用户名: 密码: 验证码:
基于高放废物深地质处置的溶质运移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它溶质运移问题相比,高放废物深地质处置中的溶质运移问题具有迁移途径、迁移规律复杂、迁移过程长等特点。因此,本文根据高放废物地质处置的“多屏障系统”设计及其安全评价要求,围绕地下水重返处置库时,与工程屏障中回填材料的相互作用,以及地质屏障中的核素迁移问题进行了初步的探讨与研究。主要的工作和创新成果如下:
     首先,基于地下水情景是其安全评价基本情景的考虑,在考虑T-H-M-C耦合作用的情况下,利用EOS1与EOS2分别模拟了盐水和淡水入侵近场时,地下水与回填材料的相互作用。模拟结果表明,在给定的模拟条件下,盐水入侵时氯化钠的沉淀富集并不严重,整个模拟过程中没有出现盐的沉淀;而在淡水入侵时,方解石的沉淀会引起膨润土孔隙度的变化,但是这种变化对其它阳离子的迁移影响并不大,且通过模拟发现,在整个过程中Ca~(2+)对系统的影响比其它阳离子更大.这些模拟对今后继续研究地下水与回填材料之间的相互作用有一定的参考价值,也为进一步研究近场T-H-M-C耦合作用进行了有益的尝试。
     其次,基于双重介质理论,针对远场裂隙介质中的溶质运移问题,从单裂隙介质中溶质运移问题入手,初步探讨了溶质在单裂隙中运移的概念模型和数学模型,利用拉普拉斯变换推导了在裂隙入口处具有指数衰变注入源条件下的解析解。在此基础上,分别计算了Th-229、Cs-135及Se-79三种核素在低渗透花岗岩裂隙域与基质域中的相对浓度分布,并对它们在裂隙域中的迁移距离与基质域中的扩散深度进行了比较。结果表明:在其它条件相同的情况下,迟滞系数与这三种核素的迁移距离、扩散深度成负相关关系。此外,就水力坡度、隙宽对这三种核素在单裂隙介质中的迁移进行了分析,结果表明:核素的迁移距离及相对浓度都随水力坡度或隙宽的增大而增大;且对同一种核素而言,水力坡度越小时其变化对相对浓度的变化影响越大。而在隙宽较小时(5.89×10~(-5)m),通过对Se-79、Cs-135两种核素相对浓度的比较发现半衰期的大小对核素在裂隙介质中的迁移也有影响。
     针对裂隙系统的复杂性,利用一维多途径溶质运移模型描述裂隙系统,对前述三种核素进行了模拟研究,模拟结果表明Th-229迁移是最慢的,而Se-79迁移是最快的;且这些核素在裂隙域中的相对浓度约在3×10~7年内基本达到稳定。并将其计算结果与单裂隙介质中所得结果进行对比,结果说明裂隙介质特征的准确描述对溶质运移数值模拟至关重要。
     最后,以西北某地的花岗岩为迁移介质,利用一维多途径溶质迁移模型,选取国内在花岗岩中研究较多的核素Cs-134、Co-57、Tc-99,模拟了这几种核素在其中的迁移.模拟结果表明:在其他条件都相同的情况下,Cs-134的迁移是最快的,而Tc-99迁移是最慢的。
Comparing with other solute transport,solute transport in geological disposal system of HLW is characterized as complex way and law of transport,long distance,and so on. Therefore,based on the "multi-barrier system" design of HLW and analysis of safety assessment,the interaction between groundwater and the buffer in engineering barrier,and nuclide transport in geological barrier are primary researched when the groundwater comes back to the repository.The main works and conclusions are as follows:
     Firstly,on the basis of considering groundwater scenario as basic scenario of safety assessment and T-H-M-C processes,the interactions between saline water and buffer and the interactions between the fresh groundwater and buffer are simulated with EOS1 and EOS2 respectively.The simulated results of saline water show that salt accumulation in buffer material is not so significant,if properties of buffer material and saline water are nearly similar with those which are given in this paper;and the latter results show that precipitate of calcite will change the porosity of bentonite,but the effect on the other cation resulting from this change is not evident,moreover the impact on simulated system caused by Ca~(2+) is more obvious than the other cations.These simulated results are the corresponding reference for study on the interaction of groundwater and the buffer materials and the basis of further research of coupled T-H-M-C processes in near-field.
     Secondly,in order to resolve solute transport in the fractured media of far field, conceptual and mathematical models of solute transport in single fracture are built according to the double media theory,and analytic solutions with injection of exponential disintegration are deduced by Laplace transform.Relative concentrations of Th-229,Cs-135 and Se-79 in fracture and matrix are calculated respectively based on the analytic Solution,and their transport distance in fracture and diffusion depth in matrix are researched in detail.The results show that the retardation coefficient is negatively related with transport distance and diffusion depth of these nuclides.Moreover,many parameters,such as aperture,hydraulic gradient,will influence on these nuclide transport in fractured media,these influences are analyzed,and the results indicate that transport distance and relative concentration of these nuclides will increase with increase of aperture or hydraulic gradient.For the same nuclides,the change of hydraulic gradient has more influence on relative concentration when the hydraulic gradient is getting smaller.While the aperture is small(5.89×10~(-5) m),the half life of the nuclides will affect relative concentration in fractured media by comparison the relative concentration of Se-79 and Cs-135.
     Because of the complex of fractured media,the fractured media is described by one dimensional multi-way solute model,and the transport of above-mentioned nuclides in fractured media is simulated with this model,the results show that the transport of Th-229 is the lowest while the Se-79 is the farthest,and the relative concentration of these nuclides in fracture will getting stable about 3×10~7 years.In addition,these results are compared with the results which are calculated in single fracture,the comparison indicates that the correct description of fractured media is the sticking point of successfully numerical simulation.
     Finally,the nuclides which are researched widely in domestic by experiments,such as Cs-134,Co-57 and Tc-99,are chosen,and their transport in granite is simulated with one dimensional multi-way model.The results show that the transport of Cs-134 is the farthest and Tc-99 is the lowest under the same condition,which is the tentative gist of safety assessment of HLW geological disposal.
