用户名: 密码: 验证码:
一种旋转—直线运动的两自由度超声波电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多自由度超声波电机具有结构简单易装配、机械集成度高,而且驱动便捷、分辨率高,能够实现运动的多样化且不受电磁干扰等优点,可应用于机器人关节、精密装配、微小型机器人、医疗辅助设备等机电装置中,成为近些年超声波电机研究领域的热点课题。其中,具有旋转和平动两种自由度的超声波电机,因其运动方式是实际生活中常见的形式,具有较高的研究价值和广泛的应用前景。这种电机通常可以分别实现旋转和直线运动,有些电机可以实现螺栓运动。为此,本文设计了一种新型单定子旋转—直线二自由度超声波电机,并针对该电机进行了原理分析、数学建模、有限元仿真、性能测试及结构优化等一系列研究,取得的进展有:
     (1)提出了一种基于单定子的旋转—直线二自由度杆式超声波电机结构。该结构巧妙地利用了倾斜放置的压电陶瓷片,激发了定子弹性体两个模态的运动并将其放大为转子的宏观运动。电机仅需单电源供电,具有结构简单紧凑的特点,可以适用于微型化应用的场合。实验研制的样机最小长度仅为25mm、直径仅为2.5mm。
     (2)提出了一种应用于新型二自由度超声波电机的驱动方法。由于电机结构特殊,一些传统超声波电机的驱动方法不能适用。本文采用非对称方波电压输入,利用近谐振点惯性冲击的方式有效地驱动了转子运动,并通过控制输入方波的频率、占空比和幅值,分别实现了转子运动模式的切换、运动方向的改变和运动速度的调节。
     (3)提出了一种基于复损耗的旋转—直线二自由度超声波电机定子建模方法。本文采用等效模型推导了定子模态振型的解析解,并准确的预测了电机的谐振频率。进一步地,本文利用压电损耗因子和金属损耗因子,推导了定子端面谐振振幅的近似计算方法,用于计算在直线和旋转模式下定子端面的最大位移值和最大旋转角度。通过建立有限元模型做比对发现,数学模型计算值与仿真结果数据基本吻合,这验证了数学模型的正确性。
     (4)提出了一种应用于新型二自由度超声波电机的定子优化设计方法。提出以电机定子结构参数为变量,以两自由度电机定子的输出性能为优化目标,借助相对敏感系数的概念对定子进行优化设计的方案。在综合比较后,选择了多组结构建立数学模型,并研制样机。实验发现优化后的样机性能得到了大幅度提升。
     本研究设计的新型旋转—直线二自由度超声波电机,丰富了多自由度超声波电机的种类、延伸了其应用领域,所采用的建模和优化方法对于超声波电机的机理特性分析、结构的设计及优化有着积极的作用。
Multi-degree of freedom (MDOF) ultrasonic motor (USM) has the advantages of simple structure, easy assembly, and high mechanical integration. It is also convenient to drive and able to achieve the diversification of movement. Like all the other types of USM, MDOF USM can provide high resolution motion and avoid electromagnetic interference. Now it is widely used in the industry, such as joint of the robot, precision assembly, micro robot, medical apparatus and instruments, which makes it a hot topic in the field of USM research. Among all the MDOF USMs, the rotary-linear USM has high research value and broad application prospects, as its motion is a common form in real life. This type of USM can realize rotary and linear motion, respectively, while some can realize both. In this research, a new rotary-linear bar type USM based on one single stator was developed. Its working principle, mathematical model, finite element simulation, performance testing and structural optimization were reported. The main achievements are as follows.
     (1) A new rotary-linear2-DOF motor structure based on one single stator was introduced. By taking advantage of the slanted ceramics, two mode of stator motion can be derived. Those microscopic motion of stator can be converted into the macroscopic motion of rotor. The motor has a compact structure and needs only one single power source, which make it well qualified in miniaturized applications. The prototype motor had only25mm length and2.5mm diameter.
