用户名: 密码: 验证码:
可见光响应型石墨相氮化碳复合材料的制备及其降解有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的快速发展,能源短缺和环境污染问题严重影响和威胁着人类的生活。光催化技术作为一种绿色高级氧化技术,在环境污染治理和能源开发领域有着广泛的研究和应用。开发高效、高稳定性光催化剂已经成为光催化研究的热点。本论文旨在充实新型可见光催化材料石墨相氮化碳(g-C3N4)在光催化领域的应用,合成了高可见光催化活性的g-C3N4/MoO3、 WO3/g-C3N4、CeO2/g-C3N4和皂土/g-C3N4新型复合光催化材料,并考察了复合材料在降解环境有机污染物领域的应用。采用XRD、XPS、SEM、TEM、 BET、DRS、PL等测试手段对所合成的光催化剂的结构、形貌、光催化性能及其构效关系进行深入研究。具体研究内容如下:
     1.通过超声分散-热处理法合成了g-C3N4/MoO3复合光催化材料。采用XRD、SEM、HRTEM、IR、XPS、DRS等方法对光催化材料进行表征分析。XRD分析表明,g-C3N4的掺杂未改变Mo03的晶体结构。SEM和HRTEM分析结果显示g-C3N4与Mo03形成了异质结界面。DRS分析发现复合材料与MoO3相比在可见光区的吸收增强。可见光催化降解亚甲基蓝(MB)实验表明,g-C3N4/MoO3光催化降解MB符合一级反应动力学特征,其中g-C3N4/MoO3(7%)复合材料具有最高的光催化活性,光照3h后MB降解率达93%,其降解速率常数分别为单体Mo03和g-C3N4的4.2倍和1.9倍。构效关系研究表明,复合材料的高活性来源于Mo03和g-C3N4之间形成异质结结构,促进了光生电子和空穴的分离。
     2.采用二步煅烧法合成了WO3/g-C3N4复合光催化材料。运用TG、XRD、 SEM-EDS、TEM、HRTEM、XPS、IR、DRS等方法对光催化材料进行表征分析。XRD、IR、XPS、SEM-EDS结果表明复合材料由W03和g-C3N4组成。SEM、TEM和HRTEM分析结果显示W03与g-C3N4形成紧密的异质结界面。DRS分析发现W03的引入拓宽了g-C3N4在可见光区的吸收。比表面与吸附实验表明WO3/g-C3N4具有比g-C3N4更大的比表面积和暗反应吸附容量。可见光催化降解MB实验表明,WO3/g-C3N4光催化降解MB符合一级反应动力学特征,其中WO3/g-C3N4(9.7%)复合材料具有最高的光催化活性,光照2h后MB降解率达97%,其降解速率常数分别为单体W03和g-C3N4的4.2倍和2.9倍。光催化降解4-氯酚(4-CP)实验排除了染料敏化作用。PL和EIS结果显示WO3/g-C3N4具有比g-C3N4更强的光生电子和空穴分离能力。光催化机理分析表明W03和g-C3N4之间的能带位置有利于光生电子和空穴的迁移和分离,从而提高材料的光催化活性。
     3.通过二步煅烧法合成了CeO2/g-C3N4复合光催化材料。采用TG、XRD、 IR、TEM、HRTEM、XPS、DRS等方法对光催化材料进行表征分析。XRD、 IR和XPS结果表明复合材料由Ce02与g-C3N4组成。TEM和HRTEM结果显示Ce02紧紧粘附在g-C3N4的表面。比表面和吸附实验表明,CeO2/g-C3N4具有比g-C3N4更高的比表面积和暗反应吸附容量。可见光催化降解MB实验表明,CeO2/g-C3N4光催化降解MB符合一级反应动力学特征,其中CeO2/g-C3N4(13.0%)复合材料具有最高的光催化活性,光照2h后MB降解率达95%,其降解速率常数分别为单体Ce02和g-C3N4的12.2倍和3.1倍。光催化降解4-CP和总有机碳(TOC)测试结果验证了CeO2/g-C3N4是一种高效催化剂。PL和光电流测试表明CeO2/g-C3N4具有比g-C3N4更强的光生电子和空穴分离能力。光催化机理分析表明Ce02和g-C3N4之间的能带位置有利于光生电子和空穴的迁移和分离,从而提高材料的光催化活性。
     4.通过一步煅烧法合成了皂土改性g-C3N4复合光催化材料。采用XRD、 TG、TEM、IR、XPS、DRS等方法对光催化材料进行表征分析。XRD、IR、 XPS结果表明复合材料由皂土与g-C3N4组成。TEM结果表明,皂土/g-C3N4复合材料具有蓬松的片状结构,皂土和g-C3N4形成紧密接触的界面。DRS分析发现复合材料在可见光区的吸收明显增强。比表面与吸附实验表明皂土/g-C3N4具有比g-C3N4更高的比表面积和暗反应吸附容量。可见光催化降解MB实验表明,皂土/g-C3N4光催化降解MB符合一级反应动力学特征,其中皂土/g-C3N4(0.10)复合材料具有最高的光催化活性,降解速率常数为单体g-C3N4的2.5倍。PL和光电流测试表明皂土/g-C3N4具有比g-C3N4更强的光生电子和空穴分离能力。光催化机理分析表明皂土层间所带负电荷与g-C3N4光生电子和空穴存在静电吸引作用,从而有利于g-C3N4光生电子和空穴的迁移和分离,促进本体g-C3N4的光催化活性的提高。
With the development of our society, the problems of energy shortage and environment pollution affect our living standard. Photocatalytic technology is one of green technologies, which has been widely used in environmental pollutant treatment and energy development. Visible-light-driven photocatalysts with high activity and stability had attracted a great deal of attention. In order to take better advantage of the new visible-light photocatalytic graphene carbon nitride (g-C3N4) in photocatalytic application, a series of composites (g-C3N4/MoO3, WO3/g-CaN4CeO2/g-C3N4and bentonite/g-C3N4) with high photocatalytic activity have been synthesized. These resulting materials were characterized by XRD, XPS, SEM, TEM, BET, DRS, PL and photocatalytic activity test, the relationship between the structure of the photocatalyst and the photocatalytic activities were also discussed in details. The main content and conclusions are summarized as follows:
     1. g-C3N4/MoO3composite photocatalysts were prepared with an ultrasonic dispersion-heat treatment method. The photocatalysts were characterized by XRD, SEM, HRTEM, IR, XPS and DRS etc. XRD showed the crystal phase structure of g-C3N4and MoO3were not changed after hybridization. SEM and HRTEM showed the hybrid interfaces were formed between the g-C3N4and MoO3. DRS showed the absorption edges of g-C3N4/MoO3composites shifted significantly to longer wavelengths compared with MoO3. The photocatalytic degradation of methylene blue (MB) over g-C3N4/MoO3composites followed the pseudo-first-order reaction model. The g-C3N4/MoO3(7%) composite exhibited the highest photocatalytic activity:the degradation efficiency of MB was93%under visible light irradiation for3h; the photoreaction kinetics constant value was almost4.2and1.9times as high as that of the pure MoO3and g-C3N4, respectively. The enhancement of visible light photocatalytic activity in g-C3N4/MoO3should be assigned to the effective separation and transfer of photogenerated charges originating from the heterojunction interface between MoO3and g-C3N4.