引文
[1] Akira Ito, Mikazu Yui, Yutaka Sugita, Susumu Kawakami, A Research Program for Numerical Experiments on the Coupled Thermo-Hydro-Mechanical and Chemical Processes in the Near-field of a High-level Radioactive Waste Repository[A], Ove Stephansson, John A.Hudson, Lanru Jing, Geoproc 2003 conference[C], Royal Institute of Technology(KTH), Stocktoml, Sweden, 2003: 346-351.
    [2] Alonoso E.E, Aloverro J, The FEBEX benchmark test case definition and comparison of different modeling approaches[C]//Stephansson O, Hudson JA, Jing L, Coupled thermo-hydro-mechanical-chemical processes in geo-systems: fundamentals, modeling, experiments and applications. Oxford: Elsevier; 2004:95-111.
    [3] Alonso E. E., J. Alcoverro, et al., The FEBEX benchmark: case definition and comparison of modeling approaches[J], International Journal of Rock Mechanics & Mining Science, 2005, 42:611-638.
    [4] Amadei B., T. Illangasekare, A mathematical model for flow and transport in non-homogeneous rock fractures[J], Int. J. Rock Mech. Min. Sci. & Geomech., 1994,31:719-731.
    [5] Appelo, C.A.J., Cation and proton exchange, pH variations and carbonate reactions in a freshening aquifer [J], Water Resources Research, 1994,30(10): 2793-2805.
    [6] Aris R., On the dispersion of a solute by diffusion, convection and exchange between phases [J],Proc. R. Soc. Lond. Ser. A., 1959,252: 538-550.
    [7] Aris R., On the dispersion of a solute in a fluid flowing through a tube [J], Proc. R. Soc. Lond. Ser. A., 1956, 235:67-77.
    [8] Arnold BW, Zhang H,et al., Effective-porosity and dual-porosity approches to solute transport in the saturated zone at Yucca Mountain: implication for repository performance assessment[C]//Faybishenko B, Witherspoon PA, et al., Dynamic of fluids in fractured rock. Am Union Geophys Monogr., 2000, 122:313-322.
    [9] Arto Muurien , Jarmo Lehikoinen, Porewater chemistry in compacted bentonite[J], Engineering Geology,1999(54):207-214.
    [10]Auradou H.,Geometrical and transport properties of single fractures:influence of the roughness of the fracture walls[EB/OL],2009,http://arxiv.org/PS cache/arxiv/pdf/0903/0903.4534vl.pdf.
    [11]Baiters,B.,Bork,M.,R(o|¨)hlig,J.,The role of safety indicators in Germany:the past and the future[C]//International Atomic Energy Agency(IAEA),Issues relating to safety standards on the geological disposal of radioactive waste,Vienna,Austria:IAEA,2002:109-111.
    [12]Barenblatt GI,Zheltov IP,et al.,Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J],J Appl Math Mech,1960,24(5):852-864.
    [13]Barton N,Choubey V.The shear strength of rock joints in theory and practice[J],1977,10(1-2):1-54.
    [14]Battistelli,A.,Calore,C.and Pruess,K.The simulator TOUGH2/EWASG for modeling geothermal reservoirs with brines and non-condensible gas[J],Geothermics,1997,26(4):437-464.
    [15]Berkowitz B,Zhou Z,Reactive solute transports in a single fracture[J],Water Resour.Res.1996,32(4):901-913.
    [16]Berkowitz,B.,J.Bear,and C.Braester,Continuum models for contaminant transport in fractured porous formations[J],Water Resources Research,1988,24(8):1225-1236.
    [17]Bibby R,Mass transport of solutes in dual-porosity media[J],Water Resource Research.1981,17(4):1075-1081.
    [18]Birgersson L,Neremieks I,Diffusion in the matrix of granitic rock:field tests in the Stripa mine[J],Water Resource Research,1990,26(11):2833-2842.
    [19]Bodin J.,Deley de Maysily G.,Solute transport in a single fracture with negligible matrix permeability:1.fundamental machanisms[J],Hydrogeology Joural,2003a,(11):418-433.
    [20]Bodin J.,Deley F.de Maysily G.,Solute transport in a single fracture with negligible matrix permeability:2.mathematical formalism[J],Hydrogeology Joural,2003b,(11):434-454.
    [21]Borje T.,Bert A.Migration of fission products and aetinides in compacted bentonite(SKB Technical Report 86-140)[R],SKB,Sweden 1986.
    [22]Bradbury M.,Baeyens,B.,Porewater chemistry in compacted re-saturated MX-80 bentonite[J],Jouraal of Contaminant Hydrology, 2003,61(1-4):329-338.
    [23] Bradbury, M.H.,and Stephen,I.G.Diffusion and permeability based sorption measurements in intact rock samples [J]. Materials Research Society Symposium Proceedings, 1985, 50:81-90.
    [24] Broeck CVD, Taylor dispersion revisited[J], Physica A, 1990,168(2): 677-696.
    [25] Brown SR, Caprihan A, Hardy R, Experimental observation of fluid flow channels in a single fracture[J],J Geophys Res, 1998,103(B3):5125-5132.
    [26] Chin-Fu Tsang, Lanru Jing, O. Stephsson, et al., The DECOVALEX III project: A summary of activities and lessons learned[J], International Journal of Rock Mechanics & Mining Science, 2005,42:593-610.
    [27] Collin, F., et al., Thermo-hydro-mechanical coupling in clay barriers[J], Engineering geology, 2002(64): 179-193.
    