     (2) A driving methodology applied to the new motor was proposed. As the traditional USM driving method can not be applied due to its special structure, an asymmetric square-wave type voltage is used to drive the motor. The movement of the rotor can be derived by means of smooth impact drive method (SIDM) near the resonance frequency. By controlling the driving frequency, the mode of the rotor movement can be switched. Besides, the direction and speed of the rotor movement can be adjusted by changing the duty cycle and amplitude of the input voltage, respectively.
     (3) A modeling method based on complex losses was developed. An equivalent model on the modal analysis was build up to calculate the nature frequencies of the stator. Further, the piezoelectric loss factor and metal loss factor were used to deduce the harmonic amplitude of the stator end. So a mathematical model, which can calculate the maximum linear displacement and rotary angle approximately, was derived. A good match was found by comparing the results from the finite element model and mathematical model, which validated the correctness of the mathematical model.
     (4) An optimization method applied to the new motor was introduced. The proposed mothed aimed at optimizing the output character of the2-DOF stator, by adjusting the structural parameters. The concept of relative sensitivity coefficient was utilized in the comprehensive comparison. Several groups of the motor parameters were chosen. And according to those chosen parameters, the prototype motors were made. It was found that, the performance of the optimized motor has been improved significantly.
     This study proposed a new rotary-linear USM, which extended the application field of MDOF motors. The modeling and optimization method will play an active role in the characteristic analysis, structure design and optimization of ultrasonic motors.
引文
[1]郭吉丰,傅平.多自由度球形超声波电机的研究进展[J].电工电能新技术,2005,24(2):4.
    [2]Amano T, Ishii T, Nakamura K, Ueha S. An ultrasonic actuator with multidegree of freedom using bending and longitudinal vibrations of a single stator:proceedings of the Ultrasonics Symposium,1998 Proceedings,1998 IEEE,1998,1998[C].
    [3]Takemura K, Maeno T. Design and control of an ultrasonic motor capable of generating multi-DOF motion[J]. Mechatronics, IEEE/ASME Transactions on, 2001,6(4):499-506.
    [4]Takemura K, Maeno T. Control of multi-DOF ultrasonic motor using neural network based inverse model:proceedings of the Intelligent Robots and Systems,2002 IEEE/RSJ International Conference on,2002,2002[C].
    [5]Takemura K, Park S, Maeno T. Control of multi-dof ultrasonic actuator for dexterous surgical instrument[J]. Journal of Sound and Vibration, 2008,311(3-5):652-666.
    [6]Xiaofeng Z, Nakamura K, Ueha S. P3M-7 A Multi-Degrees-of-Freedom Ultrasonic Motor Design for Robotics Applications:proceedings of the Ultrasonics Symposium,2006 IEEE,2-6 Oct.2006,2006[C].
    [7]张小凤,张光斌.多自由度超声波电机及其转子支持机构研究[J].陕西师范大学学报(自然科学版),2010,(05):33-36.
    [8]Zhang X, Nakamura K, Ueha S. Two-joint robot finger design based on multi-degree-of-freedom ultrasonic motors[J]. Acoustical Science and Technology,2009,30(1):42-47.
    [9]Zhang X, Zhang G, Nakamura K, Ueha S. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor[J]. Sensors and Actuators A: Physical,2011,169(1):206-210.
    [10]徐志科,金龙,胡敏强,顾菊平.一种新型双定子三自由度超声波电机特性研究[J].微电机,2009,(04):27-29.
    [11]Xu Z, Hu M, Jin L, Gu J, Fei S. A Novel 3-DOF Ultrasonic Motor with Two Cylinder Stators Clamped:proceedings of the Electric Machines & Drives Conference,2007 IEMDC'07 IEEE International,3-5 May 2007,2007[C].
    [12]张君,顾菊平,胡敏强,金龙,徐志科.双转子柱体超声波电机输出转矩分析[J].微电机,2010,(07):21-24.
