用户名: 密码: 验证码:
基于有限元的摩擦式果园运输机橡胶辊驱动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是我国重要的水果之一,种植面积和产量均居世界第一位。但因其种植在山地丘陵地区,且成熟期非常集中,加之果园附近人力资源短缺,果品的收获问题导致了人工成本非常高,占到了近一半。为了代替人工劳力,国外研制了多种果园运输机。由于成本、地形等原因,不能够完全适应我国的柑橘生产状况。其根本问题在于,果园运输机的轨道建设成本过高。因此,本文提出了单轨道与橡胶辊摩擦驱动方式,极大的简化了轨道的结构,降低了成本。
     本文针对橡胶辊和单轨道进行了研究。研究内容包括:橡胶辊单轨道的非线性模型的建立、橡胶辊静态驱动能力的研究、橡胶辊动态滚动过程研究、橡胶辊的模态分析、橡胶辊的疲劳寿命数值计算和摩擦式单轨道果园运输机的设计。
     主要研究结果如下:
     1)橡胶辊与单轨道非线性模型的建立
     通过proe建立橡胶套、齿轮芯和方钢轨道的几何模型,并将其组合成刚柔耦合装配模型。选择橡胶的非线性材料模型Mooney-Rivlin模型用于有限元分析,通过测橡胶的邵氏硬度方法确定材料模型参数:弹性模量E=9.39MPa、泊松比0.47、C10=1.565、C01=0.391。分别选择增强拉格朗日和罚函数非线性接触算法作为有限元接触算法。
     2)橡胶辊静态驱动能力的研究
     对橡胶辊静态接触摩擦状态的理论计算,得出最大静摩擦力f与σNN,σM和0有关。通过搭建的游动正压力夹紧和双自由度相向扭矩施加方式的试验台进行试验研究,得出了附着面积、压缩量、摩擦力与正压力的关系曲线。基于ansys,利用非线性Mooney-Rivlin模型和增强拉格朗日接触算法进行数值计算,得到了附着面积和压缩量与正压力的关系及接触应力分布、摩擦应力分布和接触状态分布;通过对比,发现仿真正压力对压缩量的关系与实验结果吻合,证明了正压力与摩擦力的驱动性能关系的正确性。结果表明,当正压力为2750N时,单边最大静摩擦力1167N,摩擦系因数0.85,附着面积1909mm2,压缩量4.6mm,达到了果园运输作业的静态技术要求,为橡胶辊的动力执行机构的设计提供了理论基础。
     3)橡胶辊动态滚动过程研究
     为了提高橡胶辊的工作性能,使其能够根据驱动力自动调整正压力至合理值,并能均分扭矩、差分转速,设计了将连杆系和锥差轮系作为橡胶辊的动力驱动机构。针对该机构对橡胶辊的影响,利用Abaqus对橡胶辊的滚动过程进行了动力学仿真。仿真中使用Abaqus提供的Mooney-Rivlin模型和非线性接触算法进行数值计算。仿真结果得到了正压力与滚动过程中的功率关系,速度与效率的关系。通过与试验对比,发现正压力对功率的影响与试验结果基本相符。试验表明,该机构作用下橡胶辊效率0.7。结果表明,该机构充分利用了两个橡胶辊的驱动能力,符合自动适应弯道的条件,并在低载状态下节能,提高了橡胶辊在果园运输中的性能。
     4)橡胶辊的模态分析
     基于ansys和有限元方法对橡胶辊进行了自由模态分析,并针对实际安装方式进行了约束模态分析。通过POST1后处理工具进行分析,发现自由模态的固有频率与约束模态相近,且有对称模态出现,说明约束方式对于固有频率影响不大。频率范围在1500-1700Hz内。运输机运行时适当避开这段频率,可以减少震动。
     5)橡胶辊的疲劳寿命数值计算
     通过Abaqus后处理器,对橡胶辊表面节点的最大主应力时间历程进行提取。对应力时间历程简化、降噪后,利用雨流计数法对橡胶辊表面节点在一个滚动循环周期内进行计数。再通过线性疲劳损伤理论,基于Nsoft软件,对节点进行疲劳寿命计算。结果表明,橡胶辊端面8mm以外节点具有无限次循环次数。疲劳寿命里程最低的点在齿根对应的中间截面处,运行55.8km后将会出现疲劳破坏。
     6)摩擦式单轨道果园运输机的设计
     为了降低单轨果园运输的制造成本,提高经济性,第七章设计了一种摩擦式单轨道果园运输机。其结构包括传动系统,摩擦力的正压力加压装置,防侧倒和承重装置等。该运输机驱动力达300kg,额定运行速度1m/s,满足了果园运输的需要。其结构简单,能耗更低。
Citrus fruit is one of the major fruit in China with the largest planting area and the highest yield in the world. However, as citrus fruit grows in mountainous and hilly regions, and its maturity is very concentrated, combined with a shortage of human resources nearby orchard, manual costs are very high, accounting for nearly half of the whole cost. In order to replace the manual labor, a variety of orchard transportation machines have been developed in foreign countries. Due to high cost, more complicated terrain and other reasons, those machines are not able to be applied in China's citrus production.Therefore, a single track with rubber roller friction drive is proposed in this dissertation, which greatly simplifies the track structure and reduces costs.
     In this dissertation, rubber roller and the single track are studied. The research contents are as following:nonlinear modeling of rubber roller on single-track, study on the static drive capacity of rubber roller, study on the dynamic rolling process of rubber roller, modal analysis of rubber roller, fatigue life calculation of rubber roller and the design of friction single-track orchard conveyor.
     The main results are as follows.
     1) nonlinear modeling of rubber roller on single-track