    [28] Crank J, The mathematics of diffusion [M],Oxford: Oxford University Press, 1980:424.
    [29] Cuevas,J., Villar, M., et al., Pore waters extracted from conpacted bentonite subjected to simultaneous hearing and hydration[J],Applide Geochemistry, 1997, 12:473-481.
    [30] Dagan G, Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale [J], Water Resource Research, 1986, 22:120-134.
    [31] David Savage, David Noy, et al., Modelling the interaction of bentonite with hyperalkaline fluids[J],Applied Geochemistry, 2002(17): 207-2223.
    [32] Davis.P.A, Zach,R., Stephens, M.E., et al.,The biosphere model- BIOTRAC for postclosure assessment, Atomic Energy of Canada Limited Report, AECL-10720,COG-93-10[R],Mississauga, Ontario: Atomic Energy of Canada Ltd.(AECL),1993.
    
    [33] De Marsily, G., Quantitative Hydrogeology [M]. Orlando: Academic Press, 1996.
    
    [34] Dershowitz B, Thorsten E, et al., SR 97- Alternative models project: Discrete fracture network modeling for performance assessment of Aberg, SKB R 99-43[R], Stockholm , Sweden, Swedish Nuclear Fuel Management Co.(SKB), 1999.
    [35] Dershowitz W, Miller I(1995),Dual porosity fracture flow and transport[J], Geophysical Research Letters, 1995, 22( 11): 1441 -1444.
    [36] Dershowitz W.S., Fidelibus C, Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method[J],Water Resource Research,1999,35(9):2685-2691.
    [37]Dershowitz W.S.,Wallmann P,Kindred S,Discrete fracture modeling for Stripa site characterization and validation draft inflow predictions[R],Stripa Project Technical Report 91-3,Stockholm,SKB,1991.
    [38]Detwiler RL,Rajaram H,Glass RJ,Solute transport in variable-aperture fractures:and investigation of the relative importance of Taylor dispersion and macrodispersion[J],Water Resour Res.2000,36(7):1611-1625.
    [39]Dyer J R,Voegele M D.,美国高放废物管理:背景与现状(1996,见:王驹,张铁岭,郑华玲等译.威瑟斯庞编.世界放射性废物地质处置北京[C]:原子能出版社 1999:240-251.
    [40]Edwards A.L.,TRUMP:A computer program for transient and steady state temperature distributions in multidimensional systems,National Technical information Service,National Bureau of Standards,Springfield,VA,1972.
    [41]Endo HK,Long JCS,et al.,A model for investigating mechanical transport in fracture networks[J],Water Resource Research,1984,20(10):1390-1400.
    [42]Environmental Protection Agency(EPA),Public Health and Environmental Radiation Protection Standards for Yucca Mountain,40 CFR Part 197-Final Rule[R],Nevada:EPA,2001.
    [43]Ewing RP,Jaynes DB,Issue in single-fracture transport modeling:scaling,algorithms and grid types[J],Water Resource Research,1995,31:303-312.
    [44]Fabrice Ubertosi,Frederick Deley,et al.,A new method for a pipe network to handle channeled flow in fractured rocks[J],Compile Rendus Geoscience,2007,339:682-691.
    [45]Fathy MF,Dual-porosity analysis of conservative tracer testing in saturated volcanic rocks at Yucca Mountain in Nye County,Neveda[J],Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1997,34(3/4):486-490.
    [46]G.Montes-H,B.Fritz,et al.,Modeling of transport and reaction in an engineering barrier for radioactive waste confinement[J],Applied Clay Science,2005a(29):155-171.
    [47]G.Montes-H,N.Marty,et al.,Modelling of long-term diffusion-reaction in a bentonite barrier for radioactive waste confinement[J],Applied Clay Science,2005b(30):181-198.
    [48]G.Montes-H,B.Fritz,et al.,A simplified method to evaluate the swelling capacity evolution of a bentonite barrier related to geochemical transformation[J],Applied Geochemistry 2005c(20):409-422.
    [49]Gelhar L W.,Application of stochastic models to solute transport in fractured rocks[R],SKB TR 87-05.Swedish Nuclear Fuel Waste Management Co,Stockholm,Sweden,1987:53-57.
    [50]Gelhar LW,Stochastic Subsurface Hydrology[M],Englewood Cliffs,N J,USA:Prentice Hall,1993.
    [51]Gelhar,L,W.,Welty,C.and Rehfeldt,K.R.,A critical review of data on field-scale dispersion in aquifers[J],Water Resources Research,1992,28(7):1955-1974.
    [52]Gelher L W.,Stochastic subsurface hydrology[M],Prentice Hall,Englewood Cliffs,N J,USA,1993:184-198,271-282.
    [53]Gens,A.,Guimaraes,L.,et al.,Factors controlling rock-clay buffer interaction in a radioactive repository[J],Engineering geology,2002(64):297-308.
    [54]Gerard F.,Clement A.,Fritz B.,Numerical validation of a Eulerian hydrochemical code using a 1D multisolute mass transport system involving heterogeneous kinetically controlled reactions[J],Journal of Contaminant Hydrology,1998(30):201-216.
    [55]Gerke HH,van Genuchten MT,Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media[J],Advance Water Res.,1996,19(6):343-357.
    [56]Gylling B,Moreno L,Neretnieks I,The channel network model-a tool for transport simulation in fractured media[J],Ground Water,1999.37(3):367-375.
    [57]Hibiya,K.,Inaba,T.,Shiogama,Y.,Yamamoto,T.,Masumoto,K.,and Furuiti,M.,A study on groundwater flow in Japan,JNC TN7400 99-004[R],Tokai,Japan,Japan Nuclear Cycle Development Institute(JNC),1999.