     2. WO3/g-C3N4composite photocatalysts were prepared by a calcination process with varying the content of WO3. The photocatalysts were characterized by TG, XRD, SEM-EDS, TEM, HRTEM, XPS, IR and DRS etc. XRD, IR, SEM-EDS and XPS showed that the composite photocatalysts were constituted by WO3and g-C3N4. SEM, TEM and HRTEM confirmed the tight hybrid interface was formed between WO3and g-C3N4. DRS showed the absorption edges of WO3/g-C3N4composites shift to longer wavelengths compared with the pure g-C3N4. BET showed the enlarged surface area of WO3/g-C3N4composites compared with g-C3N4and the increased surface area offers more surface active sites for adsorption and photocatalytic reaction. The photocatalytic degradation of MB over WO3/g-C3N4composites followed the pseudo-first-order reaction model. The WO3/g-C3N4(9.7%) composite exhibited the highest photocatalytic activity: the photocatalytic degradation efficiency of MB was97%under visible light irradiation for2h; the photoreaction kinetics constant value was4.2times and 2.9times as high as that of the pure WO3and pure g-C3N4, respectively. The degradation of4-chlorophenol (4-CP) results showed the mechanism was not the dye sensitization effect. PL and EIS analysis confirmed the more efficient separation of electron-hole pairs compared with pure g-C3N4. The remarkably increased performance of WO3/g-C3N4was ascribed mainly to the suitably band positions for WO3/g-C3N4composites to improve the separation efficiency of photogenerated electron-hole pairs.
     3. CeO2/g-C3N4composite photocatalysts were successfully prepared by a simple mixing-calcination technique. The CeO2/g-C3N4nanocomposites were characterized by TG, XRD, IR, TEM, HRTEM, XPS and DRS etc. TEM and HRTEM showed the CeO2were combined tightly on the surface of g-C3N4. BET showed the enlarged surface area of CeO2/g-C3N4composites compared with g-C3N4and the increased surface area offered more surface active sites for adsorption and photocatalytic reaction. The photocatalytic degradation of MB over CeO2/g-C3N4composites followed the pseudo-first-order reaction model in the degradation of MB. The CeO2/g-C3N4(13.0%) composite exhibited the highest photocatalytic activity:the photocatalytic degradation efficiency of MB was95%under visible light irradiation for2h; the photoreaction kinetics constant value was about12.2times and3.1times as high as that of CeO2and g-C3N4, respectively. The results of the degradation of4-CP and the TOC confirmed CeO2/g-C3N4composites were photocatalyts with high activity. The PL and PT analyses confirmed the efficient separation of electron and pairs under visible light. The remarkably increased performance of CeO2/g-C3N4was ascribed mainly to the well-matched overlapping band-structures for CeO2/g-C3N4composites to improve the separation efficiency of photogenerated electron-hole pairs.
     4. Layered bentonite/g-C3N4composite photocatalysts were synthesized through a conventional calcination method and systematically characterized by XRD, TG, TEM, IR, XPS and DRS etc. XRD, IR and XPS showed that the composite photocatalyst were constituted by bentonite and g-C3N4. TEM showed the bentonite/g-C3N4composites were constituted by abundant fluffy sheets. DRS showed the absorption edges of bentonite/g-C3N4composites shifted significantly to longer wavelengths compared with the pure g-C3N4. BET showed the enlarged surface area of bentonite/g-C3N4composites compared with g-C3N4and the increased surface area offered more surface active sites for adsorption and photocatalytic reaction. The photocatalytic degradation of MB over bentonite/g-C3N4composites followed the pseudo-first-order reaction model. The bentonite/g-C3N4(0.1) composite showed the highest efficiency for the degradation of MB. The photoreaction kinetics constant value of bentonite/g-C3N4(0.1) was about2.5times as high as that of g-C3N4. Results showed the enhanced photoactivity was mainly attributed to the efficient migration of the photogenerated electrons and holes of g-C3N4, which were induced by the electrostatic interaction between g-C3N4and negatively charged bentonite.
引文
[1]Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701
    [2]Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. Journal of the American Chemical Society, 1977,99(1):303-304
    [3]Kraeutler B, Bard AJ. Heterogeneous photocatalytic synthesis of methane from acetic acid-new Kolbe reaction pathway [J]. Journal of the American Chemical Society,1978, 100(7):2239-2240
    [4]Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiology letters,1985,29(1): 211-214
    [5]Fujishima A, Ohtsuki J, Yamashita T, et al. Behavior of tumor cells on photoexcited semiconductor surface [J]. Photomedicine and Photobiology,1986,8(2):45-46
    [6]O'regan B, Grfitzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized [J]. Nature,1991,353:24
    [7]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J]. Nature,1997,388(6641):431-432
    [8]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271
    [9]Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414(6864):625-627
    [10]Wang C, Liu H, Qu YZ. TiO2-Based Photocatalytic Process for Purification of Polluted Water:Bridging Fundamentals to Applications [J]. Journal of Nanomaterials,2013, 2013:1-14
    [11]龙明策,蔡俊,蔡伟民,等.设计新型可见光响应的半导体光催化剂[J].化学进展,2006,18(9):1066-1075
    [12]Bard AJ. Photoelectrochemistry [J]. Science,1980,207(4427):139-144
    [13]Kim S, Hwang S J, Choi W. Visible light active platinum-ion-doped TiO2 photocatalyst [J]. The Journal of Physical Chemistry B,2005,109(51):24260-24267
    [14]Umebayashi T, Yamaki T, Itoh H, et al. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations [J]. Journal of Physics and Chemistry of Solids,2002,63(10):1909-1920
    [15]Zou JJ, Liu CJ, Zhang Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment [J]. Langmuir,2006,22(5):2334-2339
    [16]Chen X, Mao SS. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chemical Reviews,2007,107(7):2891-2959
    [17]Ji P, Takeuchi M, Cuong TM, et al. Recent advances in visible light-responsive titanium oxide-based photocatalysts [J]. Research on Chemical Intermediates,2010,36(4): 327-347
    [18]Yu T, Tan X, Zhao L, et al. Characterization, activity and kinetics of a visible light driven photocatalyst:Cerium and nitrogen co-doped TiO2 nanoparticles [J]. Chemical Engineering Journal,2010,157(1):86-92
    [19]Gurkan YY, Kasapbasi E. Enhanced Solar Photocatalytic Activity of TiO2 by Selenium (IV) Ion-Doping:Characterization and DFT Modeling of the Surface [J]. Chemical Engineering Journal,2012,214:34-44
