用户名: 密码: 验证码:
基于混沌蚂蚁的群集协同求解算法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群集智能源于对社会性生物群集行为的研究,科学界的研究动机是分析生物群集通过个体之间的相互作用产生的涌现和自组织行为,工程应用领域的研究目的是构建由大量简单嵌入式设备构成的分布式自治系统,如无线自组织网络、机器人协作系统等。尽管群集智能在这两方面已经取得了大量的成果,但大部分研究集中在蚁群优化算法(Ant Colony Optimization,ACO)和粒子群算法(Particle Swarm Optimization,PSO)等随机型算法,且多关注这类算法的应用,而没有考虑群集内个体之间的信息协同交互方式以及研究尺度对算法求解效果的影响,也很少涉及群集智能的协同求解方法研究。
     近年来,生物学家Cole对群居蚂蚁的研究中发现,蚂蚁个体的活动是混沌的,而整个蚁群则是一种周期性行为,并且学者Sole给出了蚂蚁个体行为的混沌映射表达式。蚂蚁群集智能体现在自发地分布式协调资源配置来协同完成任务的自组织行为,若从动力学的角度看,蚁群的自组织能力必然与蚂蚁个体的混沌行为存在着内在的联系,所以我们认为蚁群的周期性行为正是一个由混沌态到自组织态的转换过程。
     因此,本论文从微观层内个体、微观层个体与宏观层群集之间的联系两个角度分析蚂蚁个体混沌行为与蚁群的自组织行为之间的关系,围绕如何构建蚂蚁群集协同求解算法进行研究,形成组合优化问题、高维函数优化问题、复杂分布式协同优化问题、动态分布式约束优化问题的协同求解方法,以深化和拓宽群集智能的研究。
     本论文的主要研究工作如下:
     (1)对当前相关研究工作进行了调查、分析与总结,指出需要进一步解决的问题。从混沌同步的角度,阐释了混沌蚂蚁群算法(Chaotic Ant Swarm,CAS)的协同机制;
     (2)从微观层内个体之间信息交互方式的角度,构建了基于混沌蚂蚁群算法的组合优化问题协同求解算法。首先,提出了求解经典TSP的集中式算法(Chaotic Ant Swarm for the Traveling Salesman Problem,CAS-TSP),该算法在CAS的基础上引入连续空间到离散空间的映射、反向操作和交义操作,数值仿真实验表明该算法对标准测试问题库TSPLIB中实例是有效的;然后,提出了求解无线传感器网络分布式任务分配算法(Chaotic Ant Swarm for Decentralized Task Allocation,CAS-DTA),该算法的目标函数考虑了任务能耗和任务执行可靠性,任务分配的过程通过任务映射、通信路由分配和任务分配方案优化三个步骤获得,其中任务映射由蚂蚁的混沌行为产生,通信路由分配由蚂蚁的邻居选择方法确定,用A*算法实现,任务分配方案优化由蚁群的自组织能力实现;大量的仿真实验表明了CAS-DTA算法能有效地延长无线传感器网络生命期、节省能量消耗和均衡网络负载;
     (3)从微观层内蚂蚁个体行为及其之间交互方式的角度,为减少协同个体之间交互的计算量和通信量,提出了扰动混沌蚂蚁群算法(Disturbance Chaotic Ant Swarm,DCAS)。由于混沌蚁群优化算法CAS求解高维优化问题存在计算复杂和搜索精度低的问题,DCAS算法通过建立新的蚂蚁最优位置更新方法、邻居选择形式和自适应扰动三个策略改进CAS算法,实现了对CAS算法的性能改善,并证明了DCAS算法的全局收敛性。通过两组测试函数,对DCAS算法的性能进行了高达1000维的大量仿真实验,测试结果表明DCAS算法对复杂的高维优化问题可行有效;
     (4)从微观层个体相互作用与宏观层群集行为的联系角度,基于动态信息熵,提出了基于混沌蚂蚁的复杂分布式系统协同优化方法。在复杂系统理论指导下,分析复杂分布式系统中自主Agent的基本动力学特征,进而提出复杂分布式系统协同优化模型;在此基础上,借助混沌蚂蚁群算法的思想,建立基于混沌蚂蚁的复杂分布式系统协同优化算法(CAS based Collaborative Optimization,CAS-CO)。通过对复杂多Agent网络中基于位置的任务分配问题进行仿真实验,同时与已有算法的仿真结果比较,表明CAS-CO算法的可行性和有效性,说明了所提出模型的正确性和Agent的自主性在复杂分布式系统设计与构建中的重要性;
     (5)从微观层个体行为与宏观层群集行为的决策关系角度,提出了一种群集自治的分布式协调算法(Decentralized Coordination Algorithm,DCA),能够有效协调群集个体并使它们的状态达到整体最优组态。DCA算法受单个蚂蚁的混沌行为和整个蚁群的自组织行为启发而设计,首先,将每个Agent看作一个非线性振子,表现单个蚂蚁的混沌行为;然后,借鉴蚁群的自组织行为建立自组织机制,并分析了DCA算法的收敛性;最后,采用群集节点的聚集、分散问题评估DCA算法的有效性,并与分布式梯度算法相比,仿真结果表明了DCA算法能使群集节点自治地达到最优组态。此外,采用DCA算法分布式协调机制,结合动态分布式约束优化问题,进一步提出了基于混沌蚂蚁的动态分布式约束优化问题协同求解算法(Chaotic Ant based Dynamic Distributed Constraint Optimization Problem,CA-DDCOP)。该算法首先根据单只蚂蚁的混沌行为,建立Agent的受控变量混沌选值策略,实现Exploration操作;然后模拟蚁群的自组织行为,构建Agent个体受其邻居和自组织能力的作用机制,实现Exploitation操作;最后基于玻尔兹曼分布建立群集宏观层对个体微观层的决策关系,实现Exploration与Exploitation操作协同求解。为评估CA-DDCOP算法性能,还将CA-DDCOP算法应用于多射频多信道(Multi-Radio Multi-Channel)无线Ad Hoc网络的信道分配。在信道分配中,网络节点需要根据它感知到的信道干扰情况,协调节点之间的信道分配组态,最大化其收益。相关的仿真实验表明了CA-DDCOP算法求解动态的信道分配问题是有效的。
Swarm intelligence (SI) is derived from the studies of the biological collective behavior, the scientific motivation for studying SI is the analysis of emergent and self-organizing swarming behaviors with distributed interactions among individuals, and the engineering objective for studying SI is to build a distributed autonomous system consisting of a large number of simple embedded equipments, such as wireless ad hoc networks, robot collaboration system. Although a lot of results have been gotten in these two areas, most of them are on the stochastic algorithms including ant colony optimization (ACO) and particle swarm optimization (PSO). In particular, more attentions are paid to apply the above two stochastic algorithms. In previous studies, the effects of both collaborative interactions between the individuals and research scales are concerned to these stochastic algorithms; furthermore, collaborative swarm algorithms are rarely involved.
