用户名: 密码: 验证码:
合成二甲醚的固体酸催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲醚作为一种重要的化工原料和可以替代液化石油气和柴油的清洁燃料,实现其经济的合成,对我国能源的多样化、清洁化具有重要的现实意义。
     二甲醚可采用一氧化碳和氢气(合成气)为原料,先通过合成甲醇再由甲醇脱水来合成,或由合成气直接来合成。这两种二甲醚合成的工艺技术均需固体酸作为甲醇脱水的催化剂,目前最常用的甲醇脱水的固体酸催化剂是y-Al2O3和酸性分子筛。单纯的y-Al2O3催化剂酸性弱,虽然反应过程中稳定性高,但在反应温度300℃以上时才有足够的合成二甲醚活性,在热力学上不利于甲醇的转化,且反应的负荷低。分子筛催化剂酸性强、酸量高,较低温度时就有很高的甲醇转化率,但甲醇脱水的副产物多,催化剂表面易积碳,失活现象明显。因此,调整固体酸催化剂的酸量及其酸性强度,探索固体酸催化剂的合成或改性方法,不论对甲醇气相合成法还是合成气一步法合成二甲醚都有着十分重要的意义。
     本论文以HZSM-5分子筛作为甲醇脱水的固体酸催化剂,通过高温水蒸气处理、含氟溶液改性及合成具有多级孔性质的HZSM-5分子筛的途径考察催化剂组成、酸性、孔结构、比表面积等性质对合成二甲醚反应的影响,获得了以下的的主要研究结果:
     研究了高温水蒸汽处理对HZSM-5分子筛的酸性、孔道、硅铝比的修饰及其在甲醇脱水反应和合成气一步法合成二甲醚反应中催化性能的改进效果。结果发现:500℃水蒸汽处理2h的样品,在甲醇脱水反应中稳定性很好;但是600℃水蒸汽处理2h的样品,生成的非骨架铝会堵塞分子筛的孔道使催化剂的比表面积和孔体积都减少,甲醇脱水的反应活性低,且生成的非骨架铝在合成气直接合成二甲醚的反应中会促进副反应的发生。
     鉴于水蒸气处理时分子筛催化剂表面总酸量减小,酸量低不利于甲醇脱水反应的进行,从而进一步采用了含氟溶液处理了HZSM-5分子筛,并考察其作为甲醇脱水反应的催化剂的催化性能。由于F的电子效应,低浓度氟化氨处理时虽然催化剂表面总酸量变化不大但是酸中心的强度增强,因此甲醇脱水活性明显提高。而氟化铝溶液处理的HZSM-5分子筛上,虽然溶液中F-仍然存在,但是由于A13+的存在,导致作用机理不同,在甲醇脱水反应中活性也有明显提高,但是催化剂的稳定性比单独氟化铵处理时要好。
     由于含氟溶液改性的分子筛表现出优异的甲醇脱水催化性能,而含氟溶液对环境污染严重,于是本论文尝试采用氟化铝粉末跟HZSM-5分子筛固相机械混合的方式对分子筛进行了改性,且通过调变AlF3·3H2O的加入量就可以达到明显改变分子筛酸性及织构的效果,并将改性后的分子筛用于甲醇脱水和合成气直接合成二甲醚反应中,研究其催化性能。研究表明:在AlF3改性HZSM-5分子筛过程中,A1F3的量小于2wt%时,分子筛的补铝作用占主导地位;当A1F3的量增大至3wt%时脱铝作用占主导地位。2wt%AlF3改性的分子筛上催化剂上甲醇脱水的活性和稳定性都比较好。在合成气直接合成二甲醚反应中Cu-Zn/HZ(2)催化剂上也显出高的一氧化碳转化率,但是由于酸性相对较强,甲醇的选择性降低的同时,副产物也相应增多。
     为了探明介孔在合成二甲醚反应中所起的作用,本文将合成的多级孔ZSM-5分子筛用于合成二甲醚的反应中。在甲醇脱水反应中具有多级介孔的HZSM-5分子筛表现出比常规微孔HZSM-5分子筛更高的反应稳定性和对二甲醚选择性。实验结果还表明微孔分子筛上更加有利于甲醇的吸附,而在甲醇吸附强的样品上,容易产生副产物。虽然合成的多级孔ZSM-5分子筛表面酸性差异较大,但是在合成气直接合成二甲醚反应中,却表现出基本相似的一氧化碳转化率。
     通过对改性以及合成的HZSM-5分子筛作为固体酸催化剂在甲醇脱水和合成气一步法合成二甲醚反应中活性差异的比较,对固体酸催化剂的织构、酸性和形貌特征对合成二甲醚的影响做出总结。结果表明:多级孔分子筛作为载体组成双功能催化剂时,虽然酸性差异很大,但是所有样品的一氧化碳的转化率和二甲醚的选择性都很接近。而水蒸气脱铝和固体氟化铝脱铝制备的HZSM-5载体中,酸性较小时,一氧化碳的转化率都比较低,甲醇的选择性和烯烃的选择性都比较高,说明了在合成气直接合成二甲醚中,对载体酸性的要求不大,载体织构在反应中起到更为重要的作用。
With the rapid growth of the national economy, the demand of energy becomes a widely existed problem both in china and all over the world. Dimethyl ether (DME) is an important chemical material and also a potential clean energy which can substitute diesel and liquefied petroleum gas. Synthesis of DME plays an important role in the aspect of rational use of energy in china.
     At Present, DME mainly produced from syngas by the following two traditional processes: frist synthesis methanol and then dehydration to DME (so called MTD) over the solid-acid catalyst, the second way is direct synthesis of DME form syngas (so called STD) over the bifunctional catalysts consisting of methanol synthesis component and solid-acid component. For MTD process, a suitable solid catalyst is the key factor for its excellent performance.For STD process, the methanol synthesis component has been used successfully for several decades and the reaction mechanism of the catalysts has been well studied. In contrast to methanol synthesis, the methanol dehydration component has received less attention. Among these solid-acid catalysts, γ-Al2O3and HZSM-5are the most widely materials, however, the most suitable temperature for γ-Al2O3is above300℃, and undesirable byproducts in DME synthesis such as hydrocarbons and even coke formed on the HZSM-5zeolite catalyst due to the presence of strong acid sites. So it become very important to search new solid-acid catalyst and develop the post treatment techniques for the MTD and STD process.