    [13]顾菊平,金龙,付杰,徐志科,秦申蓓,王德明.三自由度圆柱定子超声波电机运动轨迹仿真[J].微电机,2007,(12):18-21.
    [14]顾菊平,金龙,胡敏强,费树岷.圆柱定子三自由度球转子超声波电机的轨迹运动方程[J].中国电机工程学报,2005,(10):154-158.
    [15]李志荣,陈志华,黄卫清,赵淳生.圆柱形多自由度超声电机运动控制的实验研究:proceedings of the第十一届中国小电机技术研讨会,中国上海,2006[C].
    [16]李志荣,黄卫清,赵淳生.圆柱形三自由度超声电机输出性能的仿真设计[J].光学精密工程,2008,16(12):6.
    [17]李志荣.圆柱形多自由度超声波电动机运动控制的实验研究[J].微特电机,2007,(09):51-54.
    [18]展凤江,黄卫清,赵淳生.圆柱-球体三自由度超声电机模糊自适应控制[J].压电与声光,2006,(05):603-605.
    [19]展凤江,孟令智,刘俊标,赵淳生.圆柱-球体三自由度超声电机矢量控制[J].压电与声光,2008,(05):624-626+630.
    [20]Aoyagi M, Beeby SP, White NM. A novel multi-degree-of-freedom thick-film ultrasonic motor[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2002,49(2):151-158.
    [21]Takemura K, Ohno Y, Maeno T. Design of a plate type multi-DOF ultrasonic motor and its driving characteristics:proceedings of the Advanced Intelligent Mechatronics,2003 AIM 2003 Proceedings 2003 IEEE/ASME International Conference on,20-24 July 2003,2003 [C].
    [22]Otokawa K, Maeno T. Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes:proceedings of the Ultrasonics Symposium,2004 IEEE, 23-27 Aug.2004,2004[C].
    [23]Gouda Y, Nakamura K, Ueha S. A miniaturization of the multi-degree-of-freedom ultrasonic actuator using a small cylinder fixed on a substrate[J]. Ultrasonics,2006,44, Supplement(0):e617-e620.
    [24]Goda Y, Koyama D, Nakamura K. Design of Multi-Degree-of-Freedom Ultrasonic Micromotors[J]. Japanese Journal of Applied Physics,2009,48(7): 07GM06.
    [25]程光明,曾平,杨志刚,周伟.二自由度压电马达的振动分析[J].压电与声光,2000,(02):131-133+138.
    [26]吴献威,程光明,杨志刚,吴博达,陈西平.圆环驻波型多自由度压电马达的研究[J].压电与声光,2000,(02):95-97.
    [27]Guo K, Cheng G, Zeng P, Dong J. Modeling and optimum design of a rectangular piezoelectric vibrator for multi-degree-of-freedom motor: proceedings of the Computer Application and System Modeling (ICCASM), 2010 International Conference on,22-24 Oct.2010,2010[C].
    [28]程光明,郭抗,孙业明,曾平,武迪.单振子二自由度球面马达的运动机理[J].纳米技术与精密工程,2011,(04):291-297.
    [29]郭抗,曾平,武迪,程光明.平板形单振子多自由度压电马达[J].吉林大学学报(工学版),2011,(S2):215-220.
    [30]Zhang M, Guo W, Sun L. A multi-degree-of-freedom ultrasonic motor using in-plane deformation of planar piezoelectric elements[J]. Sensors and Actuators A:Physical,2008,148(1):193-200.
    [31]张明辉,郭伟,李满天.新型单振子多自由度超声波电机[J].中国电机工程学报,2008,(33):61-67.
    [32]张明辉,李满天,孙立宁.基于压电陶瓷平面内应变的多自由度超声波电机驱动电路研究[J].中国电机工程学报,2007,(33):30-35.
