用户名: 密码: 验证码:
水流因子对红鳍银鲫(Barbodes schwanenfeldi)游泳行为、生长和生理生态影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水流作为鱼类生活环境的一个重要且复杂的生态因子,能够刺激鱼类的感觉器官,使其产生相应的运动方式及反应机制。它有多方面的生态作用,直接或间接地影响鱼类的行为和生理生态等方面。本文详细综述了水流因子对鱼类生理生态学特征影响的研究进展,并通过一系列的室内实验,在28±1℃水温下,研究了流速对红鳍银鲫趋流行为、能量代谢、生长和能量收支、血液成分和酶活力、基本营养成分、氨基酸和脂肪酸组成以及抗生素残留等的影响。主要研究结果如下:
     1.水流因子对红鳍银鲫趋流行为和游泳运动特征的影响
     使用特制的鱼类游泳行为和活动代谢同步测定装置对红鳍银鲫幼鱼(体重125.94±13.87g)在0、0.1、0.3、0.5m·s~(-1) 4种流速条件下的趋流行为进行了测定和统计分析。实验时间设定三个阶段即90min、24h、45d。实验结果如下:四种流速下,红鳍银鲫的趋流行为发生很大变化。幼鱼趋流率随着流速的增加而增大,0.3 m·s~(-1)以上流速下有较高的趋流率。和静水对照组相比,各个流速实验组在各个时间阶段内的趋流率、摆尾频率均显著上升。在90 min内各个时间阶段摆尾频率与趋流率均呈显著的线性相关。红鳍银鲫并不是长时间维持一种游泳状态,而是经常更换,其游泳状态明显受到所处流速的影响:随着流速的增大,逆流前进所占时间由超过50%减少至低于5%,而逆流静止所占时间比例从3%以下增加至86%以上。在逆流前进、逆流静止两种游泳状态下,红鳍银鲫幼鱼的游泳速度(V)和摆尾频率(TBF)呈线性相关。在24h和45d的实验当中,不同流速组的趋流率、摆尾频率均显著高于静水对照组。
     2.水流因子对红鳍银鲫能量代谢的影响
     实验研究了流速(Om·s~(-1),0.1m·s~(-1),0.3m·s~(-1),0.5m·s~(-1)对红鳍银鲫幼鱼(体重125.94±13.87g)能量代谢的影响。实验结果如下:四种水流速度下,红鳍银鲫的能量代谢特征明显改变。耗氧率随着流速提高而上升,0.3m·s~(-1)流速下达到最大值,但0.5 m·s~(-1)流速下出现下降。呼吸频率存在同样的变化趋势。红鳍银鲫幼鱼在不同流速下的T-N排泄率、Ur-N排泄率变化显著,而NH_3-N排泄率变化不明显。T-N排泄率、Ur-N排泄率随着流速提高而上升,0.5m·s~(-1)流速下达到最大值。红鳍银鲫各种代谢指标与摆尾频率之间存在着线性正相关关系。在本实验条件下,红鳍银鲫幼鱼的氧氮比最大值出现在0.3m·s~(-1)流速组,最小值出现在0m·s~(-1)对照组,波动在28.3~42.0之间。随着流速的增加,红鳍银鲫幼鱼脂肪供能比例显著增加,而蛋白质和糖类供能比例明显下降。在0m·s~(-1)对照流速组,其主要供能物质为糖类和蛋白质,供能比约为72.6%。在0.1m·s~(-1)流速组和0.3m·s~(-1)流速组其主要供能物质是糖类和脂肪,供能比达到74.1%~79.5%。在0.5m·s~(-1)流速组,其主要供能物质是脂肪和蛋白质,供能比达到79.1%。
     3.水流因子对红鳍银鲫生长和能量收支的影响
     实验共进行45d,研究了流速(0m·s~(-1),0.1m·s~(-1),0.3m·s~(-1))对红鳍银鲫幼鱼(体重75.21±2.82g)生长和能量收支的影响。查明不同流速下红鳍银鲫幼鱼的摄食率、排泄率、代谢率和生长率的变化情况,并比较了不同流速下食物转化率,建立不同流速下的能量收支方程。实验结果如下:在0-0.3m·s~(-1)流速范围内,红鳍银鲫幼鱼单位体重的摄食率、排泄率和代谢率均随着流速升高而增加,摄食率和排泄率随着养殖时间的延长而略有升高,而代谢率随养殖时间的延长而降低。平均日增重和特定生长率以0.1m·s~(-1)组最高,0.3m·s~(-1)组最低。幼鱼食物转化率静水对照组和0.1m·s~(-1)组差异不显著,但均显著高于0.3m·s~(-1)组。实验期间总能量收支方程式如下:0m·s~(-1)组:100.0 C=44.8 F+4.7 U+36.6 R+13.9G0.1m·s~(-1)组:100.0 C=37.9 F+5.1 U+40.1 R+16.4G0.3m·s~(-1)组:100.0 C=41.9 F+6.1 U+47.1 R+4.9G