     On the basis of the previous study, in this work we choose HZSM-5as research objectives and study its acidity and texture properties, and got the following conclusions:
     Study thermal steam modified HZSM-5zeolite and apply them in the MTD and STD processes. The surface acidity, pores structures, and Si/Al ratio has changed in the dealumination process. The result shows that HZSM-5treat at500℃for2h shows better stability than parent zeolite in MTD process, but for sample which treat at600℃for2h, amorphous fragments produced in the dealumination process blocked some micropores.Amorphous alumiums deduce the side reaction in the STD process.
     Thermal steam method made the total acity on the surface of HZSM-5decreased, which result in a decreased activity of methanol dehydration. So this paper tried to study fluoride solution modified HZSM-5zeolite and apply them in the MTD and STD processes. The incorporation of F-species as electron withdrawing compounds reduce the amount of acid sites but enhance the surface acid strength. NH4F modified HZSM-5zeolite shows excellent activity in MTD process, but in STD process it increase the selectivities for undesired by-products like hydrocarbons and CO2due to the new formed strong acid site
     Fluoride solution modified HZSM-5zeolite exhibed excellent methanol dehydration activities, but fluoride solution seriously pollute the environmental, so modify HZSM-5zeolite with solid AlF3·3H2O by the way of mechanical mixture route was tried and apply them in the MTD and STD processes. The structure, texture, and acidity of HZSM-5catalysts can be adjusted with loading of AIF3. The results show that2wt%of AIF3modification could increase the framework aluminum content and the surface area of HZSM-5, however, when the loading of AIF3came to3wt%or more, the contrary results were obtained, which could be ascribed to the dealumination of the zeolitic framework。2wt%AlF3-modified HZSM-5exhibited much higher activity and better stability than parent HZSM-5in MTD process. In the STD process, it shows relative high selectivities for undesired by-products due to the strong acid site.
     In order to ascertain the role of mesopores in the synthesis of dimethyl ether reaction. The application of HZSM-5with hierarchical mesopores to synthesis DME process was performed in this work. The hierarchical mesopore ZSM-5zeolites shows better stability and high DME selectivity than conventional micropore HZSM-5zeolites for MTD process. The results also show that micropore was more favorable for methanol adsorption, however, the stronger methanol adsorption on the zeolite, the easier by-products can be produced. The acidity properties on the hierarchical mesopore HZSM-5are quite different, whereas the conversion of carbon monoxide was scarcely affected.
     Through comparison of the MTD and STD activities on the various method modified HZSM-5zeolite, we conclude the role of texture, acidity and morphology of HZSM-5catalysts played in the synthesis of DME process. In the STD process, the acidity properties on the hierarchical mesopore HZSM-5are quite different, whereas the conversion of carbon monoxide and selectivity of DME were scarcely affected.However, on the thermal steam and AlF3modified HZSM-5, when dealumination cause acidity decrease obviously, the conversion of carbon monoxide was decrease correspondingly and selectivities for methanol and by-products were increased obviously. This indicate the texture property of solid-acid was more important than acidity property in the STD process.
引文
[1]王海运,应对我国能源安全新挑战的战略思考,中国石化,2013,3:40-44.
    [2]苏晓辉,世界能源形势及我国面临的挑战,时事报告,2012,1:62-70.
    [3]王淑玲,张炜,张桂平,孙张涛,非常规能源开发利用现状及趋势,中国矿业,2013,22(2):5-8.
    [4]何钢,二甲醚原料市场及前景分析,泸天化科技,2004,2:59-61
    [5]唐庆杰,杨素萍,李小炯,吴文荣,二甲醚—21世纪清洁燃料,洁净煤技术,2007,13:5-8
    [6]李伟,张希良,国内二甲醚研究述评,煤炭转化,2007,30:88-95
    [7]Zhao T-S, Takemoto T, Tsubaki N, Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5, Catalysis Communications,2006,7: 647-650
    [8]Chen Y J, Zhou H Q, Zhu J, Zhang Q, Wang Y, Wang D Z, Wei F, Direct synthesis of a fluidizable SAPO-34 catalyst for a fluidized dimethyl ether-to-olefins process, Catalysis Letters,2008,124:297-303
    [9]Spivey J J, Review:Dehydration catalysts for the methanol/dimethyl ether reaction, Chemical Engineering Communications,1991,110:123-142
    [10]Zhou H Q, Wang Y, Wei F, Wang D Z, Wang Z W, In situ synthesis of SAPO-34 crystals grown onto α-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins, Applied Catalysis A:General,2008,341:112-118
    [11]Hibi T, Takahashi K, Okuhara T, Misono M, Yoneda Y, Catalysis by heteropoly compounds x. Synthesis of lower olefins by conversion of dimethyl ether over 12-tungstophosphates, Applied Catalysis,1986,24:69-83
    [12]Dejaifve P, Vedrine J C, Bolis V, Derouane E G, Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite, Journal of Catalysis,1980,63:331-345
    [13]Song W, Fu H, Haw J F, Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34, Journal of the American Chemical Society, 2001,123:4749-4754
    [14]Sassi A, Wildman M A, Ahn H J, Prasad P, Nicholas J B, Haw J F, Methylbenzene chemistry on zeolite HBeta:Multiple insights into methanol-to-olefin catalysis, The Journal of Physical Chemistry B,2002,106:2294-2303
    [15]Lesthaeghe D, Van Speybroeck V, Marin G B, Waroquier M, Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process, Angewandte Chemie,2006,118:1746-1751
    [16]McCann D M, Lesthaeghe D, Kletnieks P W, Guenther D R, Hayman M J, Van Speybroeck V, Waroquier M, Haw J F, A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment, Angewandte Chemie, 2008,120:5257-5260
    [17]Chen D, Petter Rebo H, Moljord K, Holmen A, Dimethyl ether conversion to light olefins over SAPO-34:Deactivation due to coke deposition. In Studies in surface science and catalysis, Elsevier:1998; Vol. Volume 119, pp 521-526.
    [18]Hoffmann G R, Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds, Mutation Research/Reviews in Genetic Toxicology,1980,75:63-129
    [19]常雁红,韩怡卓,王心葵,二甲醚的生产应用及下游产品的开发,天然气化工,2000,25:45-54
    [20]Tartamella Timothy L L S, Role of acid catalysis in dimethyl ether conversion processes, Proc-Annu Int. Pittsurgh Coal Conference,1996,2:996-1001
    [21]Shikada T, Fujimoto K, Miyauchi M, Tominaga H-O, Vapor phase carbonylation of dimethyl ether and methyl acetate with nickel-active carbon catalysts, Applied Catalysis, 1983,7:361-368
    [22]Volkova G G, Plyasova L M, Shkuratova L N, Budneva A A, Paukshtis E A, Timofeeva M N, Likholobov V A, Solid superacids for halide-free carbonylation of dimethyl ether to methyl acetate, Studies in surface science and catalysis, Elsevier:2004; Vol. Volume 147, pp 403-408.