    [20]Kim S, Lee SK. Visible light-induced photocatalytic oxidation of 4-chlorophenol and dichloroacetate in nitrided Pt-TiO2 aqueous suspensions [J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,203(2-3):145-150
    [21]Ku Y, Tseng KY, Ma CM. Photocatalytic decomposition of gaseous acetone using TiO2 and Pt/TiO2 catalysts [J]. International Journal of Chemical Kinetics,2008,40(4): 209-216
    [22]Dozzi MV, Prati L, Canton P, et al. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light [J]. Physical Chemistry Chemical Physics,2009,11(33):7171-7180
    [23]Zhong JB, Lu Y, Jiang WD, et al. Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene [J]. Journal of Hazardous Materials, 2009,168(2):1632-1635
    [24]Einaga H. Effect of silver deposition on tio for photocatalytic oxidation of benzene in the gas phase [J]. Reaction Kinetics and Catalysis Letters,2006,88(2):357-362
    [25]Einaga H, Ibusuki T, Futamura S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds [J]. Environmental Science & Technology,2004,38(1):285-289
    [26]Park H, Park Y, Kim W, et al. Surface modification of TiO2 photocatalyst for environmental applications [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2013,15(SI):1-20
    [27]Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J]. Environmental Science & Technology,2003,37(1):147-152
    [28]Cho Y, Choi W, Lee CH, et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J]. Environmental Science& Technology,2001,35(5):966-970
    [29]Kim W, Park J, Jo HJ, et al. Visible light photocatalysts based on homogeneous and heterogenized tin porphyrins [J]. The Journal of Physical Chemistry C,2008,112(2): 491-499
    [30]Park Y, Lee SH, Kang SO, et al. Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light [J]. Chemical Communications,2010,46(14): 2477-2479
    [31]Choi SK, Yang HS, Kim JH, et al. Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation [J]. Applied Catalysis B:Environmental,2012,121-122:206-213
    [32]Kyung H, Lee J, Choi W. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination [J]. Environmental Science & Technology,2005,39(7):2376-2382
    [33]Cho Y, Choi W. Visible light-induced reactions of humic acids on TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1):129-135
    [34]Marci G, Augugliaro V, Lopez-Munoz MJ, et al. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems.2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid-Solid Regime [J]. The Journal of Physical Chemistry B,2001,105(5):1033-1040
    [35]Bessekhouad Y, Robert D, Weber JV. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):569-580
    [36]Hiroi Z, Hayamizu H, Yoshida T, et al. Spinodal Decomposition in the TiO2-VO2 System [J]. Chemistry of Materials,2013,25(11):2202-2210
    [37]Li XD, Gao CT, Duan HG, et al. High-Performance Photoelectrochemical-Type Self-Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure [J]. Small,2013,9(11):2005-2011
    [38]Jin M, Park JN, Shon JK, et al. Highly ordered crystalline mesoporous metal oxides for hydrogen peroxide decomposition [J]. Journal of Porous Materials,2013,20(4): 989-995
    [39]Lin CF, Wu CH, Onn ZN. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems [J]. Journal of Hazardous Materials,2008,154(1-3): 1033-1039
    [40]Puddu V, Mokaya R, Puma GL. Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity [J]. Chemical Communications, 2007,(45):4749-4751
    [41]Nayak J, Sahu SN, Kasuya J, et al. CdS-ZnO composite nanorods:Synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid [J]. Applied Surface Science,2008,254(22):7215-7218
    [42]Marci G, Augugliaro V, Lopez-Munoz MJ, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.2. Surface, bulk characterization, and 4-nitrophcnol photodegradation in liquid-solid regime [J]. Journal of Physical Chemistry B,2001,105(5):1033-1040
    [43]Marci G, Augugliaro V, Lopez-Munoz MJ, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. Surface and bulk characterization [J]. Journal of Physical Chemistry B,2001,105(5):1026-1032
    [44]Anderson C, Bard AJ. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis [J]. The Journal of Physical Chemistry,1995,99(24):9882-9885
    [45]Fu X, Clark LA, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SnO2 and TiO2/ZrO2 [J]. Environmental Science & Technology,1996,30(2):647-653
    [46]Anderson C, Bard AJ. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials[J]. The Journal of Physical Chemistry B,1997, 101(14):2611-2616
    [47]Fu X, Hu Y, Zhang T, et al. The role of ball milled h-BN in the enhanced photocatalytic activity:A study based on the model of Zn() [J]. Applied Surface Science,2013,280: 828-835
    [48]Fu X, Hu Y, Yang Y, et al. Ball milled h-BN:An efficient holes transfer promoter to enhance the photocatalytic performance of TiO2[J]. Journal of Hazardous Materials, 2013,244-245(0):102-110
    [49]Teter DM, Hemley RJ. Low-compressibility carbon nitrides [J]. Science,1996, 271(5245):53-55
    [50]Molina B, Sansores L. Electronic structure of six phases of C3N4:a theoretical approach [J]. Modern physics letters B,1999,13(6-7):193-201
    [51]Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures [J]. New Journal of Chemistry,2002, 26(5):508-512
    [52]Zhang Z, Leinenweber K, Bauer M, et al. High-Pressure Bulk Synthesis of Crystalline C6N9H3·HCl:A Novel C3N4 Graphitic Derivative [J]. Journal of the American Chemical Society,2001,123(32):7788-7796
    [53]Gu Y, Chen L, Shi L, et al. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide [J]. Carbon,2003,41(13):2674-2676
    [54]Lv Q, Cao C, Li C, et al. Formation of crystalline carbon nitride powder by a mild solvothermal method [J]. Journal of Materials Chemistry,2003,13(6):1241-1243
    [55]Luv Q, Cao C, Zhang J, et al. Benzene thermal synthesis and characterization of crystalline carbon nitride [J]. Applied Physics A,2004,79(3):633-636
    [56]Fu Q, Cao CB, Zhu HS. A solvothermal synthetic route to prepare polycrystalline carbon nitride [J]. Chemical physics letters,1999,314(3):223-226
    [57]Li C, Cao C, Zhu H. Preparation of graphitic carbon nitride by electrodeposition [J]. Chinese Science Bulletin,2003,48(16):1737-1740
    [58]Chao L, CAO Chuan-bao, ZHU He-sun, et al. Graphitic carbon nitride thin films deposited by electrodeposition [J]. Materials Letters,2004,58(12-13):1903-1906
    [59]Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry,2008,18(41):4893-4908
    [60]孟雅丽.g-C3N4的合成及其光催化研究.大连理工大学硕士论文,2011:19-20
    [61]Yan S, Li Z, Zou Z. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009,25(17):10397-10401