     总体看来,随着流速的升高,红鳍银鲫代谢能和排泄能所占比例上升,0.1 m·s~(-1)组排粪能所占比例最低,生长能分配最高,而0.3m·s~(-1)组则相反。
     4.水流因子对红鳍银鲫血液成分和非特异性免疫功能的影响
     实验共进行45d,研究了流速(0m·s~(-1),0.1m·s~(-1),0.3m·s~(-1))对红鳍银鲫幼鱼(体重75.21±2.82g)血液生化成分和免疫功能的影响。实验结果表明:在不同流速下,红鳍银鲫血液生理指标产生了显著变化。首先,红鳍银鲫红细胞数、红细胞压积和血红蛋白含量均随流速升高显著上升,并且随水流处理时间的延长进一步上升。而平均血细胞体积降低,白细胞数变化不明显。其次,水流因子对红鳍银鲫血液生化组成和相关酶的活性产生了显著影响。鱼血糖浓度在实验中期变化不明显,而在实验末期,0.3 m·s~(-1)组显著上升。总蛋白和球蛋白在高流速下均显著高于静水组,但白蛋白变化不大。而红鳍银鲫血液的总胆固醇和甘油三脂在实验中期变化不明显,但在实验末期均随流速的升高而显著降低。不同流速条件下红鳍银鲫乳酸脱氢酶、谷草转氨酶、谷丙转氨和碱性磷酸酶等血清酶的活性均随流速的增大而增加,且随时间延长而变化。水流因子同样对红鳍银鲫非特异性免疫机能产生了显著影响。红鳍银鲫NBT阳性细胞数随流速的增加而升高,0.1m·s~(-1)和0.3 m·s~(-1)组NBT阳性细胞数明显高于静水对照组。但在实验末期,0.1m·s~(-1)和0.3m·s~(-1)两组间差异不显著。血清中溶菌酶活性和超氧化物歧化酶同样随水流速增大而显著上升,在0.3 m·s~(-1)组存在最大值。
     5.水流因子对红鳍银鲫体营养成分和肉质的影响
     实验共进行45d,研究了流速(0m·s~(-1),0.1m·s~(-1),0.3m·s~(-1))对红鳍银鲫幼鱼(体重75.21±2.82g)体营养成分和肉质的影响。三种流速下的红鳍银鲫肌肉加工指标和水分含量差异不显著。红鳍银鲫肌肉中蛋白质含量随流速增加而增加,肌肉中脂肪含量却随流速增加显著降低。在实验中期,和静水组相比,0.1m·s~(-1)和0.3m·s~(-1)组肌肉中各氨基酸含量均无显著变化(P>0.05);在实验末期,和静水组相比,0.3 m·s~(-1)组的亮氨酸、天门冬氨酸、谷氨酸、甘氨酸、丙氨酸和赖氨酸均显著增加(P<0.05),并且鲜味氨基酸总量随流速有明显增加。水流因子对红鳍银鲫肌肉中脂肪酸含量和组成产生极大的影响。在实验中期(23d),0.1m·s~(-1)流速组除了C18:2n-6,0.3m·s~(-1)流速组除了C15:0、C16:1、C18:2n-6和C20:5n-3外,其它饱和脂肪酸含量均显著低于于静水组,而不饱和脂肪酸含量均显著高于静水组(P<0.05)。实验末期,和静水组相比,0.1m·s~(-1)流速组除了C16:0和C18:2n-6外,0.3m·s~(-1)流速组除了C16:0、C16:1和C18:2外,其它饱和脂肪酸含量显著减少,不饱和脂肪酸含量均显著增加(P<0.05)。而且在实验末期EPA、DHA和ALA等功能性多不饱和脂肪酸含量均随流速增加同样有了显著提高(P<0.05)。
     6.水流因子对红鳍银鲫肌肉盐酸诺氟沙星残留的影响
     实验共进行27d,以50 mg·kg~(-1)体重的投喂量连续7d混饲给药方式研究了流速(0m·s~(-1),0.3m·s~(-1))对红鳍银鲫幼鱼(平均体重90.3±10.1g)肌肉组织盐酸诺氟沙星残留的影响。实验过程中各个时间段下,与静水对照组相比,0.3m·s~(-1)流速组红鳍银鲫肌肉盐酸诺氟沙星含量均显著减少(P<0.05),在停药第6d就已经检测不到抗生素残留,而静水对照组则要在停药12d其含量才低于检出限。