    [23]Wegman R W, Vapour phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts, J. Chem. Soc. Chem. Commun,19948:947-948
    [24]Venugopal A, Palgunadi J, Deog J K, Joo O S, Shin C H, Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M= Ga, La, Y, Zr) and gamma-Al2O3:The role of modifier, Journal of Molecular Catalysis A-Chemical,2009,302:20-27
    [25]Mollavali M, Yaripour F, Atashi H, Sahebdelfar S, Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts, Industrial & Engineering Chemistry Research,2008,47:3265-3273
    [26]Sierra I, Olazar M, Gayubo A G, Aguayo A T, Deactivation of a CuO-ZnO-Al2O3/γ-Al2O3 catalyst in the synthesis of dimethyl ether, Industrial & Engineering Chemistry Research, 2008,47:2238-2247
    [27]Li J L, Zhang X G, Inui T, Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/γ-Al2O3 in hybrid catalysts, Applied Catalysis A:General,1996,147:23-33
    [28]Raoof F, Taghizadeh M, Eliassi A, Yaripour F, Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina, Fuel,2008,87: 2967-2971
    [29]Yaripour F, Baghae F, Schmidt, I, Perregaard J, Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts, Catalysis Communications,2005 6: 147-152
    [30]Sai Prasad P S, Bae J W, Kang S-H, Lee Y-J, Jun K-W, Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts:The superiority of ferrierite over the other zeolites, Fuel Processing Technology,2008,89:1281-1286
    [31]Naik S P, Du H, Wan H, Bui V, Miller J D, Zmierczak W W, A comparative study of ZnO-CuO-Al2O3/SiO2-Al2O3 composite and hybrid catalysts for direct synthesis of dimethyl ether from syngas, Industrial & Engineering Chemistry Research,2008,47: 9791-9794
    [32]王守国,王元鸿,邵允,龚剑,瞿伦玉,H4SiW12O40-La2O3/C-Al2O3催化甲醇脱水制备二甲醚,分子科学学报,2001,2:99-104
    [33]Jiang S, Hwang Y K, Jhung S H, Chang J S, Hwang J S, Cai T X, Park S E, Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether, Chemistry Letters,2004,13:1048-1049
    [34]Fei J H, Hou Z Y, Zhu B, Lou H. Zheng X M, Synthesis of dimethyl ether (DME) on modified HY zeolite and modified hy zeolite-supported Cu-Mn-Zn catalysts, Applied Catalysis A:General,2006,304:49-54
    [35]Aboul-Fotouh S M K, Aboul-Gheit N A K, Hassan M M I, Conversion of methanol using modified H-MOR zeolite catalysts, Chinese Journal of Catalysis,2011,32:412-417
    [36]汤红池,张海涛,应为勇,房鼎业,甲醇气相脱水制二甲醚催化剂,华东理工大学学报,2011,37:133-138
    [37]刘志坚,廖建军,谭经品,李大东,甲醇脱水生成二甲醚的沸石催化剂,石油化工,1999,28:236-240
    [38]慈志敏,储伟,戴晓雁,谢在库,陈庆龄,气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究,四川大学学报(工程科学版),2004,36:28-31
    [39]杨海霞,孙清,傅玉川,沈俭一,Al2(SO4)3-SiO2催化甲醇脱水合成二甲醚,2009,23:139-144
    [40]Skrzypek J, Lachowska M, Moroz H, Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts, Chemical Engineering Science,1991,46:2809-2813
    [41]Wang L, Yang L, Zhang Y, Ding W, Chen S, Fang W, Yang Y, Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas, Fuel Processing Technology,2010,91:723-728
    [42]Lee J, Han S, Kim H, Lee K, Kim Y, Effects of space velocity on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 catalyst, Korean Journal of Chemical Engineering,2000, 17:332-336
    [43]Garcia-Trenco A, Martinez A, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts:New insights into the role of zeolite acidity, Applied Catalysis A: General,2012,411-412:170-179
    [44]Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F, Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, Journal of Catalysis,2007,249:185-194
    [45]Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F, Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH, Applied Catalysis A:General,2008,350:16-23
    [46]Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F, Basic evidences for methanol-synthesis catalyst design, Catalysis Today,2009,143:80-85
    [47]Zhang Y P, Fei J H, Yu Y M, Zheng X M, Study of CO2 hydrogenation to methanol over Cu-V/y-Al2O3 catalyst, Journal of Natural Gas Chemistry,2007,16:12-15
    [48]Jin D F, Zhu B, Hou Z Y, Fei J H, Lou H, Zheng X M, Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite y and dual Cu-Mn-Zn catalysts, Fuel,2007,86:2707-2713
    [49]Tang X J, Fei J H, Hou Z Y, Zheng X M, Lou H, Characterization of Cu-Mn/zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO-H2, Energy & Fuels,2008,22: 2877-2884
    [50]Fujiwara M, Kieffer R, Ando H, Souma Y, Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide, Applied Catalysis A: General,1995,121:113-124
    [51]Fornasari G, Huysser A, Mintchev L, Trifiro F, Vaccaria A, Cobalt-modified Cu-Zn-Cr catalysts in the synthesis of methanol, Journal of Catalysis,1992,135:386-399
    [52]Bae J W, Kang S H, Kim H S, Dhar G M, Jun K W, Enhanced catalytic performance for dimethyl ether synthesis from syngas with the addition of Zr or Ga on a Cu-ZnO-Al2O3/gamma-Al2O3 bifunctional catalyst, Energy & Fuels,2010,24:804-810
    [53]Kang S-H, Bae J W, Prasad P S S, Oh J-H, Jun K-W, Song S-L, Min K-S, Influence of Ga addition on the methanol synthesis activity of Cu/ZnO catalyst in the presence and absence of alumina, Journal of Industrial and Engineering Chemistry,2009,15:665-669
    [54]Ki-Won Jun H-S L, Hyun-Seog Roh, Sang-Eon Park, Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalyst. Bull. Korean Chem. Soc,2002,23:803-806
    [55]Mao D S, Yang W M, Xia J C, Zhang B, Song Q Y, Chen Q L, Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. Journal of Catalysis,2005,230: 140-149
    [56]Mao D S, Xia J C, Zhang B, Lu G Z, Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO-ZnO-Al2O3 and antimony oxide modified HZSM-5 zeolite, Energy Conversion and Management,2010,51:1134-1139
    [57]Jeon J-K, Jeong K-E, Park Y-K, Ihm S-K, Selective synthesis of C3-C4 hydrocarbons through carbon dioxide hydrogenation on hybrid catalysts composed of a methanol synthesis catalyst and SAPO Applied Catalysis A:General,1995,124:91-106