    [62]Yan SC, Li ZS, Zou ZG. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation [J]. Langmuir,2010,26(6): 3894-3901
    [63]Dong F, Wu L, Sun Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts [J]. Journal of Materials Chemistry, 2011,21(39):15171-15174
    [64]Wang Y, Wang X, Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst:From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry [J]. Angewandte Chemie International Edition,2012,51(1): 68-89
    [65]Zheng Y, Liu J, Liang J, et al. Graphitic carbon nitride materials:controllable synthesis and applications in fuel cells and photocatalysis [J]. Energy & Environmental Science, 2012,5(5):6717-6731
    [66]张金水,王博,王心晨.物理化学学报[J].29(9):1865-1876
    [67]Kroke E, Schwarz M. Novel group 14 nitrides [J]. Coordination chemistry reviews, 2004,248(5):493-532
    [68]Lyth SM, Nabae Y, Moriya S, et al. Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction [J]. The Journal of Physical Chemistry C,2009, 113(47):20148-20151
    [69]Li Q, Yang J, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture [J]. Nano Research, 2010,3(9):632-642
    [70]Jin X, Balasubramanian VV, Selvan ST, et al. Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content:A Metal-Free Basic Catalyst [J]. Angewandte Chemie International Edition,2009,48(42):7884-7887
    [71]Groenewolt M, Antonietti M. Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices [J]. Advanced materials,2005,17(14):1789-1792
    [72]Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Material,2009,8(1):76-80
    [73]Yuliati L, Yang JH, Wang X, et al. Highly active tantalum (v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation [J]. Journal of Materials Chemistry,2010, 20(21):4295-4298
    [74]Ansari MB, Min BH, Mo YH, et al. CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides [J]. Green Chemistry,2011, 13(6):1416-1421
    [75]Wang Y, Yao J, Li H, et al. Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media [J]. Journal of the American Chemical Society,2011,133(8):2362-2365
    [76]Li Y, Gong Y, Xu X, et al. A practical and benign synthesis of amines through Pd@mpg-C3N4 catalyzed reduction of nitriles [J]. Catalysis Communications,2012, 28(0):9-12
    [77]Lee EZ, Jun YS, Hong WH, et al. Cubic Mesoporous Graphitic Carbon (Ⅳ) Nitride:An All-in-One Chemosensor for Selective Optical Sensing of Metal Ions [J]. Angewandte Chemie International Edition,2010,49(50):9706-9710
    [78]Goettmann F, Fischer A, Antonietti M, et al. Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel-Crafts Reaction of Benzene [J]. Angewandte Chemie International Edition, 2006,45(27):4467-4471
    [79]Zhang J, Sun J, Maeda K, et al. Sulfur-mediated synthesis of carbon nitride:Band-gap engineering and improved functions for photocatalysis [J]. Energy & Environmental Science,2011,4(3):675-678
    [80]Wang X, Maeda K, Chen X, et al. Polymer Semiconductors for Artificial Photosynthesis:Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light [J]. Journal of the American Chemical Society,2009,131(5):1680-1681
    [81]Li XH, Wang X, Antonietti M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step [J]. Chemical Science,2012, 3(6):2170-2174
    [82]Xu J, Wang Y, Zhu Y. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance [J]. Langmuir,2013,29(33):10566-10572
    [83]Sun J, Zhang J, Zhang M, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles [J]. Nature Communications,2012:1139
    [84]Yang SB, Gong YJ, Zhang JS, et al. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light [J]. Advanced Materials,2013,25(17):2452-2456
    [85]Bai X, Wang L, Zong R, et al. Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods [J]. The Journal of Physical Chemistry C,2013,117(19):9952-9961
    [86]Di Y, Wang X, Thomas A, et al. Making Metal Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light [J]. ChemCatChem, 2010,2(7):834-838
    [87]Ge L, Han C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J]. Applied Catalysis A:General,2011, 409-410(0):215-222
    [88]Wang X, Chen X, Thomas A, et al. Metal-Containing Carbon Nitride Compounds:A New Functional Organic-Metal Hybrid Material [J]. Advanced Materials,2009,21(16): 1609-1612
    [89]Wang Y, Zhang J, Wang X, et al. Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers:Metal-Free Catalysts for Cyclohexane Oxidation [J]. Angewandte Chemie International Edition,2010,49(19):3356-3359
    [90]Zhang J, Zhang M, Zhang G, et al. Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis [J]. ACS Catalysis,2012,2(6):940-948
    [91]Ma X, Lv Y, Xu J, et al. A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements:A First-Principles Study [J]. The Journal of Physical Chemistry C,2012,116(44):23485-23493
    [92]Liao G, Chen S, Quan X, et al. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation [J]. Journal of Materials Chemistry,2012,22(6):2721-2726
    [93]Ge L, Han CC. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity [J]. Applied Catalysis B-Environmental,2012,117:268-274
    [94]Xu Y, Xu H, Wang L, et al. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity [J]. Dalton Transactions,2013:
    [95]Ge L, Han CC, Liu J. In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts [J]. Journal of Materials Chemistry,2012,22(23):11843-11850
    [96]Sun L, Zhao X, Jia CJ, et al. Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction:investigation based on experimental and theoretical studies [J]. Journal of Materials Chemistry,2012,22(44):23428-23438
    [97]Katsumata K, Motoyoshi R, Matsushita N, et al. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas [J]. Journal of Hazardous Materials,2013,260:475-482
    [98]Yan HJ, Yang HX. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation [J]. Journal of Alloys and Compounds,2011,509(4): L26-L29
    [99]Sun JX, Yuan YP, Qiu LG, et al. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light [J]. Dalton Transactions, 2012,41 (22):6756-6763
    [100]Fu J, Chang BB, Tian YL, et al. Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions:in situ synthesis, exceptional activity, high stability and photocatalytic mechanism [J]. Journal of Materials Chemistry A,2013,1(9): 3083-3090
    [101]Ge L, Han CC, Xiao XL, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity [J]. International Journal of Hydrogen Energy,2013,38(17):6960-6969
    [102]Wang YJ, Bai XJ, Pan CS, et al. Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4 [J]. Journal of Materials Chemistry,2012,22(23): 11568-11573