Water current,an important environmental factor,can activate sense organ of fish and bring corresponding action mode and response mechanism,which has various ecological effects such as influencing the behavior and physiological development of fish directly or indirectly.This paper reviewed the ecophysiological effects of water velocity on fish was undertaken,and a series of indoor experiments were conducted to investigate the effects of water velocity on rheotaxis behavior,feeding and growth,energy metabolism and budget,hematological parameters, non-special immune factors,biochemical composition,antibiotic residue in tinfoil barb Barbodes schwanenfeldi.The main results were summarized as follows:
     1) Effects of water velocity on the rheotaxis behavior and swimmming performance of young tinfoil barb B.schwanenfeldi
     A special device was designed to examine the rheotaxis behavior and swimming performance of young B.schwanenfeldi(weight 125.94±13.87 g) under different water velocities(0,0.1,0.3,0.5 m·s~(-1)) at 28℃.The experiments were carried out for three phases(90 min,24 h and 45 d).The results showed that the rheotactic frequency(RF) of tinfoil barb increased with increasing water velocity.The tail beat frequency(TBF) at 0.3 and 0.5 m·s~(-1) was higher than those at 0 and 0.1 m·s~(-1).A linear correlation between TBF and RF was found at each time-point within 90 min.Tinfoil barb altered swimming performance frequently,which was apparently affected by the water current.The time of swimming against the current decreased from above 50%to below 5%,while the time of keeping still increased from below 3%to above 86%with the increasing of water velocity.The TBF was linearly correlation with the swimming speed(Ⅴ) when the fish moved forward or held still.Moreover,both TBF and RF of the fish challenged with different water velocities were significantly higher than those of the control(0 m·s~(-1)) in 24 h and 45 d.