    [33]Shi SJ, Liu JK, Chen WS, Liu YX. Development of a 2-DOF planar ultrasonic motor using longitudinal-bending hybrid transducer:proceedings of the Applications of Ferroelectrics,2009 ISAF 200918th IEEE International Symposium on the,23-27 Aug.2009,2009[C].
    [34]陈维山,郝铭,赵学涛,陈思,石胜君.纵弯复合多自由度球形超声电机的研究[J].振动与冲击,2009,(07):105-110+216.
    [35]赵学涛.夹心换能器式多自由度球形超声波电动机研制[J].微特电机,2009,(04):7-10.
    [36]Ter Fong K, Dinh Huy D, Friend J, Oetomo D, Yeo L. Triple Degree-of-Freedom Piezoelectric Ultrasonic Micromotor via Flexural-Axial[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2009,56(8):1716-1724.
    [37]Vasiljev P, Borodinas S, Bareikis R, Luchinskis R. The square bar-shaped multi-DOF ultrasonic motor[J]. Journal of Electroceramics,2008,20(3-4): 231-235.
    [38]Shigeki T, Shigeru S, Zhang G, Yasutaro M, Kazuto N. Multi degree of freedom spherical ultrasonic motor:proceedings of the Industrial Electronics, Control and Instrumentation,1994 IECON'94,20th International Conference on,5-9 Sep 1994,1994[C].
    [39]Purwanto E, Toyama S. Control method of a spherical ultrasonic motor: proceedings of the Advanced Intelligent Mechatronics,2003 AIM 2003 Proceedings 2003 IEEE/ASME International Conference on,20-24 July 2003, 2003[C].
    [40]Mashimo T, Toyama S, Ishida H. Design and implementation of spherical ultrasonic motor[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2009,56(11):2514-2521.
    [41]Mashimo T, Awaga K, Toyama S. Development of a Spherical Ultrasonic Motor with an Attitude Sensing System using Optical Fibers:proceedings of the Robotics and Automation,2007 IEEE International Conference on,10-14 April 2007,2007[C].
    [42]Hoshina M, Mashimo T, Toyama S. Development of pipe inspection robot; driving system and control of outer-rotor-typed spherical ultrasonic motor: proceedings of the Advanced Robotics,2009 ICAR 2009 International Conference on,22-26 June 2009,2009[C].
    [43]Takesue N, Ohara T, Ishibashi R, Toyama S, Hoshina M, Hirai Y, Fukaya N, Arata J, Fujimoto H. Position control methods of spherical ultrasonic motor: proceedings of the Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on,18-22 Oct.2010,2010[C].
    [44]Ishibashi R, Ohara T, Takesue N, Arata J, Toyama S, Hoshina M, Hirai Y, Fukaya N, Fujimoto H. Study of a Spherical Ultrasonic Motor for haptic display system:proceedings of the Control Automation and Systems (ICCAS), 2010 International Conference on,27-30 Oct.2010,2010[C].
    [45]Hoshina M, Mashimo T, Toyama S. Development of spherical ultrasonic motor as a camera actuator for pipe inspection robot:proceedings of the Intelligent Robots and Systems,2009 IROS 2009 IEEE/RSJ International Conference on,10-15 Oct.2009,2009[C].
    [46]Mashimo T, Toyama S. MRI compatibility of a manipulator using a spherical ultrasonic motor:proceedings of the Proceedings of the 12th IFToMM world congress,2007[C]. Citeseer.
    [47]傅平,郭吉丰,沈润杰,帅光举,蔡萍.球形二自由度超声波电机的运行机理和特性[J].电工技术学报,2009,(04):42-47.
    [48]傅平.多自由度行波型超声波电机的基础研究[D]:浙江大学,2007.
    [49]胡锡幸,郭吉丰.3个行波定子的2自由度球形超声波电机[J].中国电机工程学报,2010,(09):62-67.
    [50]傅平,郭吉丰,沈润杰.三自由度行波型超声波电机的静力学分析[J].浙江大学学报(工学版),2007,(06):968-972.