    [58]H(o|¨)kmark H.,Karnland,O.,Push,R.,A technique for modeling transport/convection processes applied to smectite-to-illite conversion in HLW buffers[J],Eng.Geol.,1997,47:367-378.
    [59]Homp MR,Logan JD,Contaminant transport in fractured media with sources in the porous domain[J],Transp Porous Media,1997,29(3):341-353.
    [60]Huyakom PS,Lester BH,et al.,An efficient finite element technique for modeling transport in fractured porous media:1.Single species transport[J],Water Resource Research,1983a,19(3):841-854.
    [61]Huyakorn PS,Lester BH,et al.,An efficient finite element technique for modeling transport in fractured porous media:2.Nuclide decay chain transport[J],Water Resource Research,1983b,19(3):841-854.
    [62]Ian C.Bourg,Garrison Sposito,et al.,Tracer diffusion in compacted,water-saturated bentonite[J],Clays and Clay Minerals,2006(54):363-374.
    [63]Ijiri,Y.,Swada,A..,et al.,Radionuclide migration analysis Using a discrete fracture network model[C]//Proeeeding of the Materials Research Society 1998 fall meeting-Scientific Basis for Nuclear Waste Management Ⅻ,Boston:MRS,1998(556):586-592.
    [64]International Atomic Agency(IAEA),Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes.Technical Reports Series No.413[R],Vienna:International Atomic Agency(IAEA),2003b.
    [65]International Atomic Energy Agency(IAEA),Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories,First report of the INWAC subgroup on principles and criteria for radioactive waste disposal,IAEA-TECDOC-767[R],Vienna,Austria:IAEA,1994b.
    [66]International Atomic Energy Agency(IAEA),Safety indicators for the assessment of radioactive waste disposal.Sixth Report of the Working Group on Principles and Criteria for Radioactive Waste Disposal,IAEA-TECDOC-172[R],Vienna,Austria:IAEA,2003a.
    [67]International Atomic Energy Agency(IAEA),Sitinig of geological disposal facilities.IAEA Safety Standards Series No.111-G4.1,1994a.
    [68]International Atomic Energy Agency(IAEA),Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories,First report of the INWAC subgroup on principles and criteria for radioactive waste disposal,IAEA-TECDOC-767[R],Vienna,Austria:IAEA,1994b.
    [69]International Commission on Radiological Protection(ICRP),放射性废物处置的辐射防护政策,ICRP第77号出版物,赵亚民(译).北京:原子能出版社,1999.
    [70]International Commission 0n Radiological Protection(1CRP),用于长寿命固体放射性废物处置的辐射防护建议,ICRP第81号出版物,赵亚民(译),辐射防护,2001,20(增刊):1.
    [71]J.Z.Yang,R Zhang,et al.,Stochastic analysis of adsorbing solute in three-dimensional heterogeneous unsaturated soils[J],Water Resource Research,1997,33(8):1947-1956.
    [72]Jan Vanderborght,Roy Kasteel and Harry Vereecken,Stochastic continuum transport equations for field-scale solute transport:overview of theoretical and experimental results[J],Vadoze Zone Journal,2006,5:184-203.
    [73]Japan Nuclear Cycle Development Institute(JNC),H12,Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan(Supporting Report 1:Geological Environment in Japan),JNC TN1410 2000-002[R],JNC,Tokai,Japan,April 2000a.
    [74]Japan Nuclear Cycle Development Institute(JNC),H12:Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan -Supporting Report2:Repository Design and Engineering Technology,JNC TN 1410 2000-003[R],Tokai,Japan,JNC,April 2000b.
    [75]Japan Nuclear Cycle Development Institute(JNC),H12:Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan(Supporting Report 3:Safety Assessment of the Geological Disposal System),JNC TN 1410 2000-004[R],JNC,Tokai,Japan,April 2000c.
    [76]Karsten Pruss,Steve Yabusaki,et al.,Fluid flow,heat transfer and solute transport at nuclear waste storage tanks in the Handford vadose zone[J],Vadose Zone Journal,2002,1:68-88.
    [77]Kawamura,R.,Three-dimensional groundwater after flow and advection diffusion code for treating decay chain of radioactive materials by finite element method[J],Journal of Nuclear Science and Technology,1987,24(11):937-950.
    [78]Keller AA,Roberts PV,Kitanidis PK,Prediction of single phase transport parameters I a variable aperture fracture[J],Geophysical Research Letters,1995,22(11):1425-1428.
    [79]Keller AA,Roberts PV,Blunt MJ,Effect of fracture aperture variations on the dispersion of contaminant[J],Water Resource Research,1999,35(1):55-63.
    [80]L.Jing,C.F.Tang,O.Stephansson,DECOVALEX-An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J],International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995,32(5):389-398.
    
    [81] L. Jing, Nguyen TS, DECOCALEX (DEvelopment of COupled THM models and their VALidation against Experiments )III/BENCHPAR PROJECTS. Report of BMT1A/WP2-implications of T-H-M Coupling on the near-field safety of a nuclear waste repository, Technical report 2005:24[R], Stockholm, Sweden: Swedish Nuclear Power Inspectorate(SKI),2005a.
    
    [82] L. Jing, Nguyen TS, DECOCALEX(DEvelopment of COupled THM models and their VALidation against Experiments )III/BENCHPAR PROJECTS. Report of BMT1B/WP2-implications of T-H-M Coupling on the near-field safety of a nuclear waste repository in a homogeneous rock mass, Technical report 2005:25[R], Stockholm, Sweden: Swedish Nuclear Power Inspectorate (SKI),2005b.
    