     2) Effects of water velocities on the energy metabolism of young tinfoil barb B.schwanenfeldi
     Experiments were conducted to determine the effects of water velocity(0,0.1,0.3 and 0.5 m·s~(-1)) on energy metabolism in young B.schwanenfeldi(weight 125.94±13.87 g).The results demonstrated that the oxygen consumption rate(OCR) in tinfoil barb at the water velocities of 0.3 and 0.5 m·s~(-1) were significantly higher than that of the control(0 m·s~(-1)).OCR reached the peak at 0.3 m·s~(-1)and it reduced at 0.5 m·s~(-1) during the experiment time.The change of respiratory frequency was similar to that of the OCR.The excretion rates of TN and Ur-N both increased with the higher water velocities and peaked at 0.5 m·s~(-1),but NH_3-N excretion rate showed little change. The oxygen nitrogen ratios of young fish fluctuated between 28.3~42.0 at different water velocities,with the maximum at 0.3 m·s~(-1) and the minimum at 0 m·s~(-1).The proportions of carbohydrate and protein decreased with the increasing water velocity but fat increased in substrate energy suply.The carbohydrate and protein were the primary energy substrate at 0.1 m·s~(-1),which provided 72.6%of the whole energy.The primary energy substrate was fat and carbohydrate when the water velocity reached 0.1 or 0.3 m·s~(-1),which provided 74.1~79.5%of the whole energy.However,the primary energy substrate was fat and protein at 0.5 m·s~(-1).
     3) Effects of water velocities on the growth,feeding and energy budget of young tinfoil barb B.schwanenfeldi
     Based on the measurement of the ingestion,excretion,metabolism,growth and food conversion of young fish(weight 75.21±2.82g) at different water velocities(0,0.1 and 0.3 m·s~(-1)) for 45 d,equations of the energy budget in relation to water velocity were established.At 0-0.3 m·s~(-1),the ingestion,excretion,metabolism and growth rates of young B.schwanenfeldi increased with increasing water velocity.The metabolism rate decreased and the ingestion and excretion rates increased with increasing culture period.The daily weight gain(DWG) and weight special growth rate(SGR) at 0.1 m·s~(-1) was higher than those at 0 and 0.3 m·s.(-1).No significant difference was observed in the food conversion rate(FCR) of the young fish at 0 and 0.1 m·s~(-1),but thery were both significantly higher than that of the fish at 0.3 m·s~(-1).The energy budget equations were established during the experiment period included: 0 m·s~(-1):100.0 C=44.8 F+4.7 U+36.6 R+13.9 G 0.1 m·s~(-1):100.0 C=37.9 F+5.1 U+40.1 R+16.4 G 0.3 m·s~(-1):100.0 C=41.9 F+6.1 U+47.1 R+4.9 G
     To sum up,the ratio of energies used for metabolism and excretion increased with increasing water velocity.The growth energy was maximal and the faecal production energy was minimal under 0.1 m·s~(-1),which were the reverse under 0.3 m·s~(-1).
     4) Effects of water velocities on blood parameters and non-specific immunity of young tinfoil barb B.schwanenfeldi
     The blood parameters and immune function of young Barbodes schwanenfeldi(weight 75.21±2.82g) were examined at different water velocities(0,0.1 and 0.3 m·s~(-1)) for 45 d.The results showed that water velocities affected the hematological parameters of young tinfoil barb. The quantity of RBC,HCT,MCH and MCHC increased significantly with increasing water velocity and duration,while MCV decreased markedly and WBC showed no obvious change. Moreover,the biochemical composition of serum changed in response to the different water velocities.Plasma glucose remained unchangeable before the middle of the experiment time,but it increased significantly under 0.3 m·s~(-1) at the end of the experiment.The total protein(TP) and the globulin protein(GP) content in 0.3 m·s~(-1) group were higher greatly than those of the control, but the change of albumin protein was not remarkable.The contents of total glyceride(TG) and total cholesterol(TC) remained stable in the middle(23 d) of the experiment,and they dropped significantly at the end(45 d) of the experiment(P<0.05).The water current also influenced activities the transaminase and phosphatase.The activities of LDH,AST,ALT and AKP increased with increasing water velocity within the period of 1-45 days.The immunity of fish was affected by the water velocity.At different water velocites,the weight of immune organs (spleen) did not change significantly but the quantity of NBT positive cells increased markedly. The quantity of NBT positive cells of fish at 0.1 and 0.3 m·s~(-1)group were higher than that of the control.However,no remarkable difference was found in the 0.1 and 0.3 m·s~(-1) groups after 45 days.The activities of lysozyme and superoxide dismutase both increased obviously with increasing water velocity,which peaked in 0.3 m·s~(-1) group.