    [58]Cavalcanti F A P, Stakheev A Y, Sachtler W M H, Direct synthesis of methanol, dimethyl ether, and paraffins from syngas over Pd/zeolite Y catalysts, Journal of Catalysis,1992, 134:226-241
    [59]Zhang X B, Zhong L, Guo Q H, Fan H, Zheng H Y, Xie K, Influence of the calcination on the activity and stability of the Cu/ZnO/Al2O3 catalyst in liquid phase methanol synthesis, Fuel,2010,89:1348-1352
    [60]李佩莹,固体酸催化剂剂研究近况综述,广州化工,2010,38:42-44
    [61]Liu H, Iglesia E, Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures, The Journal of Physical Chemistry B,2003,107:10840-10847
    [62]Sierra I, Erena J, Aguayo A T, Arandes J M, Bilbao J, Regeneration of CuO-ZnO-Al2O3/gamma-Al2O3 catalyst in the direct synthesis of dimethyl ether, Applied Catalysis B-Environmental,2010,94:108-116
    [63]Khom-In J, Praserthdam P, Panpranot J, Mekasuwandumrong O, Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed gamma-and chi-crystalline phases, Catalysis Communications,2008,9:1955-1958
    [64]Sung D M, Kim Y H, Park E D, Yie J E, Role of surface hydrophilicity of alumina in methanol dehydration, Catalysis Communications,2012,20:63-67
    [65]Lee E-Y, Park Y-K, Joo O-S, Jung, Kwang D, Methanol dehydration to produce dimethyl ether over g-Al2O3 Reaction Kinetics and Catalysis Letters,2006,89:115-121
    [66]Kim H-J, Jung H, Lee K-Y, Effect of water on liquid phase dme synthesis from syngas over hybrid catalysts composed of Cu/ZnO/Al2O3 and γ-Al2O3, Korean Journal of Chemical Engineering,2001,18:838-841
    [67]Hadipour A, Sohrabi M, Synthesis of some bifunctional catalysts and determination of kinetic parameters for direct conversion of syngas to dimethyl ether, Chemical Engineering Journal,2008,137:294-301
    [68]Seo C W, Jung K D, Lee K Y, Yoo K S, Influence of structure type of Al2O3 on dehydration of methanol for dimethyl ether synthesis, Industrial & Engineering Chemistry Research, 2008,47:6573-6578
    [69]Zhang L W, Wang J H, Wu P, Hou Z Y, Fei J H, Zheng X M, Synthesis of dimethyl ether via methanol dehydration over combined Al2O3-HZSM-5 solid acids, Chinese Journal of Catalysis,2010,31:987-992
    [70]Yang Q, Kong M, Fan Z Y, Meng X J, Fei J H, Xiao F-S, Aluminum fluoride modified HZSM-5 zeolite with superior performance in synthesis of dimethyl ether from methanol, Energy & Fuels,2012,26:4475-4480
    [71]Xia J C, Mao D S, Zhang B, Chen Q L, Zhang Y H, Tang Y, Catalytic properties of fluorinated alumina for the production of dimethyl ether, Catalysis Communications,2006, 7:362-366
    [72]Fu Y, Hong T, Chen J, Auroux A, Shen J, Surface acidity and the dehydration of methanol to dimethyl ether, Thermochimica Acta,2005,434:22-26
    [73]毛东森,杨为民,张斌,卢冠忠,氧化铝的改性及其在合成气直接制二甲醚反应中的应用,催化学报,2006,27:515-521
    [74]Mao D S, Yang W M, Xia J C, Zhang B, Lu G, The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified y-alumina as methanol dehydration components, Journal of Molecular Catalysis A:Chemical,2006,250:138-144
    [75]Yaripour F, Baghaei F, Schmidt I, Perregaard J. Synthesis of dimethyl ether from methanol over aluminium phosphate and Silica-Titania catalysts, Catalysis Communications,2005,6: 542-549
    [76]Nie R F, Wang J H, Fei J H, Hou Z Y, Zheng X M, Preparation of mesoporous alumina and its application in dehydration of methanol to dimethyl ether, Chinese Journal of Catalysis (Chinese Version),2011,32:379-384
    [77]Khom-in J, Praserthdam P, Panpranot J, Mekasuwandumrong O, Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and x-crystalline phases, Catalysis Communications,2008,9:1955-1958
    [78]Sun Q, Fu Y, Yang H, Auroux A, Shen J, Dehydration of methanol to dimethyl ether over Nb2O5 and NbOPO4 catalysts:Microcalorimetric and ft-ir studies, Journal of Molecular Catalysis A:Chemical,2007,275:183-193
    [79]Hussain S T, Mazhar M, Gul S, Increase in concentration and strength of acidic catalytic sites on sulfated zirconia by doping with silica, Chinese Journal of Catalysis,2007,28: 622-626
    [80]Takeguchi T, Yanagisawa K-i, Inui T, Inoue M, Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids, Applied Catalysis A:General,2000,192:201-209
    [81]Xu M, Lunsford J H, Goodman D W, Bhattacharyya A, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Applied Catalysis A:General,1997149: 289-301
    [82]Vishwanathan V, Roh H-S, Kim J-W, Jun K-W, Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether, Catalysis Letters, 2004,96:23-28
    [83]Wang C-T, Lin J-C, Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts, Applied Surface Science,2008,254:4500-4507
    [84]Khaleel A, Titanium-doped alumina for catalytic dehydration of methanol to dimethyl ether at relatively low temperatures, Fuel,2011,90:2422-2427
    [85]Crepeau G, Montouillout V, Vimont A, Mariey L, Cseri T, Mauge F, Nature, structure and strength of the acidic sites of amorphous silica alumina:An IR and NMR study, Journal of Physical Chemistry B,2006,110:15172-15185
    [86]Lertjiamratn K, Praserthdam P, Arai M, Panpranot J, Modification of acid properties and catalytic properties of AIPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether, Applied Catalysis A-General,2010,378:119-123
    [87]Siva Kumar V, Padmasri A H, Satyanarayana C V V, Ajit Kumar Reddy I, David Raju B, Rama Rao K S, Nature and mode of addition of phosphate precursor in the synthesis of aluminum phosphate and its influence on methanol dehydration to dimethyl ether, Catalysis Communications,2006,7:745-751
    [88]Shchelokov I, Asabina E, Sukhanov M, Ermilova M, Orekhova N, Pet'kov V, Tereshchenko G, Synthesis, surface properties and catalytic activity of phosphates Cu0.5(1+y)FeyZr(2-y)(PO4)3 in methanol conversion, Solid State Sciences,2008,10:513-517