    [51]胡锡幸,郭吉丰,傅平,沈润杰.2自由度球形行波型超声波电动机的特性计算模型[J].机械工程学报,2009,(03):229-233.
    [52]傅平,郭吉丰,沈润杰,帅光举,鹿存跃.二自由度行波型超声波电机的驱动和运动姿态控制[J].电工技术学报,2008,(02):25-30+36.
    [53]胡锡幸.多自由度球形行波型超声波电机结构、模型及其控制的研究[D]:浙江大学,2010.
    [54]Ting Y, Tsai Y-R, Hou B-K, Lin S-C, Lu C-C. Stator analysis and design of a spherical piezoelectric motor:proceedings of the Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on,2009[C]. IEEE.
    [55]Ting Y, Lee Y-D, Tsai Y-R, Chen C-Y. Stator design of a 2DOF traveling-wave rotary piezoelectric motor:proceedings of the Robotics and Biomimetics,2008 ROBIO 2008 IEEE International Conference on,2009[C]. IEEE.
    [56]Ting Y, Tsai Y-R, Hou B-K, Lin S-C, Lu C-C. Stator design of a new type of spherical piezoelectric motor[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2010,57(10):2334-2342.
    [57]Aoyagi M, Nakajima T, Tomikawa Y, Takano T. Examination of disk-type multidegree-of-freedom ultrasonic motor[J]. Japanese Journal of Applied Physics,2004,43(5B):2884-2890.
    [58]Lu B, Aoyagi M, Takano T, Tamura H. Examination of Sandwich-Type Multidegree-of-Freedom Spherical Ultrasonic Motor[J]. Japanese Journal of Applied Physics,2010,49(7):07HE24.
    [59]Lu B, Aoyagi M, Tamura H, Takano T. Development of a novel rotor-embedded-type multidegree-of-freedom spherical ultrasonic motor: proceedings of the Mechatronics and Automation (ICMA),2011 International Conference on,2011 [C]. IEEE.
    [60]Lu B, Aoyagi M. Examination of an outer-rotor-type multidegree-of-freedom spherical ultrasonic motor:proceedings of the Electrical Machines and Systems (ICEMS),201215th International Conference on,2012[C]. IEEE.
    [61]张健滔,金家楣,赵淳生.新型多自由度圆环形驻波超声电机[J].振动与冲击,2011,(12):223-225+240.
    [62]Dembele S, Rochdi K. A three DOF linear ultrasonic motor for transport and micropositioning[j]. Sensors and Actuators A:Physical,2006,125(2):486-493.
    [63]Van de Vijver W, Van Brussel H, Reynaerts D.4B-3 A Multi-DOF Positioning Stage based on Novel Piezoelectric Resonant Drive Modules:proceedings of the Ultrasonics Symposium,2006 IEEE,2-6 Oct.2006,2006[C].
    [64]Scuor N, Gallina P. Design and testing of a 5-degrees-of-freedom, large working range micropositioning stage[J]. Robotics and Autonomous Systems, 2012,60(4):620-627.
    [65]Fung R-F, Lin W-C. System identification of a novel 6-DOF precision positioning table[J]. Sensors and Actuators A:Physical,2009,150(2):286-295.
    [66]Shi Y. Two DOF positioning stage using linear ultrasonic motors[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2008,25(3): 161-168.
    [67]时运来,赵淳生,黄卫清.一种轮式直线型超声电机[J].中国电机工程学报,2010,(9):68-73.
    [68]张宏壮.压电双晶片型二自由度惯性冲击式精密驱动器理论与实验研究[D][D]:吉林大学,2006.
    [69]张宏壮,程光明,赵宏伟,曾平,杨志刚.压电双晶片型二维惯性冲击式精密驱动器[J].吉林大学学报(工学版),2006,(01):67-71.