     By using software, namely proe, geometric models of rubber sleeve, gear core and square steel track are established, and they are combined into a rigid-flexible coupling assembly model in chapter two. Rubber nonlinear material model—mooney-rivlin model—for finite element analysis is applied. By measuring the Shore hardness of rubber material, model parameters are determined:the Elastic Modulus E=9.39MPa, Poisson's ratio0.47, C10=1.565, C01=0.391.
     2) study on the static drive capacity of rubber roller
     By conducting theoretical calculation to static friction between the rubber roller, it finds that maximum static friction σNN and σM are related toθ. By designing a test-bed measuring by means of floating vertical pressure clamping and double DOF of opposite torque, experiments were conduct which figured out the curves between vertical pressure and bond area&the compression amount&friction. The paper, based on ansys, utilizes nonlinear finite element, Mooney-Rivlin model and augmented Lagrangian contact algorithm in numerical analysis to figure out the relationship between vertical pressure and the adhesion area&the compression amount, the contact stress distribution, friction stress distribution and the distribution of the contact state. The effect of vertical positive pressure on the amount of compression in the simulation test is found by comparison to be in agreement with the result of the experiment test which further verifies the correctness of driving performance relationship between vertical pressure and friction. The statistics show that when the vertical pressure is2750N, the maximum static friction being1167N, the macroscopic friction coefficient0.85, the adhesion area1909mm2, and the compression amount of4.6mm, the orchard transportation meets the requirements of static parameters and provides a theoretical basis for power actuators of rubber roller.
     3) study on the dynamic rolling process of rubber roller,
     To improve rubber roller's performance in rail transportation, making linkage and differential bevel gears train as rubber roller's power drive mechanism was proposed in this paper at the aim of adjusting vertical pressure automatically to reasonable value according to driving force and achieving torque equalization and differential speed. In this paper, Abaqus was applied to conduct dynamic simulation of rubber roller in rolling process, which was to study effect of the mechanism on rubber roller. In the simulation, Mooney-Rivlin model and nonlinear contact algorithm, both from Abaqus, were applied in numerical calculation. The relation between vertical pressure and power in rolling process and the relation between speed and efficiency were obtained from simulation. By contrast, it was found that effect of vertical pressure on power was basically in line with the experiment results. The experiment indicated that the efficiency of rubber roller was0.7. The results showed that the mechanism can make good use of driving force of two rubber rollers, automatically adapt to curve and save energy in the state of low load, thus improving robber roller's performance in orchard transportation.