    [83] L. Jing, Nguyen TS, DECOCALEX (DEvelopment of COupled THM models and their VALidation against Experiments)III/BENCHPAR PROJECTS. Report of BMT1C/WP2-evaluation of the impact of T-H-M Couplings in bentonite and near-field rock barriers on a nuclear waste repository in a sparsely fractured hard rock, Technical report 2005:26[R], Stockholm, Sweden: Swedish Nuclear Power Inspectorate(SKI),2005c.
    
    [84] Laurence S C. Site selection and characterization processes for deep geological disposal of high level nuclear waste[R]. Albuquerque Sandia National Laboratories, 1997.
    
    [85] Lee C-H, Teng SP, An analytical model for radionuclide transport in a single fracture: considering nonequilibrium matrix sorption[J],Nucl Technol, 1993,101(1):67-78.
    
    [86] Lutze W., Ewing R. C., Radioactive waste forms for the future [M],New York: Elsevier Science Pub. Co., Inc., 1988.01.
    
    [87] M. Garcia-Gutierrez, T. Missnan et al., Solute transport properties of compacted Ca-bentonite used in FEBEX project[J], Journal of Contaminant Hydrology, 2001(47): 127-137.
    
    [88] Maloszewski P, Zuber A, Mathematical modeling of tracer behavior in short -term experiments in fissured rocks[J], Water Resource Research, 1990,26(7): 1517-1528.
    
    [89] Maloszewski P, Zuber A, On the theory of tracer experiments in fissured rock with a porosity matrix [J],Journal of Hydrology, 1985, 79: 333-358.
    
    [90] Maloszewski P, Zuber A, Tracer experiments in a fissured rocks: matrix diffusion and the validity of models[J],Water Resource Research,1993,29(8):2723-2735.
    [91]Michael Ochs,Barbara L.,et al.,Thermodynamic modeling and sensitivity analysis of porewater chemistry in compacted bentonier[J],Physics and Chemistry of the Earth,2004(29):129-136.
    [92]Miller,B,Natural safety indicators and their application to repository safety cases[C]//International Atomic Energy Agency(IAEA),Issues relating to safety standards on the geological disposal of radioactive waste,Vienna,Austria:IAEA,2002:97-102.
    [93]Miller,B,Smith,G.,et al.,Natural radionuclide fluxes and their contribution to defining licensing criteria for deep geological repositories for radioactive wastes[J],Radiochimica Acta,1996,74:289-295.
    [94]Milnes A.G.,Geology and Radwaste[M],New York:Academic Press Inc.,1955.
    [95]Mingliang Xie,Sebastian Bauer,et al.,Numerical simulation of reactive processes in an experiment with partially saturated bentonite[J],Journal of Contaminant Hydrology,2006(89):122-147.
    [96]Moreno L,Rasmuson A,Contaminant transport through a fractured porous rock:impact of the inlet boundary condition on the concentration profile in the rock matrix[J].Water Resource Research,1985,21(7):951-958.
    [97]Mualem,Y.A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media[J],Water Resour.Res.,1976,12(3):513-522.
    [98]National Genossenschaft f(u|¨)r die Lagerung Radioktiver Abf(a|¨)lle(NAGRA),Kristallin-I:Conclusions from the regional investigation program for siting a HLW repository in the crystalline basement of northern Switzerland,technical report NTB 93-09E[R],Berne,Switzerland:NAGRA,1994.
    [99]Neall,F.B.,Bacrtschi,E,et al.,Kristallin-I-Results in perspective,technical report NTB93-23[R],Berne,Switzerland:NAGRA,1994.
    [100]Neaman,A.,Pelletier,M.,Villieras,F.,The effects of exchanged cations,compression,heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite [J],Applied Clay Science,2005(22):153-168.
    [101]Neretnieks I,Solute transport in fractured rock:application to radionuclide waste repositories[C]// Bear J,Tsang CF,de Marsily G,Flow and contaminant transport in fractured rock,San Dieco,CA,USA:Academic Press,1993:39-127.
    [102]Neuman,S.P.,On advective transport in fractural permeability and velocity fields[J],Water Resources Research,1995,31(6):1455-1460.
    [103]Neuzil C.E.,Tracy J.V.,Flow through fracture[J],Water Resource Research 1981,17(1):191-194.
    [104]Noy D.J.,Use guide to PRECIP-a program for coupled flow and reactive solute transport,British Geological Survey Technical Report,WE/98/13[R],Keyworth,UK:British Geological Survey,1998.
    [105]Oda,M.,Equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J],Water Resources Research,1986,22(13):1845-1856.
    [106]OECD/NEA.Confidence in the long-term safety of deep geological repositories,its development and communication.Paris,France:the Organization for Economic Co-operation and Development(OECD)/Nuclear Energy Agency(NEA),1999.
    [107]OECD/NEA.Review of safety assessment methods,disposal of radioactive waste,a report of the performance assessment advisory group of the radioactive waste management committee.Paris,France:the Organization for Economic Co-operation and Development(OECD)/Nuclear Energy Agency(NEA),1991.
    [108]Ogata A,Banks RB,A solution of the differential equation of longitudinal dispersion in porous media,US Geol Survey Prof Paper 411-A,Al-A7,1961.
    [109]Ohlsson Y.,Neretnieks I.,Literature survey of matrix diffusion theory and of experiments and data including natural analogues,SKB Technical Report 95-12[R].Stochholm,Swedish Nuclear Fuel and Waste Management Company(SKB),1995.
    [110]Organization for Economic Co-operation and Development(OECD),Lessons learnt from ten performance assessment studies-working group on integrated performances assessments of deep repositories[R].Paris,France:Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency(NEA),1997.
    [111]P.A.威瑟斯庞著,王驹,张铁岭,郑华玲等译,世界放射性废物地质处置[M],北京:原子能出版社,1999.
    [112] Poinssot C., Toulhoat P., Chemical interaction between a simulated nuclear waste glass and different backfill materials under a thermal gradient[J], Appl. Geochem., 1998,16(6):715-734.
     [113] Priest S D, Hudson J, Discontinuity spacing in rock[J], Int J Rock Mech Min Sci &Geomech Abstr, 1976, 13: 135-148.
    [114] Pruess K., Yabusaki S., et al., Fluid flow, heat transfer and solute transport at nuclear waste storage tanks in the Hanford vadose zone[J], Vadose Zone Journal, 2002(1 ):68-88.
    [115] Pruess, K., C. Olderburg, and G. Moridis, TOUGH2 Use's Guide, Version 2.0, Report LBNL-43134[R], Berkeley, USA: Lawrence Berkeley National Laboratory(LBNL), 1999.
    