     5) Effects of water velocities on the biochemical composition of young tinfoil barb B. schwanenfeldi
     The water velocity significantly affected the biochemical composition of young B. schwanenfeldi(weight 75.21+2.82 g).After water velocity treatments(0,0.1 and 0.3m·s~(-1)) for 45 d, no significant difference in the processing indices and water content in muscle was observed among the treatments with various water velocities.The protein content of fish muscle increased greatly with the increase of water velocity,while the lipid content of muscle dropped with the increasing water velocity.There was no significant difference in the contents of amino acids at the mid-time of the experiment,but the content of Asp,Glu,Gly,Ala,leu and Lys of the fish treated with the water velocity of 0.3 m·s~(-1) were significantly higher than that of control at the end of experiment.Moreover,the content of delicious amino acids increased greatly with the increase of water velocity.
     Water current also affected fatty acids content greatly.At the mid-time of the experiment,the SFA congtent except C18:2n-6 in the group treated with 0.1 m·s~(-1) water velocity and C15:0, C16:1,C18:2n-6 and C20:5n-3 in the group treated with 0.3 m·s~(-1) water velocity decreased obviously compared to that in the control group,but all the UFA content increased.At the end of experiment,the contents of SFA except C16:0 and C18:2n-6 in the 0.1 m·s~(-1) water velocity treated gruoup and C16:0,C16:1 and C18:2n-6 in the 0.3 m·s~(-1) water velocity treated gruoup were all markedly lower than that of the control,but contents of UFA were significantly higher. Furthermore,the contents of EPA,DHA and ALA also rose greatly up while water velocity increased at the end of the experiment(P<0.05).
     6) Effects of water velocities on the residue of NFLX-HCL of young tinfoil barb B. schwanenfeldi
     The NFLX-HCL mixed with feed were given to the young fish(weight 90.3±10.1 g) at a dose of 50 mg·kg~(-1) weight for consecutive 7 days at different water velocities(0 and 0.3 m·s~(-1)). The muscle was sampled and the content of NFLX-HCL was examined at different time-points during the experiment period of 27 days.
     The results showed that the drug was eliminated from the muscle at a quite different speed when the fish were treated with different water velocities.The content of NFLC-HCL in muscle offish at 0.3 m·s~(-1) water velocity were lower that of the control(p<0.05).When the drug feeding were stopped,no medicine residue in the muscle offish treated with 0.3 m·s~(-1) water velocity was detected on the 6th day,while its content became undetectable on the 12th day in the control group(0 m·s~(-1)).
引文
[1]安利国,冯和强,邢维贤,等.灭活疫苗对鲤鱼血清溶菌酶和腹腔吞噬细胞活性的作用[J].山东师范大学学报(自然科学版).1999.14(2):175-179.
    [2]艾晓辉,刘长征,周运涛.不同水温和给药方式下磺胺甲噁唑在草鱼体内的药动学研究[J].水生生物学报.2005.29(2):210-214.
    [3]陈昌福,罗宇良,蔡冰,等.饲养水温对草鱼溶菌酶活性的影响[J].中国水产科学.1996.3(3):24-30.
    [4]陈守良.动物生理学[M].北京:北京大学出版社.1996.第二版.182-190.
    [5]陈惠群.苯酚对革胡子鲶血液指标的影响[J].环境污染与防治.2002.24(2):104-106.
    [6]陈惠群,杨文鸽.饥饿对鳗鲡某些血液指标的影响[J].水产科学.2001.20(2):10-11.
    [7]陈晓芸.饥饿对南方鲶幼鱼血液的影响[J].西南农业大学学报.2000.22(2):167-169.
    [8]陈定福,何学福,周启贵.南方大口鲶和鲶鱼含肉率及鱼肉的营养成分[J].动物学杂志.1990.25(1):7-9.