     4) modal analysis of rubber roller
     In chapter five, the rubber roller's free modal is analysed by ansys and finite element method, and a constrained modal analysis is conducted for the actual installation methods. By analysing with post-processing tool—OST1, it is found that the natural frequency of the free modal and constrained modal are similar, and there appears symmetrical mode,which shows that constrained methods have little effect on natural frequency. Frequency range is within1500-1700Hz. Conveyor running can properly avoid this frequency and reduce vibration.
     5) fatigue life calculation of rubber roller
     In chapter six, by abaqus post-processor, the maximum principal stress time history of the rubber roller's surface nodes were extracted. After realizing stress time history simplification and noise reduction, it uses rain-flow counting method to count rubber roller surface nodes within a rolling cycle. Then, according to the linear theory of fatigue damage and nsoft software, it calculates the fatigue life of nodes. The results show that nodes beyond8mm from the rubber roller end have an infinite number of cycles. The lowest point of fatigue life mileage is at the corresponding mid-section of the tooth root, and fatigue failure will occur when the rubber roller runs55.8km.
     6) the design of friction single-track orchard conveyor.
     To reduce manufacturing costs and improve the economy of orchard transportation, a friction single-track orchard conveyor was designed in the chapter seven. By using a transmission system and opponents such as vertical pressure pressure device of friction, rollover prevention devices and burden wheel devices, the conveyor made it possible to produce a driving force300kg and a rated running speed lm/s. Consequently, energy consumption lowered and structure was simple, which met the requirements of orchard transportation.
引文
1陈银清,洪添胜,孙同彪.山地果园单轨货运机的最小转弯半径及最大承载量分析[J].农业工程学报,2012,1.
    2丁寒江.国外农用运输车产品特征概述[J].现代农业装备,2004,2:023.
    3丁文文.振动筛橡胶弹簧力学特性研究[D].辽宁工程技术大学,2011.
    4杜春娟.基于ABAQUS的子午线轮胎的非线性有限元分析[D].重庆交通大学,2012.
    5段玥晨.考虑刚柔耦合效应的柔性多体系统碰撞动力学研究[D].南京理工大学2012.
    6冯孝奎,吴健,吴建国,等.Agricultural tricycle engine:201284692[P]. 2009-8-5.
    7甘迪宁.西南地区四轮农用运输车小型化的发展思路[J].装备制造技术,2003,3:016.
    8何劲,祁春节.中外柑橘产业发展模式比较与借鉴[J].浙江柑橘,2009,26(4):2-7.
    9洪添胜,苏建,朱余清,等.山地橘园链式循环货运索道设计[J].农业机械学报,2011,42(6):108-111.
    10洪添胜,杨洲,宋淑然,等.柑橘生产机械化研究[J].农业机械学报,2010,41(12):105-110.
    11洪添胜,张衍林,杨洲.果园机械与设施[M].北京:中国农业出版社,2012:103-146.
    12黄冬辉,吴胜兴,沈德建.工程结构几何非线性有限元研究述评[J].江西科学,2007,04:500-504.
    13黄岩军,基于轮胎有限元模型的胎体变形研究[D].吉林大学,2012
    14李碧军.基于刚柔耦合的非线性悬架汽车的平顺性研究[D].湖南大学,2008.
    15李兵.计及复杂胎面花纹的子午线轮胎结构有限元分析[D].中国科技大学,2008
    16李敬亚.山地果园单轨运输机的研制[D].华中农业大学,2011.
    17李善军,邢军军,张衍林,等.7YGS-45型自走式双轨道山地果园运输机[J].农 业机械学报,2011,42(8):85-88.
    18李腾龙,夏楚,赵宏宇,等.履带式山地运输车[P].中国专利:CN201120070445.9,2011-11-16
    19李卫.橡胶履带的综合性能分析[D].烟台大学,2012.
    20李晓芳.橡胶钢双材料非线性有限元分析及破坏机理研究[D].福建:福州大学化学化工学院,2006.