    [89]Xu Y B, Lu J Y, Wang J D, Suzuki Y, Zhang Z-G, The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at severe and periodic CH4-H2 switch operating conditions, Chemical Engineering Journal,2011,168:390-402
    [90]Yan G Y, Long J L, Wang X X, Li Z H, Fu X Z, Photoactive sites in commercial HZSM-5 zeolite with iron impurities:An UV raman study, C. R. Chimie,2008,11:114-119
    [91]Louis B, Reuse P, Kiwi-Minsker L, Renken A, Synthesis of ZSM-5 coatings on stainless steel grids and their catalytic performance for partial oxidation of benzene by N2O, Applied Catalysis A:General,2001,210:103-109
    [92]Chen H-Y, Sachtler W M H, Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catalysis Today,1998,42:73-83
    [93]Tabak S A, Krambeck F J, Garwood W E, Conversion of propylene and butylene over ZSM-5 catalyst, Aiche Journal,1986,32:1526-1531
    [94]Laugel G, Nitsch X, Ocampo F, Louis B, Methanol dehydration into dimethylether over ZSM-5 type zeolites raise in the operational temperature range, Applied Catalysis A:General,2011,402:139-145
    [95]Erena J, Garona R, Arandes J M, Aguayo A T, Bilbao J, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Catalysis Today,2005,107-108:467-473
    [96]Jiang S, Hwang J-S, Jin T, Cai T, Cho W, Baek Y S, Park S-E, Dehydration of methanol to dimethyl ether over ZSM-5 zeolite, Bull. Korean Chem. Soc,2004,25:185-189
    [97]Xu Q L, Li T C, Yan Y J, Effects of CaO-modified zeolite on one-step synthesis of dimethyl ether, Journal of fuel chemistry and technology,2008,36(2):176-180
    [98]Khandan N K M, Aghaziarati M, Dehydration of methanol to dimethyl ether employing modified H-ZSM-5 catalysts, Iranian Journal of Chemical Engineering,2009,6:3-11
    [99]Xia J C, Mao D S, Zhang B, Chen Q L, Tang Y, One-step synthesis of dimethyl ether from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst, Catalysis Letters,2004,98: 235-240
    [100]Ouyang J, Kong F, Su G, Hu Y, Song Q, Catalytic conversion of bio-ethanol to ethylene over La-modified HZSM-5 catalysts in a bioreactor, Catalysis Letters,2009,132:64-74
    [101]Zhao G L, Teng J W, Xie Z K, Jin W Q, Yang W M, Chen Q L, Tang Y, Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene, Journal of Catalysis,2007,248:29-37
    [102]Vedrine J C, Auroux A, Dejaifve P, Ducarme V, Hoser H, Zhou S, Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite, Journal of Catalysis,1982,73: 147-160
    [103]Jiang G Y, Zhang L, Zhao Z, Zhou X Y, Duan A J, Xu C M, Gao J S, Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins, Applied Catalysis A:General,2008,340:176-182
    [104]Vishwanathan V, Jun K-W, Kim J-W, Roh H-S, Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts, Applied Catalysis A: General,2004,276:251-255
    [105]Hassanpour S, Yaripourb F, Taghizadeh M, Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether, Fuel Processing Technology,2010,91: 1212-1221
    [106]Mao D S, Zhang B, Song Q Y, Yang W M, Chen Q L, Effect of Mg-Modified HZSM-5 on Catalytic Performance of Cu-ZnO-Al2O3/HZSM-5 for Direct Synthesis of Dimethyl Ether from Syngas, Chinese Journal of Catalysis,2005,26:365-370
    [107]Zhang C, Guo X W, Song C S, Zhao S Q, Wang X S, Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol, Catalysis Today,2010,149:196-201
    [108]Sano T, Yamashita N, Iwami Y, Takeda K, Kawakami Y, Estimation of dealumination rate of ZSM-5 zeolite by adsorption of water vapor, Zeolites,1996,16:258-264
    [109]Triantafillidis C S, Vlessidis A G, Nalbandian L, Evmiridis N P, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Microporous and Mesoporous Materials,2001,47: 369-388
    [110]Loeffler E, Peuker C, Jerschkewitz H G, The influence of dealumination on the infrared spectra of H-ZSM-5, Catalysis Today,1988,3:415-420
    [111]Lee K H, Ha B H, Characterization of mordenites treated by HCl/steam or HF, Microporous and Mesoporous Materials,1998,23:211-219
    [112]Ban S, van Laak A N C, Landers J, Neimark A V, de Jongh P E, de Jong K P, Vlugt T J H, Insight into the effect of dealumination on mordenite using experimentally validated simulations, Journal of Physical Chemistry C,2010,114:2056-2065
    [113]Gayubo A G, Alonso A, Valle B, Aguayo A T, Bilbao J, Selective production of olefins f from bioethanol on HZSM-5 zeolite catalysts treated with naoh, Applied Catalysis B: Environmental,2010,97:299-306
    [114]Rac V, Rakic V, Miladinovic Z, Stosic D, Auroux A, Influence of the desilication process on the acidity of HZSM-5 zeolite, Thermochimica Acta,
    [115]Jin F, Cui Y G, Rui Z B, Li Y D, Effect of sequential desilication and dealumination on catalytic performance of ZSM-5 catalyst for pyridine and 3-picoline synthesis. Journal of Materials Research,2010,25:272-282
    [116]Kollmer F, Hausmann H, Hoelderich W F, (NH4)2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O 2. A comparative study with ferrisilicalite and dealuminated and iron-exchanged ZSM-5, Journal of Catalysis,2004,227:408-418
    [117]Feng X, Jiang G Y, Zhao Z, Wang L, Li X H, Duan A J, Liu J, Xu C M, Gao J S, Highly effective F-modified HZSM-5 catalysts for the cracking of naphtha to produce light olefins, Energy & Fuels,2010,24:4111-4115
    [118]Sanchez N A, Saniger J M, de la Caillerie J B D, Blumenfeld A L, Fripiat J J, Dealumination and surface fluorination of H-ZSM-5 by molecular fluorine, Microporous and Mesoporous Materials,2001,50:41-52
    [119]Kollmer F, Hausmann H, Hoelderich W F, (NH4)2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O 1. Influence of the treatment method, Journal of Catalysis,2004,227:398-407
    [120]Corma A, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews,1997,97:2373-2419