    [9]陈家长.水体中NH_3-N对建鲤非特异性免疫的影响[J].湛江海洋大学学报.2000.20(3):13-16.
    [10]蔡秋.不同强度恒负荷运动时的血乳酸变化研究[J].广东教育学院学报.2001.21(2):87-90.
    [11]崔奕波,陈少莲,王少梅.温度对草鱼能量收支的影响[J].海洋与湖沼.1995.26(2):169-174
    [12]崔奕波,吴登.真(鱼岁)的能量收支各组分与摄食量、体重及温度的关系[J].水生生物学报.1990.14(3):193-204.
    [13]杜震宇.饥饿对于鲈肌肉、肝脏和血清主要生化组成的影响[J].动物学报.200349(4):458-465.
    [14]刁晓明,苏胜齐,李华,等.岩原鲤耗氧率和窒息点研究[J].西南农业大学学报.1994.16(3):208-211.
    [15]邓碧玉,袁勤生,李文杰.改良后的连苯三酚自氧化测定超氧化物歧化酶活性的方法[J].生物化学与生物物理进展.1991.18(2):163-165.
    [16]桂远明,吴垠,祝国芹,等.几种养殖鱼类越冬生理生化指标的变化Ⅰ-血液指标及代谢率[J].大连水产学院学报.1994.9(3):15-26
    [17]管敏,胡少华,张琳,等.美国黄金鲈的营养成分分析[J].湖北农学院学报.2001.21(4):329-331.
    [18]龚茜玲,钱梓文.生理学(第2版)[M].上海:上海医科大学出版社.1992.135-140.
    [19]何成奇,熊恩富,熊素芳,等.运动与免疫功能的关系[J].现代康复.2001.(2):72-73.
    [20]何大仁.俄国鱼类行为与感觉研究(I)[J]..台湾海峡.1996.15(2):191-199.
    [21]何大仁.几种幼鱼视觉运动反应研究[J].水生生物学报.1985.9(4):365-373.
    [22]何大仁,蔡厚才.鱼类行为学[M].厦门:厦门大学出版社.1998.141-145,216-235,388.
    [23]何平国,Wardle C.S.鱼类游泳运动的研究[J].青岛海洋大学学报.1989.19(2):111-117.
    [24]胡玫,张中英,昊福煌.尼罗罗非鱼与莫桑比克罗非鱼的含肉率及鱼肉生化分析[J].淡水渔业.1982(4):34-37.
    [25]今井义弘,高谷义幸.回流水槽にょゐ北海道西南沿岸の鱼类の行动观察[J].北水实验报.1998.(52):9-16.
    [26]黄晓荣,庄平.鱼类行为学研究现状及其在实践中的应用[J].淡水渔业.2002.32(6):53-56.
    [27]黄宁宇,程起群,高露娇,等.流速、温度对西伯利亚鲟幼鱼生长的影响[J].水产学报.2007.(1)31-37.
    [28]黄永春.微生态制剂(EM)对建鲤血液指标及耗氧率的影响[J].集美大学学报.1997b.2(4):6-28.
    [29]简继常,吴灶和.中草药对建鲤非特异性免疫功能的影响[J].大连水产学院学报.2002.17(2):114-119.
    [30]况莉,谢小军.温度对饥饿状态下南方站幼鱼氨氮排泄的影响[J].西南师范大学学报.2001.26:45-50.
    [31]雷思佳,叶世洲,李德尚,等.盐度对台湾红罗非鱼能量收支的影响[J].华中农业大学学报.1999.18(3):256-259.
    [32]农业部渔业局.中华水产标准汇无公害食品卷[S].北京:中国标准出版社.2002:137-145.
    [33]李大鹏,庄平,严安生,等。光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响[J].水产学报.2004.28(1):54-61.
    [34]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社(第二版),1994.44-45.
    [35]李小勤,李星星,冷向军,等.盐度对草鱼生长和肌肉品质的影响[J].水产学报.2007,31(3):343-348.