    21李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J].弹性体,2005,15(1):50-58.
    22黎志中.履带式山地运输车[P].中国专利:CN201120063470.4,2011-8-31
    23林晓斌.加速疲劳试验的疲劳编辑技术[J].中国机械工程,1998,9(11):27-30.
    24刘伟,杨丹,刘尚顺,李箐.T2R11空气悬架系统用前端橡胶衬套的设计开发[J].汽车工艺与材料,2007,04:49-51.
    25刘铮.中国柑橘产业国际竞争力动态[D].华中农业大学,2012.
    26陆宁,樊江玲.机械原理[M].北京:清华大学出版社,2012:105-108.
    27罗春虎.盾构机保险轴的疲劳特性研究[D].郑州大学,2012.
    28罗荣梅.叶片外物冲击损伤及其对疲劳寿命的影响[D].东北大学,2006.
    29马连生,宋曦,赵永刚.材料力学[M].北京:科学出版社,2010:10-35.
    30孟枫平.日本农业信息化进程的主要特点[J].世界农业,2003,4(38):r39.
    31任晓雨.‘基于MSC. Fatigue的轮胎式集装箱门式起重机结构疲劳寿命研究[D].武汉理工大学,2012.
    32单杨.中国柑橘工业的现状,发展趋势与对策[J].中国食品学报,2008,8(1):1-8.
    33沈双庆,黄达斌.香蕉索道采收技术分析[J].福建农机,2004,97(3):34-35.
    34谭建国,数学软件.使用ANSYS6.0进行有限元分析[M].北京大学出版社,2002.
    35汤荣丽.我国柑橘投入产出效率研究[D].西北农林科技大学,2012
    36田宇忠.基于有限元的水润滑橡胶尾轴承模态分析及试验研究[D].武汉理工大学,2010.
    37田宇忠,刘正林,金勇,等.水润滑橡胶尾轴承鸣音试验研究[J].武汉理工大学学报,2011,33(001):130-133.
    38王川.中国柑橘生产与消费现状分析[J].农业展望,2006,1:8-12.
    39王胜光.螺纹副联接结构中接触非线性问题的研究与软件开发[D].中国科学院研究生院(长春光学精密机械与物理研究所),2005.
    40王伟,邓涛,赵树高.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品,2004,25(4):8-10.
    41王伟伟.汽车主减速器弧齿锥齿轮参数化设计与有限元分析[D].武汉理工大学,2012.
    42王秀波,陈建民,战廷文,等.森林多功能单轨运输车的应用[J].林业机械与木工设备,2013(4):42-43.
    43王增藩.套损井膨胀管补贴及联接螺纹的力学行为研究[D].大庆:大庆石油学院,2007.
    44王正勇.起重机箱形主梁疲劳寿命研究。[D]西南交通大学,2010
    45吴伟斌,赵奔,朱余清,等.丘陵山地果园运输机的研究进展[J].华中农业大学学报,2013,32(4):135-142.
    46肖建清.循环荷载作用下岩石疲劳特性的理论与实验研究[D].长沙:中南大学,2009.
    47邢军军.自走式大坡度双轨道果园运输机的设计及仿真[D].华中农业大学,2012.
    48徐同江.基于ANSYS的0形密封圈的有限元分析[D].山东大学,2012.
    49薛雪.车辆轮胎与土壤接触变形的有限元分析[D].西北农林科技大学,2010.
    50薛雪,师帅兵.基于ANSYS的小轮廓农机轮胎有限元模型设计[J].农机化研究,2010,32(005):118-120.
    51杨杰,孙红梅.农机纳入再制造试点[J].现代农业装备,2011,09:8-9.
    52杨守彬.带复杂花纹载重子午线轮胎有限元分析[D].东华大学,2012.
    53杨守彬,束长东,束永平.带复杂花纹轮胎侧倾接地性能有限元分析[J].橡胶工业,2012,59(12):740-743.
    54杨志维,方向东,董金和,李永芳,李莉,周常勇,彭抒昂,祁春节,丁伟平,熊伟.西班牙及意大利南部柑桔考察报告[J].中国南方果树,2003,04:21-24.