    [121]Le Van Mao R, Le T S, Preparation of fluorinated-desilicated ZSM-5 zeolites with high surface acidity properties, Microporous and Mesoporous Materials,2000,34:93-97
    [122]Li Y G, Liu L, Huang X M, Liu X M, Shen W J, Xu Y D, Bao X H, Enhanced performance of methane dehydro-aromatization on Mo-based HZSM-5 zeolite pretreated by NH4F, Catalysis Communications,2007,8:1567-1572
    [123]Le Van Mao R, Le T S, Fairbairn M, Muntasar A, Xiao S, Denes G, ZSM-5 zeolite with enhanced acidic properties, Applied Catalysis A:General,1999,185:41-52
    [124]Sanchez N A, Saniger J M, de la Caillerie J B D, Blumenfeld A L, Fripiat J J, Reaction of HY zeolite with molecular fluorine, Journal of Catalysis,2001,201:80-88
    [125]Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J, Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves, Applied Catalysis A:General,2012,413-414:36-42
    [126]Ivanova S, Vanhaecke E, Louis B, Libs S, Ledoux M J, Rigolet S, Marichal C, Pham C, Luck F, Pham-Huu C, Efficient synthesis of dimethyl ether over HZSM-5 supported on medium-surface-area Beta-SiC foam, Chemsuschem,2008,1:851-857
    [127]Ivanova S, Vanhaecke E, Dreibine L, Louis B, Pham C, Pham-Huu C, Binderless HZSM-5 coating on β-SiC for different alcohols dehydration, Applied Catalysis A:General,2009, 359:151-157
    [128]Yoo K S, Kim J-H, Park M-J, Kim S-J, Joo O-S, Jung K-D, Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts, Applied Catalysis A:General,2007,330: 57-62
    [129]Pop G, Bozga G, Ganea R, Natu N, Methanol conversion to dimethyl ether over H-SAPO-34 catalyst, Industrial & Engineering Chemistry Research,2009,48:7065-7071
    [130]Dai W L, Kong W B, Wu G J, Li N, Li L D, Guan N J, Catalytic dehydration of methanol to dimethyl ether over aluminophosphate and silico-aluminophosphate molecular sieves, Catalysis Communications,2011,12:535-538
    [131]Jiang S, Hwang Y K, Jhung S H, Chang J-S, Hwang J-S, Cai T, Park S-E, Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether, Chemistry Letters,2004,33:1048-1049
    [132]Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E, Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites, Journal of Catalysis,2007, 245:110-123
    [133]Boronat M, Martinez-Sanchez C, Law D, Corma A, Enzyme-like specificity in zeolites:A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO, Journal of the American Chemical Society,2008,130:16316-16323
    [134]Sarkadi-Priboczki E, Kumar N, Salmi T, Kovacs Z, Murzin D Y, A novel radioisotope method for studying catalytic transformations over alumina, H-ZSM-5 and H-Beta zeolite catalysts:Investigation of conversion of 11C-Labeled methanol to 11C-Labeled dimethyl ether and hydrocarbons, Catalysis Letters,2004,93:101-107
    [135]Dejaifve P, Auroux A, Gravelle P C, Vedrine J C, Gabelica Z, Derouane E G, Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites:A comparative study of the formation and stability of coke deposits, Journal of Catalysis,1981,70:123-136
    [136]Baek S-C, Lee Y-J, Jun K-W. Hong S B, Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion, Energy & Fuels,2009,23:593-598
    [137]Kim G-J, Kim J-H, Shoji H, Incorporation of vanadium into zsm-5, mordenite and y type zeolite and their catalytic properties. In Studies in surface science and catalysis, S.-K. I. Hakze Chon,Young Sun, U., Eds. Elsevier:1997; Vol. Volume 105, pp 1101-1108.
    [138]Richter M, Fait M J G, Eckelt R, Schneider M, Radnik J, Heidemann D, Fricke R, Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite y at normal pressure, Journal of Catalysis,2007,245:11-24
    [139]Moradi G R, Yaripour F, Vale-Sheyda P, Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts, Fuel Processing Technology,2010,91:461-468
    [140]Zheng J J, Ma J H, Wang Y, Bai Y D, Zhang X W, Li R F, Synthesis and catalytic property of a zeolite composite for preparation of dimethyl ether from methanol dehydration, Catalysis Letters,2009,130:672-678
    [141]Khandan N, Kazemeini M, Aghaziarati M, Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether, Applied Catalysis A:General, 2008,349:6-12
    [142]Jain J R, Pillai C N, Catalytic dehydration of alcohols over alumina:Mechanism of ether formation, Journal of Catalysis,1967,9:322-330
    [143]Forester T R, Howe R F, In situ ftir studies of methanol and dimethyl ether in ZSM-5, Journal of the American Chemical Society,1987,109:5076-5082
    [144]Bandiera J, Naccache C, Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centres,Applied Catalysis,1991,69:139-148
    [145]Schiffino R S, Merrill R P, A mechanistic study of the methanol dehydration reaction on gamma-alumina catalyst, Journal of Physical Chemistry,1993,97:6425-6435
    [146]解峰,黎汉生,赵学良,任飞,王德峥,王金福,刘敬利,甲醇在活性A1203催化剂表面的吸附与脱水反应,催化学报,2004,25:403-408
    [147]Wang W, Seiler M, Hunger M, Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow mas NMR spectroscopy, The Journal of Physical Chemistry B,2001,105:12553-12558
    [148]Blaszkowski S R, van Santen R A, Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons, The Journal of Physical Chemistry B,1997,101:2292-2305
    [1]Wang L F, Zhang Z, Yin C Y, Shan Z C, Xiao F-S, Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers, Micropor Mesopor Mat,2010, 131:58
    [1]Laugel G, Nitsch X, Ocampo F, Louis B, Methanol dehydration into dimethylether over ZSM-5 type zeolites raise in the operational temperature range, Applied Catalysis A: General,2011,402:139-145
    [2]Mao D S, Yang W M, Xia J C, Zhang B, Song Q Y, Chen Q L, Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component, Journal of Catalysis,2005,230: 140-149
    [3]Erena J, Garona R, Arandes J M, Aguayo A T, Bilbao J, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Catalysis Today,2005,467-473