     In recent years, a biologist named Cole investigated the behaviors of social ants, and discovered that the single ant shows chaotic activity pattern, while the whole ant colony exhibits a periodic behavior. Moreover, a famous scholar Sole gave a chaotic mapping expression of individual ant's behavior. As well known, the intelligence of ant colony lies in self-organizing behavior that the ants can cooperate to finish tasks one by one with the spontaneous distributed coordination for resources assignment. From the viewpoint of dynamics, it is evident that the self-organization ability of ant colony must have inherent relations with the chaotic behavior of individual ant. As a result, we believe that the periodic behavior is a process of transforming chaos to self-organization.
     Therefore, we analyze the relations between the chaotic behaviors of individuals and the self-organizing behavior of ant colony from the aspects of the two scales including individual micro-level, individual micro-level and collective macro-level. Then we focus on how to establish some collaborative swarm algorithms for the combinatorial optimization problems, the high-dimensional function optimization problems, the complex distributed collaborative optimization problems, and the dynamic distributed constraint optimization problems so as to deepen and broaden the studies of SI.
     The main works of the present dissertation are as follows:
     (1) At the beginning of our studies, we conduct a survey, analysis and summary on the current researches, and point out some problems to be further resolved in this dissertation. Moreover, we elaborate the collaborative mechanisms of chaotic ant swarm (CAS) from chaos synchronization;
     (2) In this dissertation, we construct two collaborative swarm algorithms for the combinatorial optimization problems based on CAS from the perspective of the information interactions between the individuals. Firstly, we propose a centralized algorithm for the classical TSP (CAS-TSP). The CAS-TSP is developed by introducing a mapping from a continuous space to a discrete space, a reverse operator and a crossover operator into the CAS. Computer simulations demonstrate that the CAS-TSP is capable of generating optimal solution to some instances of TSPLIB. Secondly, we present a decentralized task allocation algorithm in wireless sensor networks based on chaotic ant swarm (CAS-DTA). The objective function of this algorithm is established according to the energy consumption and reliability of the entire task execution. The optimal solution can be achieved through task mapping, communication routing and task allocation selection by means of the framework of chaotic ant swarm. Task mapping is carried out with ant chaotic behaviors, communication routing is established with neighbor selection method and searched with A*algorithm, while task allocation selection is implemented with the self-organization capability of ant colony. Experimental results show the superiority of our algorithm in terms of both load balancing and lifetime of wireless sensor networks;
     (3) In this dissertation, we present a disturbance chaotic ant swarm (DCAS) from the perspective of the individual ant's behavior and the interactions between individuals in order to reduce the amount of computation and communication. To resolve the problems of high computational complexity and low solution accuracy existing in CAS, DCAS is achieved by introducing three strategies, a new method of updating ant's best position, a neighbor selection method and a self-adaptive disturbance strategy, into CAS. The global convergence of DCAS algorithm is also proved. Extensive computational simulations and comparisons are carried out to validate the performance of DCAS on two sets of benchmark functions with up to1000dimensions. The results show clearly that DCAS is feasible as well as effective;
     (4) In this dissertation, we propose a collaborative optimization method (CAS-CO) based on CAS and information entropy for complex distributed systems (CDS) from the perspective of the micro-level of the individual interactions and the macro-level of the collective behavior. The basic dynamic characteristics of CDS are analyzed under the guide of system complexity, and a model of collaborative optimization of CDS is formulated; on these bases, CAS-CO is established based on the ideas of CAS; To verify the validity of the proposed model and algorithm, a locality-based task allocation in complex networked multi-agent system is resolved by CAS-CO, and the comparison results of the proposed algorithm and the existing ones show that the CAS-CO algorithm is feasible and effective, and then illuminate that the proposed model is correct and the autonomy of an agent is of importance for the design and modeling of CDS;
     (5) In this dissertation, we propose a decentralized coordination algorithm of autonomous swarm from the perspective of the decision-making relations between the micro-level of individuals and the macro-level of a global swarm, which can efficiently coordinate the autonomous swarm to the optimal solution. Our algorithm is inspired by the chaotic behavior of a single ant and the self-organizing behavior of the whole ant colony. To construct this algorithm, we firstly assume that each agent is a nonlinear oscillator presenting the chaotic behavior of a single ant. Then we establish a self-organization mechanism according to the self-organization behavior of the whole ant colony. Moreover, we analyze the convergence of the proposed algorithm. Finally we experimentally evaluate the performance of our algorithm with the clustering and dispersion operations of a swarm. Comparison results of the proposed algorithm and the gradient-type one are also presented to illustrate the effectiveness of the proposed scheme in approximately global optimization for swarms. In addition, we apply the distributed coordination mechanism of DCA, combine with the dynamic distributed constraint optimization problem, and further propose a chaotic ant based algorithm for dynamic distributed constraint optimization problem, named CA-DDCOP. To construct the CA-DDCOP algorithm, we firstly establish a value selecting strategy for the controlled variable of an agent based on chaotic behavior of a single ant to achieve the exploration operation; secondly, we develop a mechanism that an agent is subjected to its neighbors and self-organization ability according to self-organizing behavior of ant colony to achieve exploitation operation; Finally, we devise the decision-making relations between the individual micro-level and the collective macro-level based on the Boltzmann distribution so as to achieve the collaboration of two operations, exploration and exploitation. In order to investigate the performance of the CA-DDCOP algorithm, we apply the CA-DDCOP algorithm to multi-radio multi-channel channel allocation in ad hoc networks. The network nodes communicate with their neighbors, and coordinate their channel configuration according to their channel interference-aware so as to maximize their online rewards. Simulation results show that the CA-DDCOP algorithm can solve the dynamic channel allocation problem effectively.