    [70]温建明,马继杰,程光明,曾平,阚君武.平面三自由度惯性压电叠堆移动机构研究[J].中国机械工程,2010,(18):2172-2175.
    [71]付泽林.二自由度自行式直线超声电机的研究[D]:电子科技大学,2010.
    [72]Yan L, Hu Y, Lan H, Yao N, Jiao Z, Chen I. A novel two degree-of-freedom ultrasonic planar motor driven by single stator:proceedings of the Industrial Informatics (INDIN),2012 10th IEEE International Conference on,2012[C]. IEEE.
    [73]Gao W, Sato S, Sakurai Y, Kiyono S. Design of a precision linear-rotary positioning actuator[J]. Journal of Robotics and Mechatronics,2006,18(6): 803.
    [74]Zhang Y, Zhang WJ, Hesselbach J, Kerle H. Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement[J]. Review of Scientific Instruments, 2006,77(3):035112-035112-035119.
    [75]Mashimo T, Toyama S. Micro rotary-linear ultrasonic motor for endovascular diagnosis and surgery:proceedings of the Robotics and Automation,2008 ICRA 2008 IEEE International Conference on,19-23 May 2008,2008[C].
    [76]Mashimo T, Toyama S. Rotary-linear piezoelectric actuator using a single stator[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2009,56(1):114-120.
    [77]Mashimo T, Toyama S. Rotary-linear piezoelectric microactuator with a cubic stator of side length 3.5 mm[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2010,57(8):1825-1830.
    [78]Mashimo T, Toyama S. Vibration analysis of cubic rotary-linear piezoelectric actuator[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2011,58(4):844-848.
    [79]Tuncdemir S, Ural SO, Koc B, Uchino K. Design of translation rotary ultrasonic motor with slanted piezoelectric ceramics[J]. Japanese Journal of Applied Physics,2011,50(2):7301.
    [80]Lee K.-M, Roth RB, Zhou Z. Dynamic modeling and control of a ball-joint-like variable-reluctance spherical motor[J]. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL,1996,118:29-40.
    [81]Garner H, Klement M, Lee K-M. Design and analysis of an absolute non-contact orientation sensor for wrist motion control:proceedings of the Advanced Intelligent Mechatronics,2001 Proceedings 2001 IEEE/ASME International Conference on,2001 [C]. IEEE.
    [82]Lee K-M, Zhou D. A spherical encoder for real-time measurements of three-DOF wrist orientations:proceedings of the Intelligent Robots and Systems,2003(IROS 2003) Proceedings 2003 IEEE/RSJ International Conference on,2003 [C]. IEEE.
    [83]Lee K-M, Zhou D. A real-time optical sensor for simultaneous measurement of three-DOF motions[J]. Mechatronics, IEEE/ASME Transactions on,2004,9(3): 499-507.
    [84]Mashimo T, Toyama S. Manipulator System using a Spherical Ultrasonic Motor for Surgical Robots:proceedings of the第二届亚洲机械电子学学术会议,中国香港,2006[C].
    [85]Mashimo T, Toyama S, Matsuda H. Development of rotary-linear piezoelectric actuator for MRI compatible manipulator:proceedings of the Intelligent Robots and Systems,2008 IROS 2008 IEEE/RSJ International Conference on, 22-26 Sept.2008,2008[C].
    [86]Rose A, Wohlleber C, Kassner S, Schlaak HE, Werthschutzky R. A novel piezoelectric driven laparoscopic instrument with multiple degree of freedom parallel kinematic structure:proceedings of the Intelligent Robots and Systems, 2009 IROS 2009 IEEE/RSJ International Conference on,10-15 Oct.2009, 2009[C].
    [87]中机院机电市场研究所.安防监控设备:“十二五”末期市场规模达到2000亿元[M].2011-10-31.
    [88]Hoshina M, Mashimo T, Fukaya N, Matsubara O, Toyama S. Spherical ultrasonic motor drive system for camera orientation in pipe inspection[J]. Advanced Robotics,2013,27(3):199-209.