    55杨洲,陈光南,王慰祖,等.澳大利亚柑橘生产及其机械化[J].世界农业,2010(004):61-62.
    56印祥.拖拉机打滑率测试系统及其虚拟测试的研究开发[D].西北农林科技大学,2009.
    57印祥,卢博友,钟以崇,等.拖拉机滑转率实时测量中的车速测量方法[J].农机化研究,2009,31(4):237-240.
    58张德文.我国播种机械科技发展简史[J].种植机械专辑,1992(5):21-23.
    59张俊峰.山地果园单轨运输机遥控关键技术与装置的研究[D].华中农业大学,2012.
    60张俊彦,赵荣国.理论力学第二版[M].北京:北京大学出版社,2011:25-61.
    61张凯鑫,张衍林.牵引式单轨果园运输机的设计和实现[C]//中国农业工程学会2011年学术年会论文集.重庆,10,2011:50-51.
    62张凯鑫,张衍林,周波等。单轨道橡胶辊驱动装置驱动性能研究[J].农业机械学报,2013,44(增刊):111-116
    63张梦华.国内外农用运输车概况[J].农机试验与推广,1999(2).
    64张楠,杨建武,崔晶.LabVIEW计数滤波器在信号降噪中的应用[J].微计算机信息,2009(28):77-79.
    65张衍林,樊启洲,李善军等.一种牵引式单轨道果园运输机[P].中国专利:CN102107768A,2011:06-29.张颖.层间隔震体系的减震机理与减震性能研究[D].湖南大学,2009.
    66张颖,谭平,周福霖.基于能量平衡的层间隔震结构地震响应预测[J].振动与冲击,2009,28(4):137-141.
    67赵恒华,高兴军.ANSYS软件及其使用[J].制造业自动化,2004,5:20-23.
    68中国柑橘学会.中国柑橘产业[M].北京:中国农业出版社,2008:17-22.
    69周波.双轴立式螺旋开沟机工作部件切土性能研究[D].华中农业大学,2012.
    70庄茁.ABAQUS有限元软件6.入门指南[M].清华大学出版社,2004.
    71左文巧.抓斗卸船机钢结构应力谱统计及疲劳寿命评估。[D]上海交通大学,2011
    72 Besson J, Cailletaud G, Chaboche J L, et al. Non-linear mechanics of materials[M]. [S.1.]:[s.n.],2010:127-194.
    73 Boyce M C, Arruda E M. Constitutive models of rubber elasticity:a review[J]. Rubber chemistry and technology,2000,73(3):504-523.
    74 BRUNIG M. A framework for large strain elastic-plastic damage mechanics based on metric transformations[J]. International Journal of Engineering Science,2001,39(9): 1033-1056.
    75 Brown R. Physical testing of rubber[M]. UK:Chapman & Hall,1995:95-108.
    76 Burroughs C B, Dugan E L. Measurement and analysis of blank tire tread vibration and radiated noise[R].2003.
    77 Christian M, Serdar G. A micro-macro approach to rubber-like materials, part ii:the micro-sphere model of finite rubber viscoelasticity[J]. Journal of the Mechanics and Physics of Solids,2005,53(10):2231-2258.
    78 FAO.FAO Statistical Databases,2013.http://faostat.fao.org/.
    79 Faydor L. Litvin,Alfonso Fuentes, Kenichi Hayasaka. Design,manufacture, stress analysis,and experimental tests of low-noise high endurance spiral bevel gears, Mechanism andMachine Theory 41 (2006) 83-118.
    80 Fu D, Rajagopal K R, Szeri A Z. Non-homogeneous deformations in a wedge of Mooney-Rivlin material[J]. International Journal of Non-Linear Mechanics,1990, 25(4):375-387.
    81 Gao Y-c, Zhou Z. Large strain contact of a rubber wedge with a rigid notch[J]. International Journal of Solids and Structures,2001,38(32):8921-8928.