引文
[1]Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence:From natural to artificial swarm intelligence[M]. Oxford:Oxford University Press,1999.
    [2]王安麟.复杂系统的分析与建模[M].上海:上海交通大学出版社,2004.
    [3]李夏,戴汝为.系统科学与复杂性(Ⅰ)[J].自动化学报,1998,24(2):200-207.
    [4]李夏,戴汝为.系统科学与复杂性(Ⅱ)[J].自动化学报,1998,24(4):476-483.
    [5]Wilder J W, Vasquez D A, Christie I, et al. Wave trains in a model of gypsy moth population dynamics[J]. Chaos,1995,5(4):700-706.
    [6]Logan J A, Allen J C. Nonlinear dynamics and chaos in insect populations[J]. Annual review of entomology,1992,37(1):455-477.
    [7]Frank J H, McCoy E D. Introduction to attack and defense:behavioral ecology of defense. Medieval Insect Behavioral Ecology, and Chaos[J]. Florida Entomologist,1991,74(1):1-9.
    [8]Costantino R F, Desharnais R A, Cushing J M, et al. Chaotic dynamics in an insect population[J]. Science,1997,275(5298):389-391.
    [9]Delgado J, Sole R V. Self-synchronization and task fulfilment in ant colonies[J]. Journal of theoretical biology,2000,205(3):433-441.
    [10]Cole B J. Short-term activity cycles in ants:generation of periodicity by worker interaction[J]. American Naturalist,1991,137:244-259.
    [11]Cole B J. Is animal behaviour chaotic? Evidence from the activity of ants[J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,1991,244(1311):253-259.
    [12]Sole R V, Miramontes O, Goodwin B C. Oscillations and chaos in ant societies[J]. Journal of theoretical Biology,1993,161(3):343-357.
    [13]Couzin I D. Collective cognition in animal groups[J]. Trends in cognitive sciences,2009, 13(1):36-43.
    [14]Reynolds C W. Flocks, herds and schools:A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics,1987,21(4):25-34.
    [15]Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters,1995,75(6):1226-1229.
    [16]Nicolis S C, Deneubourg J L. Emerging patterns and food recruitment in ants:an analytical study[J]. Journal of Theoretical Biology,1999,198(4):575-592.
    [17]Liu Y, Passino K M, Polycarpou M M. Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology[J]. IEEE Transactions on.Automatic Control, 2003,48(1):76-95.
    [18]Gazi V, Passino K M. Stability analysis of social foraging swarms[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B:Cybernetics,2004,34(1):539-557.
    [19]Fan Z, Chen G, Zhang Y. A comprehensive multi-local-world model for complex networks[J]. Physics Letters A,2009,373(18-19):1601-1605.
    [20]Cai K, Yin B. Software execution processes as an evolving complex network[J]. Information Sciences,2009,179(12):1903-1928.
    [21]刘志新,郭雷.Vicsek模型的连通与同步[J].中国科学(E辑:信息科学),2007(08): 979-988.
    [22]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006.
    [23]Yu W, Cao J, Lu J. Global synchronization of linearly hybrid coupled networks with time-varying delay[J]. SIAM Journal on Applied Dynamical Systems,2008,7(1):108-133.
    [24]Liu Z, Guo L. Synchronization of multi-agent systems without connectivity assumptions[J]. Automatica,2009,45:2744-2753.
    [25]Duan Z, Wang J, Chen G, et al. H-2 norm accumulation and its impact on synchronisation of complex dynamical networks[J]. International Journal of Control,2009,82(12):2356-2364.
    [26]Guan Z H, Liu Z W, Feng G, et al. Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control [J]. IEEE Transactions on Circuits and Systems 1,2010,57(8):2182-2195.
    [27]Li X, Wang X, Chen G. Pinning a complex dynamical network to its equilibrium[J]. IEEE Transactions on Circuits and Systems I,2004,51(10):2074-2087.
    [28]Zhou J, Lu J, Lu J. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica,2008,44(4):996-1003.
    [29]Chen F, Chen Z, Xiang L, et al. Reaching a consensus via pinning control[J]. Automatica, 2009,45(5):1215-1220.
    [30]Hong Y, Hu J, Gao L. Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica,2006,42(7):1177-1182.
    [31]Hong Y, Gao L, Cheng D, et al. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection[J]. IEEE Transactions on Automatic Control, 2007,52(5):943-948.
    [32]Zhou J, Wu Q J, Xiang L. Pinning Complex Delayed Dynamical Networks by a Single Impulsive Controller[J]. IEEE Transactions on Circuits and Systems I,2011,58(12): 2882-2893.
    [33]贾英民,吕红庆.二阶线性多智能体网络平均一致问题研究[J].自然科学进展,2007(08):1130-1137.
    [34]Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Transactions on Automatic Control,2008,53(9):2122-2128.