    [89]Fukaya N, Toyama S, Asfour T, Dillmann R. Design of the TUAT/Karlsruhe humanoid hand:proceedings of the Intelligent Robots and Systems,2000 (IROS 2000) Proceedings 2000 IEEE/RSJ International Conference on,2000, 2000[C].
    [90]Luo J, Huang C, Li H, Xie S, Zhang Y. Structural Design and Analysis of 3-DOF Bionic Eye Based on Spherical Ultrasonic Motor[M]//SU C-Y, RAKHEJA S, LIU H. Intelligent Robotics and Applications; Springer Berlin Heidelberg.2012:348-356.
    [91]Tuncdemir S. Design, Modeling and Control of a Novel Multi-Functional Translation-Rotary Micro Ultrasonic Motor[D]:The Pennsylvania State University,2011.
    [92]陈永校,郭吉丰.超声波电动机[M].浙江大学出版社,1994.
    [93]曲建俊,张国际.实心金属柱状弯曲旋转微超声波马达及其运动机理[J].微电机,2006,39(3):28-31.
    [94]李有光,陈在礼,陈维山,谢涛,刘军考.柱面驱动新型行波超声电机的研究[J].西安交通大学学报,2008,42(11):1391-1393.
    [95]邬军飞,褚祥诚,季叶,钟亮,李龙土.小型方柱压电陶瓷电机的设计及性能[J].稀有金属材料与工程,2009,38(A02):245-248.
    [96]张健滔,朱华,赵淳生.行波型杆式超声电机定子的参数化有限元法优化设计[J].振动与冲击,2009,28(7):122-125.
    [97]朱华,陈超,赵淳生.一种微型柱体超声电机的研究[J].中国电机工程学报,2006,26(12):128-133.
    [98]Rao SS. Vibration of continuous systems[M]. Wiley,2007.
    [99]Uchino K. FEM and Micromechatronics with ATILA Software[M]. CRC Press, Inc.,2008.
    [100]李宽,蓝宇,李琪.基于ATILA的宽带超磁致伸缩纵振换能器设计[J].哈尔滨工程大学学报,2012,33(12):1465-1469.
    [101]赵淳生.《超声电机技术与应用》[J].压电与声光,2009,31(1):148-148.
    [102]邢继春.旋转惯性压电电机研究[D]:燕山大学,2012.
    [103]Morita T, Yoshida R, Okamoto Y, Kurosawa MK, Higuchi T. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1999,46(6):1439-1445.
    [104]Morita T, Yoshida R, Okamoto Y, Higuchi T. Three DOF parallel link mechanism utilizing smooth impact drive mechanism[J]. Precision engineering,2002,26(3):289-295.
    [105]Nishimura T, Hosaka H, Morita T. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer[J]. Ultrasonics,2012,52(1):75-80.
    [106]卢秋红,高志军,颜国正,颜德田.压电型惯性微驱动器研究[J].压电与 声光,2004,(02):112-115.
    [107]姜楠,刘俊标,方光荣,韩立.惯性冲击式压电微电机的研究[J].压电与声光,2007,(02):187-189.
    [108]Kang C-Y, Yoo K-H, Ko H-P, Kim H-J, Ko T-K, Yoon S-J. Analysis of driving mechanism for tiny piezoelectric linear motor[J]. Journal of Electroceramics, 2006,17(2-4):609-612.
    [109]Uchino K, Giniewicz JR. Micromechatronics[M]. CRC Press,2003.
    [110]Uchino K, Hirose S. Loss mechanisms in piezoelectrics:how to measure different losses separately[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2001,48(1):307-321.
    [111]Zhuang Y, Ural SO, Rajapurkar A, Tuncdemir S, Amin A, Uchino K. Derivation of piezoelectric losses from admittance spectra[J]. Japanese Journal of Applied Physics,2009,48(4):1401.