    [116] Pruess, K., TOUGH2 - A general-purpose numerical simulator for multi-phase fluid and heat flow, Report LBNL-29400[R], Berkeley, USA: Lawrence Berkeley National Laboratory(LBNL), 1991.
    [117] Pyrak-Nolte, L.J., Myer, L.R., Cook, N.G.W. et al., Hydraulic and mechanical properties of natural fractures in low permeability rock,[C]// Herget and Vongpaisal(eds), Proceeding of the Sixth International Congress on Rock Mechanical, Rotterdam: Balkema, 1987: 225-233.
    [118] Radhokrishra H S Chan H T. Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault[J]. Can. Geotech. J. 1989,26(6):629-639.
    [119] Raffensperger, J.P., Numerical simulation of sedimentary basin-scale hydrochemical processes[C]// Corapocioglu, Y. C., Advances in Porous Media, Amsterdam: The Netherlands, Elsevier Science, 1996: 338-442.
    [120] Rasmusion A, Neretnieks I, Radionuclide transport in fast channels in crystalline rock[J], Water Resource Research, 1986,22(8): 1247-1256.
    
    [121] Rebour V., Billiotte J., et al., Molecular diffusion in water-saturatd rocks: a new wxperimental method [J], Journal of Contaminant Hydrology, 1997(28):71-93.
    [122] Robinson NI, Sharp JM, Kreisel I, Contaminant transport in sets of parallel finite fracture with fracture skins[J], J Contam Hydrol, 1998(31): 83-109.
    
    [123] Rdthemeyer, H., Hermann, A.G.and Salewski,H., The influence of radioactive waste disposal on natural activity, hear production and radiotoxicity[J], KERNTECHNIK, 1996,61(5-6):245-250.
    [124] Roux S, Plouraboue" F, Hulin JP, Tracer dispersion in rough open cracks [J],Transport Porous Media,1998,32(1):97-116.
    [125] Sawada, A., Ijiri, Y., et al., Nuclide migration Analysis in fracture host rock[R], Tokai, Japan, JNC, TN8400 99-0993, 1999.
    [126] Selroos JO, Walker DD, et al., Comparison of alternative modeling approaches for groundwater flow in fractured rock [J], Journal of Hydrology, 2002,257:174-188.
    [127] Snow D.T., Rock fracture spacings, openings and porosities [J], Journal of the Soil Mechanics and Foundations Division, Proceedings of American Society of Civil Engineering, 1968, 94(SM1): 73-91.
    [128] Streltsova TD, Hydrodynamics of groundwater flow in a fractured formation[J], Water Resourc. Res., 1976(12): 405-413.
     [129] Sudicky EA, McLaren RG, The Laplace transform Galerekin technique for large-scale simulation of mass transport in discretely fractured porous formations[J], Water Resource Research, 1992, 28 (2): 499-514.
    
    [130] Sullivan T.M. and Suen C.J., Low-level waste source term model development and testing, BNL NUREG/CR-5681[R], Upton, New York, Brookhaven, Brookhaven national Laboratory (BNL), 1991.
    [131] Swedish Nuclear Power Inspectorate (SKI), SITE-94 Deep repository performance assessment project, SKI technical report 96:36[R], Stockholm, Sweden: SKI, 1996.
    