    [35]刘德荣,谭拂晓,关新平.非平衡拓扑结构的多智能体网络系统一致性协议[J].控制理论与应用,2009(10):1087-1092.
    [36]Liu B, Chu T, Wang L, et al. Controllability of a leader-follower dynamic network with switching topology[J]. IEEE Transactions on Automatic Control,2008,53(4):1009-1013.
    [37]Liu B, Chu T, Wang L, Xie G. Controllability of a class of multi-agent systems with a leader[C]//Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA,14-16,2006.
    [38]Ji Z, Wang Z, Lin H, et al. Controllability of multi-agent systems with time-delay in state and switching topology[J]. International Journal of Control,2010,83(2):371-386.
    [39]Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation:Numerical Methods[M]. Athena Scientific,1997.
    [40]Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatic Control,2009,54(1):48-61.
    [41]Nedic A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks[J]. IEEE Transactions on Automatic Control,2010,55(4):922-938.
    [42]Srivastava K, Nedich A. Distributed asynchronous constrained stochastic optimization[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5(4):772-790.
    [43]Nedic A. Asynchronous broadcast-based convex optimization over a network[J]. IEEE Transactions on Automatic Control,2011,56(6):1337-1351.
    [44]Zhu M, Martinez S. On distributed convex optimization under inequality and equality constraints via primal-dual subgradient methods[C]//American Control Conference,2010, 2434-2439.
    [45]Chiang M, Low S H, Calderbank A R, et al. Layering as optimization decomposition:A mathematical theory of network architectures[J]. Proceedings of the IEEE,2007,95(1): 255-312.
    [46]Kelly F P, Maulloo A K, Tan D K H. Rate control for communication networks:shadow prices, proportional fairness and stability[J]. Journal of the Operational Research society, 1998,49(3):237-252.
    [47]Srikant R. The mathematics of Internet congestion control[M]. Birkhauser,2004.
    [48]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1996, 26(1):29-41.
    [49]Dorigo M, Gambardella L M. Ant colony system:A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1): 53-66.
    [50]Dorigo M, Caro G D, Gambardella L M. Ant algorithms for discrete optimization[J]. Artificial life,1999,5(2):137-172.
    [51]Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks,1995:1942-1948.
    [52]Russell R A. Ant trails-an example for robots to follow? [C]//Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation,1999:2698-2703.
    [53]Li Y, Wu T J. A nested ant colony algorithm for hybrid production scheduling[C]//Proceedings of the 2002 American Control Conference,2002:1123-1128.
    [54]约翰·霍兰(周晓牧,韩晖译).隐秩序:适应性造就复杂性[M].上海:上海科技教育出版社,2000.
    [55]罗吉贵.复杂系统中涌现形成机理的讨论[D].上海:上海大学,2008.
    [56]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.
    [57]吴彤.自组织方法论研究[M].北京:清华大学出版社,2001.
    [58]黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000.
    [59]颜泽贤,范冬萍,张华夏.系统科学导论——复杂性探索[M].北京:人民出版社.
    [60]Waldrop M M. Complexity:The emerging science and the edge of order and chaos[M]. New York:Tocuhstone,1992.
    [61]Kauffman S K. Origins of order[M]. New York:Oxford University Press,1993.
    [62]de Oliveira P M C. Why do evolutionary systems stick to the edge of chaos[J]. Theory in Biosciences,2001,120(1):1-19.
    [63]赵明.复杂网络上动力系统同步现象的研究[D].合肥:中国科学技术大学,2007.
    [64]Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990,64(8):821-824.
    [65]Pyragas K, Pyragas V, Kiss I Z, et al. Adaptive control of unknown unstable steady states of dynamical systems[J]. Physical Review E,2004,70(2):26215.
    [66]Kapitaniak T, Chua L O, Zhong G Q. Experimental synchronization of chaos using continuous control[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,1994,4(2):483-488.
    [67]Di Caro G, Dorigo M. AntNet:Distributed stigmergetic control for communications networks[J]. Arxiv preprint arXiv:1105.5449,2011.
    [68]Oida K, Sekido M. ARS:an efficient agent-based routing system for QoS guarantees[J]. Computer communications,2000,23(14):1437-1447.
    [69]Varela G N, Sinclair M C. Ant colony optimisation for virtual-wavelength-path routing and wavelength allocation[C]//Proceedings of the 1999 Congress on Evolutionary Computation, 1999:1809-1816.
    [70]El-Gallas A I, El-Hawary M, Sallam A A, et al. Swarm-intelligently trained neural network for power transformer protection[C]//Proceedings of the Canadian Conference on Electrical and Computer Engineering,2001:265-269.
    [71]Eberhart R C, Hu X. Human tremor analysis using particle swarm optimization[C] //Proceedings of the 1999 Congress on Evolutionary Computation,1999:1927-1930.
    [72]Bonabeau E, Theraulaz G, Deneubourg J L. Mathematical model of self-organizing hierarchies in animal societies[J]. Bulletin of mathematical biology,1996,58(4):661-717.
    [73]Peng H P, Li L X, Yang Y X, et al. Parameter estimation of dynamical systems via a chaotic ant swarm[J]. Physical Review E,2010,81(16207).
    [74]Miramontes O. Order-disorder transitions in the behavior of ant societies[J]. Complexity, 1995,1(3):56-60.
    [75]Li L, Yang Y, Peng H, et al. An optimization method inspired by chaotic ant behavior[J]. Int. J. Bifurc. Chaos,2006,16(8):2351-2364.
    [76]Cai J J, Ma X Q, Li L X, et al. Chaotic ant swarm optimization to economic dispatch[J]. Electric Power Systems Research,2007,77(10):1373-1380.
    [77]Cai J J, Li Q, Li L X, et al. A fuzzy adaptive chaotic ant swarm optimization for economic dispatch[J]. International Journal Of Electrical Power & Energy Systems,2012,34(1): 154-160.