    [112]Tsurumi T, Kakemoto H, Wada S. Dielectric, elastic and piezoelectric losses of PZT ceramics in the resonance state:proceedings of the Applications of Ferroelectrics,2002 ISAF 2002 Proceedings of the 13th IEEE International Symposium on,2002[C]. IEEE.
    [113]Hagiwara M, Hoshina T, Takeda H, Tsurumi T. Identicalness between Piezoelectric Loss and Dielectric Loss in Converse Effect of Piezoelectric Ceramic Resonators [J]. Japanese Journal of Applied Physics,2012,51(9).
    [114]Alguero M, Alemany C, Pardo L, Gonzalez AM. Method for obtaining the full set of linear electric, mechanical, and electromechanical coefficients and all related losses of a piezoelectric ceramic[J]. Journal of the American Ceramic Society,2004,87(2):209-215.
    [115]周丽萍.考虑胶层及材料损耗的磁致伸缩/压电层合材料磁电响应研究[D]:重庆大学,2009.
    [116]晏伯武. PBSZT低损耗压电陶瓷材料及其功率器件制备技术的研究[D]:华中科技大学,2007.
    [117]郭婷.低损耗PZT压电陶瓷的研究[D]:华中科技大学,2007.
    [118]阮伯仰,叶会英,陈新.压电陶瓷振子中的损耗及其对振子特性的影响[J].压电与声光,2000,(05):345-347.
    [119]Adhikari S. Damping models for structural vibration[J]. Cambridge University, 2000.
    [120]Beards C. Structural vibration:analysis and damping[M]. Butterworth-Heinemann,1996.
    [121]刘甲国.高阶的分数阶的粘弹性材料本构模型的复模量与复柔量[J].山东大学学报(理学版),2008,43(4).
    [122]Cremer L, Heckl M. Structure-borne sound:structural vibrations and sound radiation at audio frequencies[J]. Berlin and New York, Springer-Verlag,1988, 590 p Translation,1988,1.
    [123]罗平.基于ANSYS模态分析的压电陶瓷参数数据的转换及其输入[J].广东技术师范学院学报,2009,(09):11-15.
    [124]王惠文,李朝东. ANSYS在超声电机设计中的应用[J].机械工程师,2003,(12):40-41.
    [125]王剑.柱状超声波电机的设计理论及控制[D]:浙江大学,2009.
    [126]王波.超声波电机优化设计及若干应用研究[D]:浙江大学,2010.
    [127]王文浩.行波型超声波电机性能提高和可靠性研究[D]:浙江大学,2010.
    [128]宋人权.行波型锥面超声波电机性能优化研究[D]:浙江大学,2012.
    [129]赵淳生,李志荣,刘俊标,黄卫清.圆柱-球体多自由度超声电机定子的优化设计[J].压电与声光,2004,(01):13-16.
    [130]朱华,曾劲松,赵淳生.杆式超声电机定子的动力学分析与优化设计[J].中国机械工程,2008,(21):2627-2632.
    [131]时运来,赵淳生.蝶形直线超声电机优化设计[J].振动测试与诊断,2012,(06):883-891+1031.
    [132]孙合明,赵淳生,朱晓东,高叠.纵扭型压电超声电机的结构优化[J].应用力学学报,2003,(03):127-130+166.
    [133]王树听,董蜀湘.压电陶瓷材料对超声马达性能的影响[J].压电与声光,2000,22(1):23-26.
    [134]莫岳平,胡敏强,石斌,金龙,顾菊平,王心坚,徐志科.材料对超声电动机性能的影响及其选择[J].微电机,2002,35(1):41-44.
    [135]刘仁鑫.矩形复合层板面内弯曲模态直线超声电机研究[D]:华南农业大学,2005.
    [136]张铁民,秦勇,刘仁鑫.基于面内复合模态的直线超声电机振子有限元分 析[J].机械科学与技术,2006,(06):736-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700