    [132] Swedish Nuclear Waste Management Corporation (SKB), SR 97 Post-closure safety: main report summary, SKB Technical Report TR-99-06[R], Stockholm, Sweden: SKB, 1984.
    [133] Swedish Nuclear Waste Management Corporation (SKB), The KBS Annual Report 1983, KBS Technical Report 83-77[R],Stockholm, Sweden: SKB, 1999.
    [134] Swedish Nuclear Waste Management Corporation (SKB),Final disposal of spent fuel: Importance of the bedrock for safety, SKB Technical Report 92-20[R],Stockholm, Sweden: SKB,1992.
    [135] Taylor SG, Dispersion of soluble matter in solvent flowing slowly through a tube [J],Proc. R. Soc. London A.,1953,219:186-203.
    [136] Tianfu Xu, Eric Sonnenthal, Nicolas Spycher and K.Pruess, TOUGHREACT: A New Code of the TOUTH Family for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, CA94720 [R], Berkeley, USA: Lawrence Berkeley National Laboratory(LBNL),2003.
    [137]Torstenfelt B.,Allard B.,Andersson K.,et al.,Radionuclide diffusion and mobilities in compacted bentonite,SKB Technical Report 83-84[R].Stochholm,Swedish Nuclear Fuel and Waste Management Company(SKB),1983,12.
    [135]Tsang CF,Neretnieks I,Flow channeling in heterogeneous fractured rocks[J],Rev Geophys,1995,36(2):3095-3106.
    [139]Tsang Y.W.Tsang C.F.,Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium[J],Water Resource Research,1989,25(9):2076-2080.
    [140]Tsang YW,C.F.Tsang,et al.,Tracer transport in a stochastic continuum model of fractured media[J],Water Resource Research,1996,32(10):3077-3092.
    [141]Uchida,M.,Noda,K.,et al.,Laboratory experiment on flow and mass transport properties of single fracture rock block[C]//Proceeding of the 26~(th) Symposium of Rock Mechanics,Japan:1995:156-160.
    [142]Umeki,H.,Makino,H.,et al.,Scenario development and analysis in JNC's second progress report[C]//Proc,of the NEA workshop on scenario development,Mardrid,Spain,1999.5.
    [143]van Genuchten,M.Th.A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J],Soil Sci.Soc.Am,J.1980,44:892-898.
    [144]Verma,A.,and K.Pruess,Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations[J],Journal of Geophysical Research,93(B2),1159-1173,1988.
    [145]Warren JE,Root PJ,The behavior of naturally fractured reservoirs[J],Soc Petrol Eng J,1963,3:245-255.
    [146]Wels C,Smith L,et al.,The influence of surface sorption on dispersion in parallel plate fractures[J],Journal of Contaminant Hydrology,1997,28(1-2):19-32.
    [147]Wendland E.,Himmelsbach T,Transport simulation with stochastic aperture for a single fracture,comparison with a laboratory experiment[J],Advance Water Res.,2002,25(1):19-32.
    [148]Wersin E,Curti E.,Modelling bentonite-water interactions at high solid/liquid rations:swelling and diffuse double layer effects[J],Applied Clay Science,2004(26):249-257.
    [149]Widen H,Walker D,SR 97-Alternative models project:Stochastic continuum modeling of Aberg,SKB R 99-42[R],Stockholm,Sweden,Swedish Nuclear Fuel Management Co.(SKB),1999.
    [150]Wieland,E.,Wanner,H.,et al.,A surface chemical model of the bentonite-water interface and its implications for modeling the near field chemistry in a repository for spent fuel,KB technical report 94-26[R],Stockholm,Sweden:SKB,1994.
    [151]Witherspoon P.A.,Wang J.S.Y.,et al.,Validity of cubic law for fluid flow in a deformable rock fracture[J],Water Resour.Res.1980,16(6):1016-1024.
    [152]Xu S.,W(o|¨)rman A.,Dverstorp B.,Heterogeneous matrix diffusion in crystalline rock-implication for geosphere retardation of migrating radionuclides[J],Journal of Contaminant Hydrology,20011(47):365-378.
    [153]Zuber A,Motyka J,Matrix porosity as the most important parameter of fissured rocks for solute transport at large scales[J],Journal of Hydrology,1994,158(1-2):19-46.
    [154]蔡燧林,常微分方程[M],杭州:浙江大学出版社,2005.8.