    [103]Wang YJ, Wang ZX, Muhammad S, et al. Graphite-like C3N4 hybridized ZnW04 nanorods:Synthesis and its enhanced photocatalysis in visible light [J]. CrystEngComm, 2012,14(15):5065-5070
    [104]Ge L, Han CC, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange [J]. Applied Catalysis B-Environmental,2011,108(1-2):100-107
    [105]Xu H, Yan J, Xu Y, et al. Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity [J]. Applied Catalysis B: Environmental,2013,129(0):182-193
    [106]Cao J, Zhao YJ, Lin HL, et al. Ag/AgBr/g-C3N4:A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light [J]. Materials Research Bulletin,2013,48(10):3873-3880
    [107]Wang YJ, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 [J]. Energy & Environmental Science,2011, 4(8):2922-2929
    [108]Yan H, Yang H. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation [J]. Journal of Alloys and Compounds,2011,509(4):L26-L29
    [109]Xu L, Xia JX, Xu H, et al. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized alpha-Fe2O3 hollow microspheres with enhanced supercapacitive performance [J]. Journal of Power Sources,2014,245:866-874
    [110]Ye S, Qiu LG, Yuan YP, et al. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light [J]. Journal of Materials Chemistry A,2013,1(9):3008-3015
    [111]Zhou XS, Jin B, Chen RQ, et al. Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts [J]. Materials Research Bulletin,2013, 48(4):1447-1452
    [112]Ge L, Zuo F, Liu JK, et al. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots [J]. Journal of Physical Chemistry C,2012,116(25):13708-13714
    [113]Pan CS, Xu J, Wang YJ, et al. Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly [J]. Advanced Functional Materials, 2012,22(7):1518-1524
    [114]He YM, Cai J, Li TT, et al. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation [J]. Chemical Engineering Journal,2013,215: 721-730
    [115]Li TT, Zhao LH, He YM, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation [J]. Applied Catalysis B-Environmental,2013,129:255-263
    [116]Kang HW, Lim SN, Song D, et al. Organic-inorganic composite of g-C3N4-SrTiO3:Rh photocatalyst for improved H2 evolution under visible light irradiation [J]. International Journal of Hydrogen Energy,2012,37(16):11602-11610
    [117]Pan HQ, Li XK, Zhuang ZJ, et al. g-C3N4/SiO2-HNb3O8 composites with enhanced photocatalytic activities for rhodamine B degradation under visible light [J]. Journal of Molecular Catalysis a-Chemical,2011,345(1-2):90-95
    [118]Ye LQ, Liu JY, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity [J]. Applied Catalysis B-Environmental,2013,142:1-7
    [119]Yan SC, Lv SB, Li ZS, et al. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities [J]. Dalton Transactions, 2010,39(6):1488-1491
    [120]胡媛.层状化合物三氧化钼的制备及其光电性质研究.安徽大学硕士论文,2007:2-3
    [121]蔡元霸,梁玉仓.纳米材料的概述,制备及其结构表征[J].结构化学,2001,20(6):
    [122]任引哲,王建英,王玉湘.纳米级MoO3微粉的制备与性质[J].化学通报,2002,65(1):47-49
    [123]Komaba S, Kumagai N, Kumagai R, et al. Molybdenum oxides synthesized by hydro thermal treatment of A2MoO4 (A= Li, Na, K) and electrochemical lithium intercalation into the oxides [J]. Solid State Ionics,2002,152:319-326
    [124]黄宪法,邹炜.β型三氧化钼的性质,用途及生产[J].钼业经济技术,2000,24(6):27-29
    [125]施尔畏,夏长泰.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [126]Galatsis K, Li Y, Wlodarski W, et al. Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing [J]. Sensors and Actuators B:Chemical,2001,77(1):478-483
    [127]Dong W, Dunn B. Sol-gel synthesis of monolithic molybdenum oxide aerogels and xerogels [J]. Journal of Material Chemistry,1998,8(3):665-670
    [128]Bouzidi A, Benramdane N, Tabet-Derraz H, Mathieu C, Khelifa B, Desfeux R. Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique [J]. Materials Science and Engineering:B,2003, 97(1):5-8
    [129]邓凡政,梁娟妮,戈霞.MoO3对染料光催化降解性能研究[J].稀有金属,2004,28(6):1034-1037
    [130]汪学广,侯文华,颜其洁.氧化铬柱层状三氧化钼的合成[J].化学学报,2000,58(6):688-691
    [131]陈仙子,曹元媛,周真一,等.MoO3纳米粉体的制备及其变色性能研究[J].中国陶瓷,2010,(7):19-21
    [132]任引哲,王建英,王玉湘.纳米级MoO3微粉的制备与性质[J].化学通报,2002,1:47-49
    [133]Bai HX, Liu XH, Zhang YC. Synthesis of MoO3 nanoplates from a metallorganic molecular precursor [J]. Materials Letters,2009,63(1):100-102
    [134]Chithambararaj A, Sanjini NS, Velmathi S, et al. Preparation of h-MoO3 and (X-MoO3 nanocrystals:comparative study on photocatalytic degradation of methylene blue under visible light irradiation [J]. Physical Chemistry Chemical Physics,2013,15(35): 14761-14769
    [135]Whittingham MS. Lithium batteries and cathode materials [J]. Chemical Reviews,2004, 104(10):4271-4302
    [136]Jasinski R. A summary of patents on organic electrolyte batteries [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1970,26(2):189-194
    [137]Bica de Moraes MA, Trasferetti BC, Rouxinol FP, et al. Molybdenum oxide thin films obtained by the hot-filament metal oxide deposition technique [J]. Chemistry of Materials,2004,16(3):513-520
    [138]McEvoy TM, Stevenson K.J, Hupp JT, et al. Electrochemical preparation of molybdenum trioxide thin films:Effect of sintering on electrochromic and electroinsertion properties [J]. Langmuir,2003,19(10):4316-4326
    [139]张文钲.钼酸盐阻燃抑烟剂研发现状[J].中国钼业,2003,27(1):7-9
    [140]刘辉机,吴绍吟.含磷酸三甲苯酯,三氧化二锑和三氧化钼的高效,低烟复合阻燃体系在聚氯乙烯电缆料的应用[J].中国塑料,2002,16(2):72-74
    [141]宋继梅,尹扬俊,杨捷,等.三氧化钼微米棒的制备及其光催化性质研究[J].中困钼业,2009,33(1):22-26
    [142]Chen YP, Lu CL, Xu L, et al. Single-crystalline orthorhombic molybdenum oxide nanobelts:synthesis and photocatalytic properties [J]. CrystEngComm,2010,12(11): 3740-3747
    1143] Cai L, Rao PM, Zheng X. Morphology-Controlled Flame Synthesis of Single, Branched, and Flower-like a-MoO3. Nanobelt Arrays[J]. Nano Letter,2011,11(2):872-877
    [144]Sinaim H, Phuruangrat A, Thongtem S, et al. Synthesis and characterization of heteronanostructured Ag nanoparticles/MoO3 nanobelts composites [J]. Materials Chemistry and Physics,2012,132(2-3):358-363
    [145]Natori H, Kobayashi K, Takahashi M. Fabrication and Photocatalytic Activity of TiO2/MoO3 Particulate Films [J]. Journal of Oleo Science,2009,58(4):203-211
    |146| Kotbagi T, Nguyen DL, Lancelot C, et al. Transesterification of Diethyl Oxalate with Phenol over Sol-Gel MoO3/TiO2 Catalysts [J|. Chemsuschem,2012,5(8):1467-1473
    [147]Kong F, Huang L, Luo LL, et al. Synthesis and Characterization of Visible Light Driven Mesoporous Nano-Photocatalyst MoO3/TiO2 [J]. Journal of Nanoscience and Nanotechnology,2012,12(3):1931-1937
    [148]Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films:synthesis, characterization, and applications [J]. Journal of the American Chemical Society,2001,123(43):10639-10649