    [78]Cai J, Ma X, Li Q, et al. A multi-objective chaotic ant swarm optimization for environmental/economic dispatch[J]. International Journal of Electrical Power & Energy Systems,2010,32(5):337-344.
    [79]Tang Y G, Cui M Y, Hua C C, et al. Optimum design of fractional order (PID mu)-D-lambda controller for AVR system using chaotic ant swarm[J]. Expert Systems With Applications, 2012,39(8):6887-6896.
    [80]Tang Y G, Cui M Y, Li L X, et al. Parameter identification of time-delay chaotic system using chaotic ant swarm[J]. Chaos Solitons & Fractals,2009,41(4):2097-2102.
    [81]Wan M, Wang C, Li L X, et al. Chaotic ant swarm approach for data clustering[J]. Applied Soft Computing,2012,12(8):2387-2393.
    [82]Wan M A, Li L X, Xiao J H, et al. CAS based clustering algorithm for Web users[J]. Nonlinear Dynamics,2010,61(3):347-361.
    [83]Ge F, Wei Z, Lu Y, et al. Disturbance Chaotic ant Swarm[J]. International Journal of Bifurcation and Chaos,2011,21(9):2597-2622.
    [84]Li Y Y, Wen Q Y, Li L X, et al. Hybrid chaotic ant swarm optimization[J]. Chaos Solitons & Fractals,2009,42(2):880-889.
    [85]Li Y Y, Wen Q Y, Zhang B H. Chaotic ant swarm optimization with passive congregation[J]. Nonlinear Dynamics,2012,68:129-136.
    [86]Nemhauser G L, Wolsey L A. Integer and combinatorial optimization[M]. New York:Wiley, 1988.
    [87]Pataki G. Teaching integer programming formulations using the traveling salesman problem[J]. Siam Review,2003,45(1):116-123.
    [88]Reinelt G. The traveling salesman:computational solutions for TSP applications[M]. Berlin, Heidelberg:Springer-Verlag,1994.
    [89]Applegate D, Bixby R, Chvatal V, et al. On the solution of traveling salesman problems[J]. Doc.Math.J. DMV-Extra Volume ICM,1998,3:645-656.
    [90]Johnson D S, McGeoch L A. The traveling salesman problem:A case study in local optimization[J]. Local search in combinatorial optimization,1997:215-310.
    [91]Padberg M, Rinaldi G. Optimization of a 532-city symmetric traveling salesman problem by branch and cut[J]. Operations Research Letters,1987,6:1-7.
    [92]Knox J. Tabu search performance on the symmetric traveling salesman problem[J]. Computers & Operations Research,1994,21(8):867-876.
    [93]Tsubakitani S, Evans J R. Optimizing tabu list size for the traveling salesman problem[J]. Computers & Operations Research,1998,25(2):91-97.
    [94]Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. science, 1983,220(4598):671-680.
    [95]Chatterjee S, Carrera C, Lynch L A. Genetic algorithms and traveling salesman problems[J]. European journal of operational research,1996,93(3):490-510.
    [96]Poon P W, Carter J N. Genetic algorithm crossover operators for ordering applications[J]. Computers & Operations Research,1995,22(1):135-147.
    [97]Potvin J Y. Genetic algorithms for the traveling salesman problem[J]. Annals of Operations Research,1996,63(3):337-370.
    [98]Schmitt L J, Amini M M. Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation:An empirical study[J]. European Journal of Operational Research,1998,108(3):551-570.
    [99]Burke L I. Neural methods for the traveling salesman problem:Insights from operations research[J]. Neural Networks,1994,7(4):681-690.
    [100]Looi C K. Neural network methods in combinatorial optimization[J]. Computers & operations research,1992,19:191-208.
    [101]Smith K A. Neural networks for combinatorial optimization:a review of more than a decade of research[J]. INFORMS Journal on Computing,1999,11:15-34.
    [102]Smith K, Palaniswami M, Krishnamoorthy M. Neural techniques for combinatorial optimization with applications[J]. IEEE Transactions on Neural Networks,1998,9(6): 1301-1318.
    [103]Hendtlass T. Preserving diversity in particle swarm optimisation[J]. Developments in Applied Artificial Intelligence,2003:155-199.
    [104]Wang K P, Huang L, Zhou C G, et al. Particle swarm optimization for traveling salesman problem[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics,2003:1583-1585.
    [105]Shi X H, Liang Y C, Lee H P, et al. Particle swarm optimization-based algorithms for TSP and generalized TSP[J]. Information Processing Letters,2007,103(5):169-176.
    [106]Chen L, Aihara K. Chaotic simulated annealing by a neural network model with transient chaos[J]. Neural networks,1995,8(6):915-930.
    [107]Tao G, Michalewicz Z. Inver-over operator for the TSP[C]//Proceedings of the 5th Parallel Problem Solving from Nature,1998:803-812.
    [108]TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/.
    [109]Oliver I M, Smith D J, Holland J R C. A study of permutation crossover operators on the traveling salesman problem[C]//Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application,1987:224-230.
    [110]李明,石为人.基于差分进化的多目标异构传感器网络节点部署机制[J].仪器仪表学报,2010,3(8):1896-1903.
    [111]王心霖,许成谦.无线网络中基于能量有效性的吞吐量跨层控制协议[J].电子测量技术,2010,33(5):54-57.
    [112]Park H, Srivastava M B. Energy-efficient task assignment framework for wireless sensor networks[R]. Los Angeles:Center for Embedded Network Sensing,2003.
    [113]Yu Y, Prasanna V K. Energy-balanced task allocation for collaborative processing in wireless sensor networks[J]. Mobile Networks and Applications,2005,10(1):115-131.
    [114]朱敬华,高宏.无线传感器网络中能源高效的任务分配算法[J].软件学报,2007,18(5):1198-1207.