    [4]Mao D S, Zhang B, Song Q Y, Yang W M, Chen Q L, Effect of Mg-modified HZSM-5 on catalytic performance of Cu-ZnO2-Al2O3/HZSM-5 for direct synthesis of dimethyl ether from syngas, Chinese Journal of Catalysis,2005,26:365-370
    [5]Jin D F, Zhu B, Hou Z Y, Fei J H, Lou H, Zheng X M, Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite y and dual Cu-Mn-Zn catalysts, Fuel,2007,86:2707-2713
    [6]谭猗生,赵霞,潘俊轩,解红娟,牛玉琴,复合催化剂中H-ZSM-5酸性对合成气制二甲醚的影响,分子催化,1999,13:247-251
    [7]Zecchina A, Bordiga S, Spoto G, Marchese L, Silicaiite characterization.1. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes, J. Phys. Chem.,1992,96:4985-4990
    [8]Wu L E, Lawton S L, Olson D H, Rohrman A C, Jr, and Kokotailo G T, ZSM-5-Type materials. Factors affecting crystal symmetry, The Journal of Physical Chemistry,1979,83: 2777-2781
    [9]Yang Q, Kong M, Fan Z Y, Meng X J, Fei J H, Xiao F-S, Aluminum fluoride modified HZSM-5 zeolite with superior performance in synthesis of dimethyl ether from methanol, Energy & Fuels,2012,26:4475-4480
    [10]Triantafyllidis C S, Vlessidis A G, Nalbandian L, Evmiridis N P, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Microporous and Mesoporous Materials,2001,47:369-388
    [11]Jin L J, Hu H Q, Zhu S W, Ma B, An improved dealumination method for adjusting acidity of HZSM-5, Catalysis Today,2010,149:207-211
    [12]Bibby D M, Aldridge, L P, Milestone N B, Determination of the aluminium content of the zeolite ZSM-5 from peak positions in the X-Ray powder diffraction pattern, Journal of catalysis,1981,72:373-374
    [13]Ban S, van Laak A N C, Landers J, Neimark A V, de Jongh P E, de Jong K P, Vlugt T J H, Insight into the effect of dealumination on mordenite using experimentally validated simulations, Journal of Physical Chemistry C,2010,114:2056-2065
    [14]Li W C, Lu A H, Palkovits R, Schmidt W, Spliethoff B, Schuth F, Hierarchically structured monolithic Silicalite-1 consisting of crystallized nanoparticles and its performance in the beckmann rearrangement of cyclohexanone oxime, Journal of the American Chemical Society,2005,127:12595-12600
    [15]Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J, Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves, Applied Catalysis A:General,2012,413-414:36-42
    [16]Jiang S, Hwang Y K, Jhung S H, Chang J S, Hwang J S, Cai T X, Park S E, Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether, Chemistry Letters,2004,33:1048-1049
    [17]毛东森,夏建超,陈庆龄,卢冠忠,氟硅酸铵改性对HMCM-22酸性及双功能催化剂催化合成二甲醚性能的影响,催化学报,2008,29:1242-1246
    [18]Le Van Mao R, Le T S, Fairbairn M, Muntasar A, Xiao S, Denes G, ZSM-5 zeolite with enhanced acidic properties, Applied Catalysis A:General,1999,185:41-52
    [19]Feng X, Jiang G Y, Zhao Z, Wang L, Li X H, Duan A J, Liu J, Xu C M, Gao J S, Highly effective F-modified HZSM-5 catalysts for the cracking of naphtha to produce light olefins, Energy & Fuels,2010,24:4111-4115
    [20]Xu M C, Wang W, Seiler M, Buchholz A, Hunger M, Improved bronsted acidity of mesoporous [Al]MCM-41 material treated with ammonium fluoride, Journal of Physical Chemistry B,2002,106:3202-3208
    [21]Zhang C, Guo X W, Wang Y N, Wang X S, Song C S, Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO, Chinese Chemical Letters,2007,18:1281-1284
    [22]Wang Y N, Guo X W, Zhang C, Song F L, Wang X S, Liu H O, Xu X C, Song C S, Zhang W P, Liu X M, Han X W, Bao X H, Influence of calcination temperature on the stability of fluorinated nanosized HZSM-5 in the methylation of biphenyl, Catalysis Letters,2006,107: 209-214
    [23]Sanchez N A, Saniger J M, de la Caillerie J B D, Blumenfeld A L, Fripiat J J, Dealumination and surface fluorination of H-ZSM-5 by molecular fluorine, Microporous and Mesoporous Materials,2001,50:41-52
    [24]Kowalak S, Szymkowiak E, Laniecki M, Catalytic properties of zeolite CeY modified with NH4F, Journal of Fluorine Chemistry,1999,93:175-180
    [25]Wang Y N, Guo X W, Zhang C, Song F L, Wang X S, Liu H-O, Xu X C, Song C S, Zhang W P, Liu X M, Han X W, Bao X H, Influence of calcination temperature on the stability of fluorinated nanosized HZSM-5 in the methylation of biphenyl, Catalysis Letters,2006,107: 209-214
    [26]Han S, Schmitt K D, Schramm S E, Shihabi D S, Chang C D, Evidence of zeolite-solution equilibrium for isomorphous substitution using aqueous metal fluoride complexes, Inorganica Chimica Acta,1995,229:81-85
    [27]Skeels G W, Flanigen E M, Zeolite chemistry vii-framework substitution for aluminum in zeolites via secondary synthesis treatment. Studies in surface science and catalysis, Elsevier:1989; Vol. Volume 49, pp 331-344
    [28]Aneke L E, Gerritsen L A, Van Den Beng P J, De Jong W A, The disproportionation of toluene over a HY/B-AIF3/Cu catalyst 1. Preparation and characterization, Journal of catalysts,1979,59:26-36
    [29]Dessau R M, Kerr G T, Aluminum incorporation into high silica zeolites, Zeolites,1984,4: 315
    [30]Corma A, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chemical Reviews,1995,95:559-614
    [1]Feng X, Jiang G Y, Zhao Z, Wang L, Li X H, Duan A J, Liu J, Xu C M, Gao J S, Highly effective F-modified HZSM-5 catalysts for the cracking of naphtha to produce light olefins, Energy & Fuels,2010,24:4111-4115
    [2]Lee K H, Ha B H, Characterization of mordenites treated by HCl/steam or HF, Microporous and Mesoporous Materials,1998,23:211-219
    [3]Le Van Mao R, Le T S, Fairbairn M, Muntasar A, Xiao S, Denes G, ZSM-5 zeolite with enhanced acidic properties, Applied Catalysis A:General,1999,185:41-52
    [4]Kollmer F, Hausmann H, Hoelderich W F, (NH4)2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O 2. A comparative study with ferrisilicalite and dealuminated and iron-exchanged ZSM-5, Journal of Catalysis,2004,227:408-418
