应用[M].北京:北京大学出版社,45-47,2006
    [87]刘观标.用逐步模糊聚类分析法进行混凝土坝的位移预报[J].大坝观测与土工测试,1989(3):10~17
    [88]刘国华,何勇兵,汪树玉.土石坝沉降预测中的多变量灰色预测模型[J].水利学报,2003(12):84~88,97
    [89]刘海英.广东农田水利基础设施现状、问题和对策[J].广东农业科学,2010(1):255~258
    [90]刘祖强.大坝安全监测动态系统灰色模型研究[J],勘察科学技术,1994(1):49~53
    [91]柳利利.偏最小二乘回归在大坝安全监测资料分析中的应用研究[D].西安:西安理工大学,2008
    [92]吕金虎,陆君安,陈士华.混沌时间序列分析及应用[M].武汉:武汉大学出版社,2002
    [93]齐长鑫,汪树玉.灰色系统模型在坝基位移预测中的应用[J].水利学报,1996(9):49~52,67
    [94]陕西省环境保护厅.水库病险之因:缺乏资金管理缺位形成恶性循环[EB/OL]. http://www.snepb.gov.cn/admin/pub_newsshow.asp?id=1008466&chid=100051, 2007-04-11
    [95]宋恩来.国内几座大坝事故原因分析[J].大坝与安全,2000(2):41~44
    [96]苏怀智,吴中如,温志平等.基于模糊神经网络和遗传算法的大坝安全监控模型[J].大坝观测与土工测试,2001,25(1):10~12,22
    [97]谭志军,李俊杰.BP算法在贮灰坝监测系统中的应用[J].水电自动化与大坝监测,2003,27(5):54~56
    [98]汪树玉,刘国华,杜王盖等.大坝观测数据序列中的混沌现象[J].水利学报,1999(7):22~25
    [99]王利,张双成,李亚红.动态灰色预测模型在大坝变形监测及预报中的应用研究[J].西安科技大学学报,2005,25(3):328~332
    [100]王铁生,华锡生.基于模糊聚类算法的大坝监控模型的研究[J].水利学报,2003,6(6):115~118
    [101]王新洲,范千,许承权等.基于小波变换和支持向量机的大坝变形预测[J].武汉大学学报(信息科学版),2008,33(5):469~471
    [102]王志军,宋士学,蒋裕丰等.机器学习算法在大坝安全监控系统中的集成方法[J].水电自动化与大坝监测,2008,32(3):53~55
    [103]王志旺,吴盖化,张漫等.大坝渗流监测遗传神经网络模型[J].水利能源科学,2003,21(4):26~27,34
    [104]吴秀娟,李征航.基于BP网络的大坝变形分析与预报[J].测绘信息与工程,2003,28(5):33~34
    [105]吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用[J].水电站设计,2002,18(2):21~24
    [106]吴中如,混凝土坝观测物理量的数学模型及其应用[J].华东水利学院学报,1984(3):20~25
    [107]吴中如.论混凝土坝安全监控的确定性模型和混合模型[J].水利学报,1989(5):64~70
    [108]吴中如,沈长松,阮焕祥.论混凝土坝变形统计模型的因子选择[J].河海大学学报,1988,16(6):1~9
    []09]熊支荣,李珍照.灰色系统理论在大坝观测资料分析中的应用[J].水利水电技术,1991(4):46~51
    [110]徐洪钟,单泰松,吴中如.大坝观测数据的模糊神经网络分析[J].大坝观测与土工测试,2001,25(3):17~22
    [111]徐洪钟,胡群革,吴中如.自适应模糊神经网络在大坝安全监控中的应用[J].河海大学学报,2001,29(2):8~10
    [112]徐洪钟,吴中如,李雪红.相空间神经网络模型在大坝安全监控中的应用[J].水利学报,2001(6):67~71
    [113]徐平.大坝观测数据的吸引子分析[J].大坝观测与土工测试,1992(5):44~47
    [114]徐晖,邱福清,吕世德.土石坝观测资料的灰色分析方法研究[J].武汉水利电力大学学报,1998(6):26~29
    [115]杨杰,党志良,吴中如等.土石坝竖向位移的灰色非线性拟合与预测[J].水电能源科学,2002,20(4):31~33
    [116]杨杰,党志良,高杰.灰色非线性常微分方程预测研究及模型[J].西安理工大学学报,2001,17(4):361~365
    [117]杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25~29
    [118]杨正华.从汶川地震看小型水库的管理与灾害重建[J].中国农村水利水电,2009(4):84~86
    [119]岳建平.灰色动态神经网络模型及其应用[J].水利学报,2003(7):120~123
    [120]张进平,庄万康.大坝安全监测的位移分布数学模型[J].水利学报,1991(5):28~35
    [121]张乾飞,吴中如.基于模糊聚类的神经网络模型及其在渗流分析中的应用[J].水力发电学报,2002(2):37~43
    [122]张晓春,徐晖,邓念武等.径向基函数神经网络在大坝安全监测数据处理中的应用[J].武汉大学学报(工学版),2003,36(2):33~36
    [123]赵斌,吴中如,张爱玲.BP模型在大坝安全监测预报中的应用[J].大坝观测与土工测试,1999(6):1-3
    [124]赵斌.大坝安全监控正反分析的新模型和新方法[D].南京:河海大学,1998
    [125]赵卿,黄声享.非倾向性振荡分析用于变形监测数据分析的探讨[J].测绘科学,2009(5):52~53
    [126]赵卿,李潇,徐进军等.混沌~支持向量机在大坝安全监控预测的应用[J].大地测量与地球动力学,2008(4):115-119
    [128]周建平.目前我国水电开发中的难题、误解和挑战[J]中国工程咨询,2008(12):18~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700