    [36]李俊锁,邱月明,王超.兽药残留分析[M].第一版.上海科学技术出版社.2002.257.
    [37]李大鹏.环境因子对史氏鲟生长的形响及其调控机制的研究.华中农业大学博士学位论文.2003.164.
    [38]李治,谢小军,曹振东.摄食对南方鲇耗氧和氨氮排泄的影响[J].水生生物学报.2005,29(3):247-252.
    [39]李国文,林碧海,谢刚,等.红鳍银鲫的人工繁殖技术[J].淡水渔业.2005.35(2):55-56.
    [40]刘小春,何大仁.真鲷早期发育阶段行为生态学研究[J].热带海洋.1993.12(3):17-22.
    [41]刘金兰.磁通量密度和磁化时间对鲤鱼血液学指标的影响[J].湖北农学院学报.1999.19(1):46-49.
    [42]刘伟,李佐锋.温度对鲢鳊鱼生理生化指标的影响[J].东北大学报自然科学版.1996.17(2):108-112.
    [43]刘青海,冯静.微生物多肽对黑鲷免疫和生长的影响[J].海洋科学.2000.24(5):11-13.
    [44]刘建康.东湖生态学研究(一)[M].科学出版社.1990.307-311.
    [45]刘秀红,李健,王群.诺氟沙星在牙鲆体内的残留及消除规律研究[J].海洋水产研究.2003.24(4):13-18。
    [46]刘镜烙,周利.国外仔稚鱼营养研究进展[J].海洋科学集刊.1996.37.189-194
    [47]刘镜恪,陈晓琳.海水仔稚鱼的必需脂肪酸—n-3系列高度不饱和脂肪酸研究概况[J].青岛海洋大学学报.2002.32(6):897-902.
    [48]李来好,陈培基,杨贤庆,李刘冬,吴燕燕,刁石强.鲻鱼营养成分的研究[J].营养学报.2001(1)91-93.
    [49]林利民,陈武.5种海水养殖鱼类肌肉脂肪酸组成分析及营养评价[J].福建农业学报.2005.20.67-69.
    [50]林浩然.鱼类生理学[M].广州:广东高等教育出版社.1999.57-59,82,85,230
    [51]林光华.胡子鳅血液常数值的周年变化[J].动物学报.1991.37(3):341-342.
    [52]牟志美,苏振霞,肖辉.盐酸诺氟沙星在家蚕体内的药物动力学研究[J].蚕业科学.2004.30(1):55-58.
    [53]廖昌容,陈毕生.抗生素在水产动物体内的药代动力学研究进展[J].中国兽药杂志2004.38(3):30-34.
    [54]鲍丹,陶宁萍,丁卓平.高体革鯻,鲈和鳜的营养成分分析比较[J].上海水产大学学报.2005.15(1)123-127.
    [55]钦俊德.动物行为的生理基础[J].生物学通报.1999.34(10):1-4.
    [56]邱银生,朱式鸥,郝玉萍,等.烟酸诺氟沙星在猪、鸡体内的组织残留研究[J].中国兽药杂志.1994.28(3):10-12.
    [57]邱德依.盐度对鲤能量收支的影响[J].水产学报.1995.19(1):35-42.
    [58]邴旭文,张宪中.斑尖塘鳢肌肉营养成分与品质的评价[J].中国海洋大学学报.2006.36(1):107-111.
    [59]孙耀,郑冰,张波.日粮水平和饵料种类对黑鲷能量收支的影响[J].海洋水产研究.2002.23(1):5-10.
    [60]孙耀,张波,唐启升.摄食水平和饵料种类对黑鲳能量收支的影响[J].海洋水产研究.2001,22(2):32-37.
    [61]孙耀,张波,郭学武,等.体重对黑鲪能量收支的影响[J].海洋水产研究.1999.20(2):66-70.