    [155]陈崇喜,李国敏,地下水溶质运移理论及模型[M],北京:中国地质大学出版社,1995.8.
    [156]陈式,马明燮,中低水平放射性废物的安全处置[M],北京:原子能出版社,1998.
    [157]董祖引,复变函数与积分变换[M],南京:河海大学出版社,2001.
    [158]管后春,单个粗糙裂隙中水流与融资运移试验研究[D],合肥:合肥工业大学,2006.
    [159]郭永海,杨大笑,刘淑芬,高放废物处置库甘肃北山预选区水文地质特征研究[J],铀矿地质,2001,17(3):184-189.
    [160]国家环境保护局,放射性废物的分类(GB 9133-1995),北京:中国标准出版社.
    [161]国务院,核电中长期发展规划(2006-2020)[Z],2007.
    [162]金远新,王文广,陈璋如,中国高放废物处置库围岩类型的选择[C]//王驹,范显华,徐国庆等,中国高放废物地质处置十年进展,北京:原子能出版社,2004:62-73.
    [163]李春江,陈式等,花岗岩单裂隙核素迁移的研究:弥散系数的测定[J],核化学与放射化学,1999a,21(3):165-170.
    [164]李春江,郭志明,林漳基,花岗岩单裂隙中核素~(125)T、~(134)Cs~+的弥散渗透实验[J],水文地质与工程地质,1999,6:45-51.
    [165]李春江,郭志明等,花岗岩体单裂隙中核素~(125)T、~(134)Cs~+的弥散渗透实验[J],水文地质工程 地质,1999b,35(6):45-47.
    [166]李春江,苏锐,陈式,林漳基.花岗岩单裂隙中核素迁移的研究Ⅱ.扩散系数的测定[J],核化学与放射化学,2000.8:190-192.
    [167]李企轩,钱七虎等,裂隙岩体核素迁移模型及其在高放废物地质处置库安全性能评价的应用[J],岩石力学与工程学报,2004,23(5):736-740.
    [168]李亚萍,甘肃北山花岗岩裂隙几何学特征研究[D],北京,中国地震局地震研究所:2005.
    [169]刘金英,王新民,彭泽州,双重介质中核素迁移模型的解析解及其应用[J],世界地质,1996,15(1):68-73.
    [170]刘莉,田丰,张明波.甘肃西部北山地区地下水类型及其富水特征[J],岩土工程界,2003(6):33-36.
    [171]刘泉声,王志俭,砂.膨润土混合物膨胀力影响因素的研究[J],岩土力学与工程学报,2002,21(7):1054-1058.
    [172]刘月妙,蔡美峰等,高放废物地质处置库预选缓冲材料压缩性能研究[J],铀矿地质,2007,23(2):91-95.
    [173]刘月妙,陈璋如,内蒙古高庙子膨润土作为高放废物处置回填材料的可行性[J],矿物学报,2001,21(3):541-543.
    [174]刘月妙,温志坚,用于高放射性废物深地质处置的粘土材料研究[J],矿物岩石,2003,23(4):42-45.
    [175]刘兆昌,张兰生等,地下水系统的污染与控制[M],北京:中国环境科学出版社,1991.10.
    [176]罗上庚,放射性废物概论[M],北京:原子能出版社,2002,8.
    [177]罗嗣海,钱七虎等,高放废物深地质处置及其研究概况[J],岩石力学与工程学报,2004,23(5):831-838.
    [178]罗嗣海,钱七虎等,高放废物深地质处置中的多场耦合与核素迁移[J],岩土力学,2005,26(增刊):264-270.
    [179]闵茂中,放射性废物处置原理[M].北京:原子能出版社,1998,12.
    [180]潘别桐,徐光黎,岩体节理几何特征的研究现状及趋向[J],工程勘察,1989,(5):23-21.
    [181]沈珍瑶,程金茹,高放射性核废物深地质处置的环境问题[J],地质通报,2002,21(3):163-165
    [182]沈珍瑶,高放废物处置库耦合过程[J],辐射防护通讯,1997,6:21-23.
    [183]沈珍瑶,高放废物处置评价中应用的有关程序[J],辐射防护通讯,2001,21(1):23-27.
    [184]沈珍瑶,杨志峰等,高放废物深地质处置场近场剂量场-温度场-水势场-应力场的耦合计算[J],地球科学.中国地质大学学报,2000,25(5):514-517.
    [185]苏锐,花岗岩体重核素迁移特性研究[D],北京:核工业北京地质研究院,2000.
    [186]苏锐,王驹等,放射性核素在CRP-GEORC地质处置库远场中迁移的灵敏性与不确定性分析[C]//中国岩石力学与工程学会废物地下处置专业委员会等,第二届废物地下处置学术研讨会论文集,敦煌,2008:327-336.
    [187]王锦国,裂隙岩体溶质运移模型综述[J],水文地质工程地质,2004,6:102-106.
    [188]王锦国,周志芳,裂隙介质溶质运移试验研究[J],岩石力学与工程学报,2005,24(5):829-834.
    [189]王锦国、周志芳,裂隙岩体溶质运移模型研究[J],岩土力学,2005,26(2):270-276.
    [190]王驹,陈伟明,苏锐等,高放废物地质处置及其若干关键科学问题[J],岩石力学与工程学报,2006b,25(4):801-808.
    [191]王驹,陈伟明,苏锐等,我国高放废物地质处置研究[J],原子能科学技术.2004b,38(4)339-342.
    [192]王驹,高放废物深地质处置:回顾与展望[J],铀矿地质,2009,25(2):71-77.
    [193]王驹,论我国高放核废物深地质处置[J],中国地质(保护环境),1998,7:33-35.
    [194]王驹,我国高放废物深地质处置战略规划探讨[J],铀矿地质,2004a,20(4):196-212.
    [195]王驹,徐国庆,金远新,论高放废物地质处置库围岩[J],世界核地质科学,2006a,23(4):222-231.
    [196]王驹,徐国庆等,中国高放废物深地质处置研究进展:1985-2004[J],世界核地质科学,2005,22(1):5-16.
    [197]王岩,梁冰,裂隙岩体地下水溶质运移规律的研究[C]//水工渗流研究与应用进展--第五届全国水力工程渗流学术研讨会,南京:中国水利学会,2006:455-461.
    [198]魏海,高放废物深地质处置系统核素迁移模拟研究[D],抚州:东华理工大学,2005.
    [199]温瑞媛,高宏成等,裂片核素在岩石中的迁移研究:IV.核素75Se在花岗岩中的吸附、扩散、渗透和数学模型[J],核化学与放射化学,1994,16(4):193-198.
    [200]温瑞媛,王祥云等,裂片核素在岩石中的迁移研究:Ⅲ.核素纵向米算系数的测定和核素1291的迁移模型[J],核化学与放射化学,1994,16(3):129-134.
    [201]仵彦卿,岩体水力学基础(一)[J],水文地质工程地质,1996,(6):24-28.
    [202]徐国庆,缓冲、回填材料与添加剂的选择[J],铀矿地质,1996,12(7):238-243.
    [203]徐永福,孙德安等,膨润土及其砂混合物的膨胀实验[J],岩石力学与工程学报,2003,22(3):451-455.
    [204]薛禹群.地下水动力学[M],北京:地质出版社,2003,14-17.
    [205]杨金忠、蔡树英等,区域地下水溶质运移随机理论的研究与进展[J],水科学进展,1998,3(9):84-98.
    [206]杨立基,高放废物深地质处置研究发展计划[C]//中国核工业总公司科技局高放废物地质处置研究协调组编,高放废物地质处置研究论文集,1992.
    [207]郁陈,非饱和高庙子土的体变特征及其微观机理[D],同济大学,2006.
    [208]袁革新,陈剑杰,罗布泊西北缘低中放废物处置场选址初步研究[C]//中国岩石力学与工程学会废物地下处置专业委员会等,第二届废物地下处置学术研讨会论文集,敦煌,2008:467-472.
    [209]张玉军,核废料处置概念库近场热-水-应力耦合模型及数值分析[J],岩土力学,2007a,28(1):17-22.
    [210]张玉军,核废物地质处置模型试验近场热-水-应力耦合数值模拟[J],岩土力学,2007b,28(12):2489-2494.
    [211]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004,13-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700