    [149]Su J, Feng X, Sloppy JD, et al. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis and photoelectrochemical properties [J]. Nano Letters,2010,11(1):203-208
    [150]陈东初,韩冰,雷施,等.热分解法制备纳米WO3的结构特征及其分散行为研究[J].精细化工,2007、24(11):1047-1()5()
    [151]Sivula K, Formal FL, Gratzel M. WO3-Fe2O3 Photoanodes for Water Splitting:A Host Scaffold, Guest Absorber Approach[J]. Chemistry of Materials,2009,21(13): 2862-2867
    [152]Ham DJ, Phuruangrat A, Thongtem S. et al. I lydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water [J]. Chemical Engineering Journal,2010,165(1):365-369
    [153]Takehara K, Yamazaki K, Miyazaki M, et al. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation [J]. Virus Research,2010,151(1): 102-103
    [154]Abe R, Takami H, Murakami N, et al. Pristine Simple Oxides as Visible Light Driven Photocatalysts:Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide [J]. Journal of the American Chemical Society,2008, 130(25):7780-7781
    [155]Qamar M, Gondal MA, Yamani ZH. Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3 nanocomposite [J]. Catalysis Communications,2010,11(8): 768-772
    [156]Guo Y, Quan X, Lu N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes [J]. Environmental Science & Technology,2007,41(12):4422-4427
    [157]Hwang DW, Kim J, Park TJ, et al. Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting [J]. Catalysis Letters,2002,80(1-2):53-57
    [158]Zhao ZG, Miyauchi M. Nanoporous-Walled Tungsten Oxide Nanotubes as Highly Active Visible-Light-Driven Photocatalysts [J]. Angewandte Chemie,2008,120(37): 7159-7163
    [159]Hayashi H, Ishizaka A, Haemori M, et al. Bright blue phosphors in ZnO-WO3 binary system discovered through combinatorial methodology [J]. Applied Physics Letters, 2003,82(9):1365-1367
    [160]Bi D, Xu Y. Improved Photocatalytic Activity of WO3 through Clustered Fe2O3 for Organic Degradation in the Presence of H2O2 [J]. Langmuir,2011,27(15):9359-9366
    [161]Leghari SAK, Sajjad S, Chen F, et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst [J]. Chemical Engineering Journal,2011,166(3):906-915
    [162]Widiyandari H, Purwanto A, Balgis R, et al. CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation [J]. Chemical Engineering Journal,2012,180(0):323-329
    [163]Arai T, Yanagida M, Konishi Y, et al. Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation [J]. The Journal of Physical Chemistry C,2007,111(21):7574-7577
    [164]Liu Z, Zhao ZG, Miyauchi M. Efficient Visible Light Active CaFe2O4/WO3 Based Composite Photocatalysts:Effect of Interfacial Modification [J]. The Journal of Physical Chemistry C,2009,113(39):17132-17137
    [165]王艳荣.纳米二氧化钵的资源及应用[J].广州化工,2005,33(5):24-26.
    [166]Guillou N, Nistor L, Fuess H, et al. Microstructural studies of nanocrystalline CeO2 produced by gas condensation [J]. Nanostructured Materials,1997,8(5):545-557
    [167]Bai W, Choy K, Stelzer N, et al. Thermophoresis-assisted vapour phase synthesis of CeO2 and CexY1-xO2-δ nanoparticles [J]. Solid State Ionics,1999,116(3):225-228
    [168]Zhang YW, Si R. Liao CS, et al. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals [J]. The Journal of Physical Chemistry B,2003,107(37):10159-10167
    [169]石硕,鲁润华,汪汉卿.W/O微乳液中Ce02超细粒子的制备[J].化学通报,1998,12:51-53
    [170]李小忠,王连军,赵铭,等.纳米Ce02晶体的制备及其光催化性能的研究[J].环境化学,2006,25(2):149-153
    [171]宋晓岚,邱冠周,曲鹏,等.沉淀法合成纳米Ce02及其性能[J].湖南大学学报(自然科学版),2004,31(6):13-17
    [172]Hu S, Zhou F, Wang L, et al. Preparation of CuO2/CeO2 heterojunction photocatalyst for the degradation of Acid Orange 7 under visible light irradiation [J]. Catalysis Communications,2011,12(9):794-797
    [173]Wang W, Stagg-Williams SM, Noronha FB, et al. Partial oxidation and combined reforming of methane on Ce-promoted catalysts [J]. Catalysis Today,2004,98(4): 553-563
    [174]Zhang T, Ma J, Chan S, et al. Grain boundary conduction of Ce0.9Gd0.1O2-δ ceramics derived from oxalate coprecipitation:effects of Fe loading and sintering temperature [J]. Solid State Ionics,2005,176(3):377-384
    [175]Ji P, Zhang J, Chen F, et al. Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica:formation, characterization and photocatalytic activity [J]. The Journal of Physical Chemistry C,2008,112(46):17809-17813
    [176]李占双,闫慧君,尤佳,张顺孝,王君.水热法合成纳米Ce02及其光催化性质研究[J].化学试剂,2008,30(4):262-264
    [177]Chen F, Xie Y, Zhao J. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation [J]. Chemosphere,2001,44(1):1159-116
    [178]姜桂兰,张培萍.膨润土加工与应用.北京:化学工业出版社,2005:8-12
    [179]Eren E, Afsin B. An investigation of Cu(II) adsorption by raw and acid-activated bentonite:A combined potentiometric, thermodynamic, XRD, IR, DTA study [J]. Journal of Hazardous Materials,2008,151(2-3):682-691
    [180]苏锦,王清萍,金晓英,等.纳米有机膨润土对苯酚的吸附性能研究[J].环境污染与防治,2010,32(3):39-42
    [181]Banat FA, Al-Bashir B, Al-Asheh S, et al. Adsorption of phenol by bentonite [J]. Environmental Pollution,2000,107(3):391-398
    [182]Zhu LZ, Chen BL, Shen XY. Sorption of phenol, p-nitrophenol, and aniline to dual-cation organobentonites from water [J]. Environmental Science & Technology, 2000,34(3):468-475
    [183]Al-Degs YS, El-Barghouthi MI, Issa AA, et al. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents:Equilibrium and kinetic studies [J]. Water Research,2006, 40(14):2645-2658
    [184]Ulusoy U, Simsek S. Lead removal by polyacrylamide-bentonite and zeolite composites:Effect of phytic acid immobilization [J]. Journal of Hazardous Materials, 2005,127(1-3):163-171
    [185]宋恩军,张东,徐亮子,等.有机皂土的PAN修饰及其对水中镉离子的吸附行为[J].离子交换与吸附,2010,26(1):16-23
    [186]臧运波,侯万国.皂土对CuSO4的吸附性能研究[J].化工环保,2010,30(006):469-472
    [187]Ozcan AS, Erdem B, Ozcan A. Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,266(1-3):73-81
    [188]Ozcan A, Omeroglu C, Erdogan Y, et al. Modification of bentonite with a cationic surfactant:An adsorption study of textile dye Reactive Blue 19 [J]. Journal of Hazardous Materials,2007,140(1-2):173-179
    [189]周江.膨润土对印染废水的吸附性能研究[J].包头职业技术学院学报,2011,12(2):1-3
    [190]唐源.阳离子染料改性膨润土对乙萘酚的吸附研究[J].湖南农业科学,2010,13:75-77
    [191]Meshram S, Limaye R, Ghodke S, et al. Continuous flow photocatalytic reactor using ZnO-bentonite nanocomposite for degradation of phenol [J]. Chemical Engineering Journal,2011,172(2-3):1008-1015
    [192]Sun Z, Chen Y, Ke Q, et al. Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite [J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,149(1-3):169-174
    [193]朱鹏飞,刘梅,宋诚,等.TiO2/膨润土光催化剂的性能及表征[J].西南民族大学学报(自然科学版),2011,37(4):642-646
    [194]Hu KH, Zhao DH, Liu JS. Synthesis of nano-MoS2/bentonite composite and its application for removal of organic dye [J]. Transactions of Nonferrous Metals Society of China,2012,22(10):2484-2490