    [5]Sanchez N A, Saniger J M, de la Caillerie J B D, Blumenfeld A L, Fripiat J J, Dealumination and surface fluorination of H-ZSM-5 by molecular fluorine, Microporous and Mesoporous Materials,2001,50:41-52
    [6]Wu L E, Lawton S L, Olson D H, Rohrman A C, Jr, and Kokotailo G T, ZSM-5-Type materials. Factors affecting crystal symmetry, The Journal of Physical Chemistry,1979,83: 2777-2781
    [7]Zecchina A, Bordiga S, Spoto G, Marchese L, Silicaiite characterization.1. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes, J. Phys. Chem.,1992,96:4985-4990
    [8]Triantafyllidis C S, Vlessidis A G, Nalbandian L, Evmiridis N P, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Microporous and Mesoporous Materials,2001,47:369-388
    [9]Jin L J, Hu H Q, Zhu S W, Ma B, An improved dealumination method for adjusting acidity of HZSM-5, Catalysis Today,2010,149:207-211
    [10]Han S, Schmitt K D, Schramm S E, Shihabi D S, Chang C D, Evidence of zeolite-solution equilibrium for isomorphous substitution using aqueous metal fluoride complexes, Inorganica Chimica Acta,1995,229:81-85
    [11]Ban S, van Laak A N C, Landers J, Neimark A V, de Jongh P E, de Jong K P, Vlugt T J H, Insight into the effect of dealumination on mordenite using experimentally validated simulations, Journal of Physical Chemistry C,2010,114:2056-2065
    [12]Li W C, Lu A H, Palkovits R, Schmidt W, Spliethoff B, Schuth F, Hierarchically structured monolithic Silicalite-1 consisting of crystallized nanoparticles and its performance in the beckmann rearrangement of cyclohexanone oxime, Journal of the American Chemical Society,2005,127:12595-12600
    [13]Konig R, Scholz G, Bertram R, Kemnitz E, Crystalline aluminium hydroxy fluorides-suitable reference compounds for (19)F chemical shift trend analysis of related amorphous solids, Journal of Fluorine Chemistry,2008,129:598-606
    [14]Kao H M, Liao Y C, Direct Solid-State NMR observation of tetrahedral aluminum fluorides in zeolite HY fluorinated by ammonium fluoride, Journal of Physical Chemistry C,2007, 111:4495-4498
    [15]Sanchez N A, Saniger J M, de la Caillerie J B D, Blumenfeld A L, Fripiat J J, Reaction of HY zeolite with molecular fluorine, Journal of Catalysis,2001,201:80-88
    [16]Xu M C, Wang W, Seiler M, Buchholz A, Hunger M, Improved bronsted acidity of mesoporous [Al]MCM-41 material treated with ammonium fluoride, Journal of Physical Chemistry B,2002,106:3202-3208
    [17]Xu D, Luo Y Q, Ji Y, Zhou L, Gai W K, Thermal behavior of aluminum fuoride trihydrate, Thermochimica Acta,2000,352-353:47-52
    [18]Corma A, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chemical Reviews,1995,95:559-614
    [19]Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J, Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves, Applied Catalysis A:General,2012,413-414:36-42
    [20]Laugel G, Nitsch X, Ocampo F, Louis B, Methanol dehydration into dimethylether over ZSM-5 type zeolites raise in the operational temperature range, Applied Catalysis A:General,2011,402:139-145
    [21]Jin D F, Zhu B, Hou Z Y, Fei J H, Lou H, Zheng X M, Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts, Fuel,2007,86:2707-2713
    [22]Garcia-Trenco A, Vidal-Moya A, Martinez A, Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction, Catalysis Today,2012,179:43-51
    [23]Garcia-Trenco A, Martinez A, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts:New insights into the role of zeolite acidity, Applied Catalysis A: General,2012,411-412:170-179
    [24]Erena J, Garona R, Arandes J M, Aguayo A T, Bilbao J, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Catalysis Today,2005,107-108:467-473
    [25]Kim J-H, Park M J, Kim S J, Joo O-S, Jung K-D, Dme synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5, Applied Catalysis A:General,2004,264: 37-41
    [1]Xiao F-S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlogl R, Yokoi T, Tatsumi T, Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers, Angewandte Chemie, 2006,118:3162-3165
    [2]Weitkamp J, Zeolites and catalysis, Solid State Ionics,2000,131:175-188
    [3]Xue Z T, Zhang T, Ma J H, Miao H X, Fan W M, Zhang Y Y, Li R F, Accessibility and catalysis of acidic sites in hierarchical zsm-5 prepared by silanization, Microporous and Mesoporous Materials,2012,151:271-276
    [4]Wang L F, Zhang Z, Yin C Y, Shan Z C, Xiao F-S, Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers, Microporous and Mesoporous Materials,2010,131:58-67
    [5]Triantafyllidis C S, Vlessidis A G, Nalbandian L, Evmiridis N P, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of h-zsm-5 zeolites, Microporous and Mesoporous Materials,2001,47:369-388
    [6]Ban S, van Laak A N C, Landers J, Neimark A V, de Jongh P E, de Jong K P, Vlugt T J H, Insight into the effect of dealumination on mordenite using experimentally validated simulations, Journal of Physical Chemistry C,2010,114:2056-2065
    [7]Vernimmen J, Meynen V, Herregods S J F, Mertens M, Lebedev O I, Tendeloo G V, Cool P, New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis, European Journal of Inorganic Chemistry,2011,2011:4234-4240
    [8]Zhang C, Guo X W, Song C S, Zhao S Q, Wang X S, Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol, Catalysis Today,2010,149:196-201
    [9]Yang Q, Kong M, Fan Z Y, Meng X J, Fei J H, Xiao F-S, Aluminum fluoride modified HZSM-5 zeolite with superior performance in synthesis of dimethyl ether from methanol, Energy & Fuels,2012,26:4475-4480
    [10]Tang X J, Fei J H, Hou Z Y, Zheng X M, Lou H, Characterization of Cu-Mn/zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO-H2, Energy & Fuels,2008,22: 2877-2884

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700