    [115]Manoj B S, Sekhar A, Siva Ram Murthy C. A state-space search approach for optimizing reliability and cost of execution in distributed sensor networks[J]. Journal of Parallel and Distributed Computing,2009,69(1):12-19.
    [116]Xia T, Guo W, Chen G. An improved particle swarm optimization for data streams scheduling on heterogeneous cluster[C]//Proc. of the 2nd International Symposium on Intelligence Computation and Application,2007:393-400.
    [117]陈国龙,郭文忠,陈羽中.无线传感器网络任务分配动态联盟模型与算法研究[J].通信学报,2009,30(11):48-55.
    [118]Abdelhak S, Gurram C S, Ghosh S, et al. Energy-balancing task allocation on wireless sensor networks for extending the lifetime[C]//Proc. of the 53rd IEEE International Midwest Symposium on Circuits and Systems,2010:781-784.
    [119]Niu J, Deng Z. Distributed self-learning scheduling approach for wireless sensor network[J]. Ad Hoc Networks,2010, DOI:10.1016/j.adhoc.
    [120]Okhovvat M, Sharifi M, Momeni H. Task allocation to actors in wireless sensor actor networks:an energy and time aware technique[J]. Procedia Computer Science,2011,3: 484-490.
    [121]Attiya G, Hamam Y. Task allocation for maximizing reliability of distributed systems:A simulated annealing approach[J]. Journal of Parallel and Distributed Computing,2006, 66(10):1259-1266.
    [122]Yin P Y, Yu S S, Wang P P, et al. Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization[J]. Applied Mathematics and Computation, 2007,184(2):407-420.
    [123]Echer J, Kupferschmid M. Introduction to operations research[M]. New York:wiley,1998.
    [124]Momoh J A, Adapa R, El-Hawary M E. A review of selected optimal power flow literature to 1993-I. Nonlinear and quadratic programming approaches[J]. IEEE Transactions on Power Systems,1999,14(1):96-104.
    [125]Bilchev G, Parmee I C. The Ant Colony Metaphor for Searching Continuous Design Spaces[C]//Selected Papers from AISB Workshop on Evolutionary Computing,1995:25-39.
    [126]Wodrich M, Bilchev G. Cooperative distributed search:The ant's way[J]. Control and Cybernetics,1997,26(3):413-446.
    [127]Mathur M, Karale S B, Priye S, et al. Ant colony approach to continuous function optimization[J].Industrial & Engineering Chemistry Research,2000,39(10):3814-3822.
    [128]Dreo J, Siarry P. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[C]//Lecture Notes in Computer Science on ant algorithms,2002:216-221.
    [129]Ho S L, Yang S, Wong H C, et al. An improved ant colony optimization algorithm and its application to electromagnetic devices designs[J]. IEEE Transactions on Magnetics,2005, 41(5):1764-1767.
    [130]Shi Y, Eberhart R. Parameter selection in particle swarm optimization[C]//Proc. Seventh Ann. Conf. Evolutionary Programming,1998:591-600.
    [131]Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]//Proc. IEEE Congr. Evolutionary Computation,1999:1945-1950.
    [132]Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002, 6(1):58-73.
    [133]Naka S, Genji T, Yura T, et al. A hybrid particle swarm optimization for distribution state estimation[J]. IEEE Transactions on Power Systems,2003,18(1):60-68.
    [134]Poli R. Dynamics and stability of the sampling distribution of particle swarm optimisers via moment analysis[J]. Journal of Artificial Evolution and Applications,2008,2008:4-13.
    [135]Tang K, Yao X, Suganthan P N, MacNish C, et al. Benchmark functions for the CEC'2008 special session and competition on large scale global optimization[R]. Nature Inspired Computation and Applications Laboratory, USTC, China,2007.
    [136]Li L. An Optimization Method Inspired by "Chaotic" Ant Behavior and Its Application[D]. Beijing:Beijing University of Posts and Telecommunications,2006.
    [137]Thierens D. Adaptive mutation rate control schemes in genetic algorithms[C]//Proc.2002 Congr. Evolutionary Computation,2002:980-985.
    [138]Solis F J. Minimization by random search techniques[J]. Mathematics of operations research, 1981,6:19-30.
    [139]Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82-102.
    [140]Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences,2008,178(15):2985-2999.
    [141]Suganthan P N, Hansen N, Liang J J. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Nanyang Technological University, Singapore,2005.
    [142]Shang Y W, Qiu Y H. A note on the extended Rosenbrock function[J]. Evolutionary Computation,2006,14(1):119-126.
    [143]Yang Z, Tang K, Yao X. Self-adaptive differential evolution with neighborhood search[C] //Proc.2008 Congr. Evolutionary Computation,2008:1110-1116.
    [144]Yang Z, Yao X, He J. Making a difference to differential evolution[J]. Advances in Metaheuristics for Hard Optimization(Springer-Verlag),2008:397-414.
    [145]Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numerical optimization[C]//Proc.2005 IEEE Congr. Evolut. Comput,2005:1785-1791.
    [146]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation,2006,10(3):2 81-295.
    [147]Tang K. Summary of results on CEC'2008 competition on large scale global optimization[R]. Nature Inspired Computation and Applications Laboratory, USTC, China,2008.
    [148]Tseng L Y, Chen C. Multiple trajectory search for large scale global optimization[C]//Proc. Congr. Evolutionary Computation,2008:3052-3059.
    [149]Wang Y, Li B. A restart univariate estimation of distribution algorithm:sampling under mixed Gaussian and Levy probability distribution[C]//Proc. Congr. Evolutionary Computation,2008:3917-3924.
    [150]Brest J, Zamuda A, Boskovic B, et al. High-dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction[C]//Proc. Congress on Evolutionary Computation,2008:2032-2039.