    [195]Qu JG, Li NN, Liu BJ, et al. Preparation of BiVO4/bentonite catalysts and their photocatalytic properties under simulated solar irradiation [J]. Materials Science in Semiconductor Processing,2013,16(1):99-105
    [196]刘小玉,杨莹琴,陈慧娟.有机膨润土负载ZnO/TiO2光降解催化剂的研制及性能[J].光谱实验室,2011,28(3):1154-1157
    [197]Elder SH, Cot FM, Su Y, et al. The discovery and study of nanocrystalline TiO2/MoO3 core-shell materials [J]. Journal of the American Chemical Society,2000,122(21): 5138-5146
    [198]Shamaila S, Sajjad AKL, Chen F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst [J]. Journal of Colloid and Interface Science,2011,356(2):465-472
    [199]Gole JL, Stout JD, Burda C, et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale [J]. The Journal of Physical Chemistry B,2004,108(4):1230-1240
    [200]Comini E, Yubao L, Brando Y, et al. Gas sensing properties of MoO3 nanorods to CO and CH3OH [J]. Chemical Physics Letters,2005,407(4-6):368-371
    [201]He T, Yao JN. Photochromism of molybdenum oxide [J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2003,4(2):125-143
    [202]Hussain Z. Optical and electrochromic properties of heated and annealed MoO3 thin films [J]. Journal of Materials Research,2001,16(9):2695-2708
    [203]Chithambararaj A, Sanjini NS, Bose AC, et al. Flower-like hierarchical h-MoO3:new findings of efficient visible light driven nano photocatalyst for methylene blue degradation [J]. Catalysis Science & Technology,2013,3(5):1405-1414
    [204]Wang Y. Wang XC, Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst:From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry [J]. Angewandte Chemie-International Edition,2012,51(1): 68-89
    [205]Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials,2008,8(1):76-80
    [206]Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light [J]. The Journal of Physical Chemistry C,2009,113(12):4940-4947
    [207]Wang Y, Wang X, Antonietti M, et al. Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates [J]. ChemSusChem,2010,3(4):435-439
    [208]Yan H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light [J]. Chemical communications,2012, 48(28):3430-3432
    [209]Delporte P, Meunier Fdr, Pham-Huu C, et al. Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS [J]. Catalysis Today,1995,23(3):251-267
    [210]Choi JG, Thompson LT. XPS study of as-prepared and reduced molybdenum oxides [J]. Applied Surface Science,1996,93(2):143-149
    [211]Ramana CV, Atuchin VV, Kesler VG, et al. Growth and surface characterization of sputter-deposited molybdenum oxide thin films [J]. Applied Surface Science,2007, 253(12):5368-5374
    [212]Niu P, Liu G, Cheng HM. Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride [J]. The Journal of Physical Chemistry C,2012,116(20): 11013-11018
    [213]Li XF, Zhang J, Shen LH, et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine [J]. Applied Physics a-Materials Science & Processing,2009,94(2):387-392
    [214]Liu L, Ma D, Zheng H, et al. Synthesis and characterization of microporous carbon nitride [J]. Microporous and Mesoporous Materials,2008,110(2-3):216-222
    [215]Sinaim H, Ham DJ, Lee JS, et al. Free-polymer controlling morphology of alpha-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties [J]. Journal of Alloys and Compounds,2012, 516:172-178
    [216]Zeng HC. Chemical Etching of Molybdenum Trioxide:A New Tailor-Made Synthesis of MoO3 Catalysts [J]. Inorganic Chemistry,1998,37(8):1967-1973
    [217]Wang Y, Di Y, Antonietti M, et al. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids [J]. Chemistry of Materials,2010,22(18):5119-5121
    [218]Sinaim H, Ham DJ, Lee JS, et al. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties [J]. Journal of Alloys and Compounds,2012, 516(0):172-178
    [219]Zhang H, Lv X, Li Y, et al. P25-Graphene Composite as a High Performance Photocatalyst [J]. ACS Nano,2009,4(1):380-386
    [220]Sahai N. Is Silica Really an Anomalous Oxide? Surface Acidity and Aqueous Hydrolysis Revisited [J]. Environmental Science & Technology,2002,36(3):445-452
    [221]Yang M, Huang Q, Jin X. ZnGaNO solid solution-C3N4 composite for improved visible light photocatalytic performance [J]. Materials Science and Engineering:B,2012, 177(8):600-605
    [222]Zhang Y, Mori T, Ye J, et al. Phosphorus-Doped Carbon Nitride Solid:Enhanced Electrical Conductivity and Photocurrent Generation [J]. Journal of the American Chemical Society,2010,132(18):6294-6295
    [223]Liao GZ, Chen S, Quan X, et al. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation [J]. Journal of Materials Chemistry,2012,22(6):2721-2726
    [224]Zhang Y, Mori T, Niu L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene:controlled electronic structure and enhanced optoelectronic conversion [J]. Energy & Environmental Science,2011,4(11):4517-4521
    [225]Zhang JS, Sun JH, Maeda K, et al. Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis [J]. Energy & Environmental Science,2011,4(3):675-678
    [226]Ding Z, Chen X, Antonietti M, et al. Synthesis of Transition Metal-Modified Carbon Nitride Polymers for Selective Hydrocarbon Oxidation [J]. Chemsuschem,2011,4(2): 274-281
    [227]Sclafani A, Palmisano L, Venezia A. Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension [J]. Solar Energy Materials and Solar Cells,1998,51(2):203-219
    [228]Morales W, Cason M, Aina O, et al. Combustion Synthesis and Characterization of Nanocrystalline WO3 [J]. Journal of the American Chemical Society,2008,130(20): 6318-6319
    [229]Hidayat D, Purwanto A, Wang W-N, Okuyama K. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance [J]. Materials Research Bulletin,2010,45(2):165-173
    [230]吕珂臻,李洁,李文章,等WO3-TiO2复合空心球的制备及其光催化性能[J].中国有色金属学报,2012,22(5):1352-1359
    [231]Hariharan V, Radhakrishnan S, Parthibavarman M, et al. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications [J]. Talanta,2011,85(4):2166-2174
    [232]Szilagyi IM, Forizs B, Rosseler O, et al. WO3 photocatalysts:Influence of structure and composition [J]. Journal of Catalysis,2012,294:119-127
    [233]He Y, Cai J, Li T, et al. Synthesis, Characterization, and Activity Evaluation of DyVO4/g-C3N4 Composites under Visible-Light Irradiation [J]. Industrial & Engineering Chemistry Research,2012,51(45):14729-14737
    [234]Lu G, Li X, Qu Z, et al. Correlations of WO3 species and structure with the catalytic performance of the selective oxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts [J]. Chemical Engineering Journal,2010,159(1-3):242-246