    82 Gent A N. Engineering with rubber:how to design rubber components[M]. Hanser Verlag,2001.
    83 Heckl M. Tire noise generating mechanisms-State of the Art Report[C]//International Tire Noise Conference.1979:41-55.
    84 James A G, Green A, Simpson G M. Strain energy functions of rubber. I. Characterization of gum vulcanizates[J]. Journal of applied polymer science,1975, 19(7):2033-2058.
    85 James H M, Guth E. Theory of the elastic properties of rubber[J]. The Journal of Chemical Physics,1943,11:455.
    86 Klein P. Using the generalized Schur form to solve a multivariate linear rational expectations model[J]. Journal of Economic Dynamics and Control,2000,24(10): 1405-1423.
    87 Laraba-Abbes F, Ienny P, Piques R. A new 'Tailor-made'methodology for the mechanical behaviour analysis of rubber-like materials:II. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate[J]. Polymer,2003,44(3):821-840.
    88 Lawrence J, etal, SAE,N0.850988
    89 Machado P S. Non-linear buckling and postbuckling behavior of thin-walled beams considering shear deformation[J]. International Journal of Non-Linear Mechanics, 2008,43(5):345-365.
    90 Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect[J]. Journal of the Mechanics and Physics of Solids,2002,50(9): 2011-2028.
    91 Mckenna G B, Zapas L J. Experiments on the small-strain behaviour of crosslinked natural rubber:2. extension and compression[J]. Polymer,1983,24(11):1502-1506.
    92 Mooney M. A theory of large elastic deformation[J]. Journal of applied physics,1940, 11(9):582-592.
    93 Morizur J P, Taphanel M H, Mayer P S, et al. Stereochemical analysis of deuterated alkyl chains by MS/MS[J]. The Journal of Organic Chemistry,2000,65(2):381-387.
    94 Morman Jr K N, Pan T Y. Application of finite-element analysis in the design of automotive elastomeric components[J]. Rubber chemistry and technology,1988,61(3): 503-533.
    95 Nilsson N A, Bennerhult O, Soderqvist S. External tire/road noise:its generation and reduction[C]//Proceedings of the International Conference Noise Control Engineering, Noise Control for the 80's, Inter-Noise 80, Vol.1, Miami, Florida, December 8-10, 1980.1980.
    96 Ogden R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1972,326(1567):565-584.
    97 Ogden R W. Nearly isochoric elastic deformations:application to rubberlike solids[J]. Journal of the Mechanics and Physics of Solids,1978,26(1):37-57.
    98 Ogden R W, Roxburgh D G A pseudo-elastic model for the Mullins effect in filled rubber[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1999,455(1988):2861-2877.
    99 Pacejka H B. Tire and vehicle dynamics. Society of Automotive Engineers[J]. Inc., Warrendale, PA,2002.
    100Rivlin R S. Large elastic deformations of isotropic materials. IV. Further developments of the general theory[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1948,241(835): 379-397.
    101Sandberg U. Tyre/road noise:myths and realities[R]. Swedish National Road and Transport Research Institute,2001.
    102Spathis G. Non-linear constitutive equations for viscoelastic behaviour of elastomers at large deformations[J]. Polymer GELS and Networks,1997,5(1):55-68.
    103Treloar L R G. The physics of rubber elasticity[M]. Oxford University Press,1975.
    104Valanis K C, Landel R F. The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios[J]. Journal of Applied Physics,1967,38(7): 2997-3002.
    105Vilmos Simon. Computer simulation of tooth contact analysis of mismatched spiral bevel gears, Mechanism and Machine Theory 42 (2007) 365-381.
    106Wullens F, Kropp W. A three-dimensional contact model for tyre/road interaction in rolling conditions[J]. Acta Acustica united with Acustica,2004,90(4):702-711.
    107Wu P D, Van der Giessen E. On improved 3-D non-Gaussian network models for rubber elasticity[J]. Mechanics research communications,1992,19(5):427-433.
    108Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J]. Rubber chemistry and technology,1990,63(5):792-805.
    109Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and technology,1993,66(5):754-771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700