    [151]Yang Z, Tang K, Yao X. Multilevel cooperative coevolution for large scale optimization[C] //Proc. Congr. Evolutionary Computation,2008:1663-1670.
    [152]Hsieh S T, Sun T Y, Liu C C, et al. Solving large scale global optimization using improved particle swarm optimizer[C]//Proc. Congr. Evolutionary Computation,2008:1777-1784.
    [153]Zamuda A, Brest J, Boskovic B, et al. Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution[C]//Proc. Congr. Evolutionary Computation,2008:3718-3725.
    [154]Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
    [155]Modi P J, Shen W M, Tambe M, et al. ADOPT:Asynchronous distributed constraint optimization with quality guarantees[J]. Artificial Intelligence,2005,161(1):149-180.
    [156]Mailler R, Lesser V. Solving distributed constraint optimization problems using cooperative mediation[C]//Proc. of Third International Joint Conference on Autonomous Agents and Multiagent Systems, New York, IEEE Computer Society,2004:438-445.
    [157]Choi H L, Brunet L, How J P. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics,2009,25(4):912-926.
    [158]Kivelevitch E, Cohen K, Kumar M. Market-Based Solution to the Allocation of Tasks to Agents[J]. Procedia Computer Science,2011,6:28-33.
    [159]Ferreira P, Boffo F, Bazzan A. Using swarm-gap for distributed task allocation in complex scenarios[J]. Massively Multi-Agent Technology,2008:107-121.
    [160]Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE,2007,95(1):215-233.
    [161]Li Z, Duan Z, Chen G, et al. Consensus of multiagent systems and synchronization of complex networks:A unified viewpoint[J]. IEEE Transactions on Circuits and Systems I, 2010,57(1):213-224.
    [162]王越,陶然,李炳照.基于多活性代理的复杂信息系统研究[J].中国科学(E辑:信息科学),2008,38(12):2020-2037.
    [163]邢修三.动态信息理论和动力学系统信息描述[J].中国科学:物理学力学天文学,2010,40(2):158-176.
    [164]钱兆华.论系统的协调[J].系统辩证学学报,2000(1):22-25.
    [165]曾珍香.可持续发展协调性分析[J].系统工程理论与实践,2001(3):18-19.
    [166]顾培亮.系统分析与协调[M].天津:天津大学出版社,1998.
    [167]樊华,陶学禹.复合系统协调度模型及其应用[J].中国矿业大学学报,2006(4):515-520.
    [168]Parrish J K, Viscido S V, Grubaum D. Self-organized fish schools:an examination of emergent properties[J]. Biol. Bull.,2002,202(3):296-305.
    [169]Gueron S, Levin S A. Self-organization of front patterns in large wildebeest herds[J]. Journal of theoretical Biology,1993,165(4):541-552.
    [170]Gazi V, Passino K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control,2003,48(4):692-697.
    [171]Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control,2004,49(9): 1520-1533.
    [172]Moreau L. Stability of multiagent systems with time-dependent communication links[J]. IEEE Transactions on Automatic Control,2005,50(2):169-182.
    [173]Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control[J]. IEEE Contr. Syst. Mag.,2007,27(2):71-82.
    [174]Lin Z, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents[J]. IEEE Transactions on Automatic Control,2004,49(4):622-629.
    [175]Cortes J, Martinez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[J]. IEEE Transactions on Automatic Control,2006, 51(8):1289-1298.
    [176]Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader[J]. IEEE Transactions on Automatic Control,2009,54(2):293-307.
    [177]Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control,2003,48(6):988-1001.
    [178]Tanner H G, Jadbabaie A, Pappas G J. Flocking in fixed and switching networks[J]. IEEE Transactions on Automatic Control,2007,52(5):863-868.
    [179]Olfati-Saber R. Flocking for multi-agent dynamic systems:Algorithms and theory[J]. IEEE Transactions on Automatic Control,2006,51(3):401-420.
    [180]Egerstedt M, Hu X. Formation constrained multi-agent control[J]. IEEE Transactions on Robotics and Automation,2001,17(6):947-951.
    [181]Xi W, Tan X, Baras J S. Gibbs sampler-based coordination of autonomous swarms[J]. Automatica,2006,42(7):1107-1119.
    [182]Justh E W, Krishnaprasad P S. Equilibria and steering laws for planar formations[J]. Systems & Control Letters,2004,52(1):25-38.
    [183]Cortes J, Martinez S, Karatas T, et al. Coverage control for mobile sensing networks[J]. IEEE Transactions on Robotics and Automation,2004,20(2):243-255.
    [184]Martinez S, Bullo F. Optimal sensor placement and motion coordination for target tracking[J]. Automatica,2006,42(4):661-668.
    [185]Schechter B. Birds of a feather[J]. New Scientist,1999:30-33.
    [186]Tan X, Xi W, Baras J S. Decentralized coordination of autonomous swarms using parallel Gibbs sampling[J]. Automatica,2010,46(12):2068-2076.
    [187]Rigatos G G. Coordinated motion of autonomous vehicles with the use of a distributed gradient algorithm[J]. Applied Mathematics and Computation,2008,199(2):494-503.
    [188]Schill F S. Distributed communication in swarms of autonomous underwater vehicles[D]. Australia:The Australian National University,2007.
    [189]Cavalcante H L D S, Gauthier D J, Socolar J E S, et al. On the origin of chaos in autonomous Boolean networks[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2010,368(1911):495-513.
    [190]Kennedy M P. Experimental chaos from autonomous electronic circuits[J]. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences, 1995,353(1701):13-32.
    [191]Dercole F, Rinaldi S. Evolutionary dynamics can be chaotic:A first example[J]. International Journal of Bifurcation and Chaos,2010,20(11):3473.
    [192]Van Gorder R A. Emergence of chaotic regimes in the generalized Lorenz canonical form:a competitive modes analysis[J]. Nonlinear Dynamics,2011,66(1):153-160.