    [235]Sivakumar R, Gopalakrishnan R, Jayachandran M, et al. Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells [J]. Smart Materials & Structures,2006,15(3):877-888
    236] Guery C, Choquet C, Dujeancourt F, et al. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates [J]. Journal of Solid State Electrochemistry,1997,1(3):199-207
    [237]Cao J, Luo B, Lin H, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties [J]. Applied Catalysis B:Environmental,2012,111-112(0):288-296
    [238]Subramanian V, Wolf EE, Kamat PV. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. Journal of the American Chemical Society,2004,126(15):4943-4950
    [239]Tersoff J. Theory of semiconductor heterojunctions:The role of quantum dipoles [J]. Physical Review B,1984,30(8):4874-4877
    [240]Alferov Z. The history and future of semiconductor heterostructures [J]. Semiconductors,1998,32(1):1-14
    [241]Zhang J, Zhang M, Sun R Q, et al. A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions [J]. Angewandte Chemie, 2012,124(40):10292-10296
    [242]Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films [J]. Chemistry of Materials,2002,14(6): 2812-2816
    [243]Coronado JM, Javier Maira A, Martinez-Arias A, et al. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,150(1):213-221
    [244]Hernandez-Alonso MaD, Hungria AB, Martinez-Arias A, et al. EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation [J]. Applied Catalysis B:Environmental,2004,50(3):167-175
    [245]Ji P, Zhang J, Chen F, et al. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation [J]. Applied Catalysis B:Environmental, 2009,85(3):148-154
    [246]Arul NS, Mangalaraj D, Chen PC, et al. Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods [J]. Journal of Sol-Gel Science and Technology,2012, 64(3):515-523
    [247]Channei D, Inceesungvorn B, Wetchakun N, et al. Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis [J]. Ceramics International,2013,39(3):3129-3134
    [248]李成强.溶剂热合成纳米CeO2-TiO2粉体及其光催化性能的研究[J].陶瓷学报,2011,32(2):228-230
    [249]Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity [J]. ACS Applied Materials & Interfaces,2012,4(7):3718-3723
    [250]Guan Y, Hensen EM, Liu Y, et al. Template-Free Synthesis of Sphere, Rod and Prism Morphologies of CeO2 Oxidation Catalysts [J]. Catalysis Letters,2010,137(1-2):28-34
    [251]Guzman J, Carrettin S, Corma A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2 [J]. Journal of the American Chemical Society,2005,127(10):3286-3287
    [252]He Y, Cai J, Li T, et al. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation [J]. Chemical Engineering Journal,2013,215-216: 721-730
    [253]Huang LY, Xu H, Li YP, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity [J]. Dalton Transactions,2013,42(24):8606-8616
    [254]Cai W, Chen F, Shen X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping [J]. Applied Catalysis B:Environmental,2010,101(1-2): 160-168
    [255]Phoka S, Laokul P, Swatsitang E, et al. Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route [J]. Materials Chemistry and Physics,2009,115(1):423-428
    [256]Tang ZR, Zhang YH, Xu YJ. A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants [J]. RSC Advances,2011,1(9):1772-1777
    [257]Wang Y, Li B, Zhang C, et al. Ordered mesoporous CeO2-TiO2 composites:Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation [J]. Applied Catalysis B:Environmental,2013,130-131(0):277-284
    [258]Abbasi Z, Haghighi M, Fatehifar E, et al. Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol-gel methods used for total oxidation of toluene [J]. Asia-Pacific Journal of Chemical Engineering,2012,7(6):868-876
    [259]Zeng J, Wang H, Zhang Y, et al. Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes [J]. The Journal of Physical Chemistry C,2007, 111(32):11879-11887
    [260]Zhang T, Oyama T, Aoshima A, et al. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,140(2):163-172
    [261]Zhang J, Xiong Z, Zhao XS. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. Journal of Materials Chemistry,2011,21(11): 3634-3640
    [262]Xu H, Xu Y, Li H, et al. Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst [J]. Dalton Transactions,2012,41(12): 3387-3394
    [263]Cygan RT, Liang JJ, Kalinichev AG. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field [J]. The Journal of Physical Chemistry B,2004,108(4):1255-1266
    [264]Ma J, Zou J, Li L, et al. Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange Ⅱ [J]. Applied Catalysis B: Environmental,2013,134-135:1-6
    [265]Yan SC, Li ZS, Zou ZG. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine [J]. Langmuir,2009,25(17):10397-10401
    [266]Yang S, Li J, Lu Y, et al. Sorption of Ni(II) on GMZ bentonite:Effects of pH, ionic strength, foreign ions, humic acid and temperature [J]. Applied Radiation and Isotopes, 2009,67(9):1600-1608
    [267]Li J, Suyoulema, Wang W, et al. A study of photodegradation of sulforhodamine B on Au-TiO2/bentonite under UV and visible light irradiation [J]. Solid State Sciences,2009, 11(12):2037-2043
    [268]Ramos Filho FG, Melo TJA, Rabello MS, et al. Thermal stability of nanocomposites based on polypropylene and bentonite [J]. Polymer Degradation and Stability,2005, 89(3):383-392
    [269]Sapalidis AA, Katsaros FK, Steriotis TA, et al. Properties of Poly(vinyl alcohol)- Bentonite Clay Nanocomposite Films in Relation to Polymer-Clay Interactions [J]. Journal of Applied Polymer Science,2012,123(3):1812-1821
    [270]Strawhecker KE, Manias E. Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites [J]. Chemistry of Materials,2000,12(10):2943-2949
    [271]Zaitan H, Bianchi D, Achak O, et al. A comparative study of the adsorption and desorption of oxylene onto bentonite clay and alumina [J]. Journal of Hazardous Materials,2008,153(1-2):852-859
    [272]Hou Y, Laursen AB, Zhang J, et al. Layered Nanojunctions for Hydrogen-Evolution Catalysis [J]. Angewandte Chemie International Edition,2013,52(13):3621-3625
    [273]Xiang Q, Yu J, Jaroniec M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites [J]. The Journal of Physical Chemistry C,2011,115(15):7355-7363
    [274]Neumann MG, Gessner F, Schmitt CC, et al. Influence of the Layer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension [J]. Journal of Colloid and Interface Science,2002,255(2): 254-259
    [275]Fujishiro Y, Uchida S, Sato T. Synthesis and photochemical properties of semiconductor pillared layered compounds [J]. International Journal of Inorganic Materials,1999,1(1):67-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700