    [193]Nowak M, Sigmund K. Chaos and the evolution of cooperation[J]. Proceedings of the National Academy of Sciences,1993,90(11):5091-5094.
    [194]Skarda C A, Freeman W J. How brains make chaos in order to make sense of the world[J]. Behavioral and brain sciences,1987,10(2):161-195.
    [195]Mondada F, Pettinaro G C, Guignard A, et al. SWARM-BOT:A new distributed robotic concept[J]. Autonomous Robots,2004,17(2):193-221.
    [196]Montresor A, Meling H, Babaoglu O. Messor:Load-balancing through a swarm of autonomous agents[C]//Proceedings of 1st Workshop on Agent and Peer-to-Peer Systems, Springer, Heidelberg,2002:125-137.
    [197]Hamann H, Schmickl T, Crailsheim K. Thermodynamics of emergence:Langton's ant meets Boltzmann[C]//Proceedings of 2011 IEEE Symposium on artificial life, Prais, France, IEEE Service Center, Piscataway, NJ,2011:62-69.
    [198]Cox J S, Durfee E H, Bartold T. A distributed framework for solving the multiagent plan coordination problem[C]//Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems,2005:821-827.
    [199]Petcu A, Faltings B. A scalable method for multiagent constraint optimization[C] //Proceedings of the 19th International Joint Conference on Artificial Intelligence,2005: 266-271.
    [200]Vlassis N, Elhorst R, Kok J R. Anytime algorithms for multiagent decision making using coordination graphs[C]//Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics,2004:953-957.
    [201]Chechetka A, Sycara K. No-commitment branch and bound search for distributed constraint optimization[C]//Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems,2006:1427-1429.
    [202]Gershman A, Meisels A, Zivan R. Asynchronous forward bounding for distributed COPs[J]. Journal of Artificial Intelligence Research,2009,34(1):61-88.
    [203]Enembreck F, Andre Barthes J P. Distributed constraint optimization with MULBS:A case study on collaborative meeting scheduling[J]. Journal of Network and Computer Applications,2012,35(1):164-175.
    [204]Fitzpatrick S, Meertens L. Distributed coordination through anarchic optimization, in: (Lesser V, Ortiz C L, Tambe M. eds.) Distributed Sensor Networks:A Multiagent Perspective [M]. Amsterdam:Kluwer,2003:257-295.
    [205]Maheswaran R T, Pearce J P, Tambe M. Distributed algorithms for DCOP:A graphical-game-based approach[C]//Proc. Parallel and Distributed Computing Systems,2004: 432-439.
    [206]Zivan R. Anytime local search for distributed constraint optimization[C]//Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems,2008: 1449-1452.
    [207]Ismail Z H, Dunnigan M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering,2011,38:2270-2280.
    [208]Beard R W, McLain T W, Nelson D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE,2006,94(7):1306-1324.
    [209]Ge F, Wei Z, Lu Y, et al. Decentralized coordination of autonomous swarms inspired by chaotic behavior of ants[J]. Nonlinear Dynamics,2012, DOI:10.1007/s11071-012-0478-z.
    [210]Santos F D, Bazzan A L C. eXtreme-ants:Ant based algorithm for task allocation in extreme teams[C]//Proceedings of the Second International Workshop on Optimisation in Multi-Agent Systems,2009:1-8.
    [211]Monteiro T L, Pellenz M E, Penna M C, et al. Channel allocation algorithms for WLANs using distributed optimization [J]. AEU-International Journal of Electronics and Communications,2011, DOI:10.1016/j.aeue.
    [212]Rogers A, Farinelli A, Stranders R, et al. Bounded approximate decentralised coordination via the max-sum algorithm[J]. Artificial Intelligence,2011,175(2):730-759.
    [213]Ferreira P, Boffo F, Bazzan A. Using swarm-gap for distributed task allocation in complex scenarios[J]. Massively Multi-Agent Technology,2008:107-121.
    [214]官骏鸣,陆阳,盛峰,等.多射频多信道无线网络信道分配研究进展[J].计算机应用,2009,29(5):1233-1237.
    [215]Luo H, Lu S, Bharghavan V. A new model for packet scheduling in multihop wireless networks[C]//Proceedings of the Sixth Annual International Conference on Mobile Computing and Networks (MobiCom 2000),2000:76-86.
    [216]Jain K, Padhye J, Padmanabhan V N, et al. Impact of interference on multi-hop wireless network performance[J]. Wireless networks,2005,11(4):471-487.
    [217]Gupta R, Musacchio J, Walrand J. Sufficient rate constraints for QoS flows in ad-hoc networks[J]. Ad Hoc Networks,2007,5(4):429-443.
    [218]Felegyhazi M, Cagalj M, Bidokhti S S, et al. Non-cooperative multi-radio channel allocation in wireless networks[C]//Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM 2007),2007:1442-1450.
    [219]Ramachandran K N, Belding E M, Almeroth K C, et al. Interference-A ware Channel Assignment in Multi-Radio Wireless Mesh Networks[C]//Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM 2006),2006:1-12.
    [220]Wooseong K, Kassler A J, Di Felice M, et al. Urban-X:Towards distributed channel assignment in cognitive multi-radio mesh networks[C]//Proceedings of 2010 IFIP Wireless Days,2010:1-5.
    [221]Gupta P, Kumar P R. The capacity of wireless networks[J]. IEEE Transactions on Information Theory,2000,46(2):388-404.
    [222]Nezhad M A, Cerda-Alabern L. Adaptive channel assignment for wireless mesh networks using game theory[C]//Proceedings of the 2011 IEEE 8th International Conference on Mobile Adhoc and Sensor Systems (MASS),2011:746-751.
    [223]梁美灵,王则柯.混沌与均衡纵横谈[M].大连:大连理工大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700