    [62]孙耀,郑冰,张波,等.温度对黑鲪能量收支的影响[J].海洋学报.2003.25:196-201.
    [63]宋苏祥,刘洪柏,孙大江,等.史氏鲟稚鱼的耗氧率和窒息点[J].中国水产科学.1997.4(5):100-103.
    [64]孙君志,王东辉,王纯,等.不同强度跑台运动对大鼠血清总抗氧化能力、超氧化物歧化酶活性及丙二醛含量的影响[J].中国临床康复.2006.10(48):68-70.
    [65]舒妙安,马有智,张建成.黄鳝肌肉营养成分的分析[J].水产学报.2000.24(4):339-344.
    [66]施泉芳.鱼类生理学[M].北京:农业出版社.1991.55.
    [67]唐玫,马广智,徐军.鱼类免疫学研究进展[J].免疫学杂志.2002.18(3):112-117.
    [68]谭肖英,刘永坚,田丽霞,等.饲料中碳水化合物水平对大口黑鲈生长、鱼体营养成分组成的影响[J].中山大学学报(自然科学版)2005.4(增刊)259-262.
    [69]王道尊.必需脂肪酸对青鱼生长影响的初步观察[J].水产科技情报.1986(2):4-6.
    [70]王宏田,张培军.重组酵母菌对牙鲆非特异性免疫功能的影响[J].海洋与湖沼.2000.31(6):631-635.
    [71]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J].海洋与湖沼.1995.(02)179-185.
    [72]王文博,汪建国,李爱华,等.振荡胁迫后鲫血液皮质醇和溶菌酶水平的变化[J].水生生物学报.2004.28(6)682-684.
    [73]王利华,霍贵成,杨丽洁.亚麻籽脂肪酸在蛋黄中的沉积效果[J].中国饲料,2002,(12): 8-9,11.
    [74]万松良,黄永涛,刘敏,等.瓦氏黄颡鱼的含肉率及营养成分分析[J].水利渔业.2008.28(3)59-61.
    [75]吴晓英,林影,陈慧英.溶菌酶的研究进展[J].工业微生物.2002.32(4):55-58.
    [76]吴宝明,卓豫.动物行为检测技术进展及展望[J].中国行为医学科学.2001.10(3):278-280.
    [77]吴垠.几种养殖鱼类越冬生理生化指标的变化Ⅲ血清蛋白组分[J].大连水产学院学报.1995.10(4):19-26.
    [78]吴光红,张静波,孟勇,等.不同水温下恩诺沙星在中华绒鳌蟹体内药物代谢动力学[J].南京农业大学学报.2008.31(2):105-110.
    [79]吴萍,何珠子,魏育红,等.三倍体泥鳅幼鱼的营养分析[J].水产学报.2007.31(增刊)100-103.
    [80]谢小军,孙儒泳.南方鲇幼鱼鱼体的含能量及化学组成[J].北京师范大学学报(自然科学版).1990.(3):84-88.
    [81]谢小军,孙儒泳.鱼类的特殊动力作用的研究进展[J].水生生物学报.1991.15(1)82-89.
    [82]谢小军,孙儒泳.南方鲇的排粪量及消化率同日粮水平、体重和温度的关系[J].海洋与湖沼.1993.24(6):627-631.
    [83]谢刚,祁宝伦,曾超,等.卡特拉鱼含肉率和肌肉生化成分的分析[J].水产学报.1997.21(1)63-67.
    [84]许品诚,曹萃禾.溶氧、水流和鱼类生长关系的探讨[J].淡水渔业.1989.5:27-28.
    [85]线薇薇,朱鑫华.摄食水平对褐牙鲆幼鱼能量收支的影响[J].青岛海洋大学学报.2001.31(5):695-700.
    [86]线薇薇,朱鑫华.摄食水平对梭鱼的生长和能量收支的影响[J].海洋与湖沼.2001.32(6):612-620.
    [87]熊传喜,曹克驹,夏咏,等.乌鳢在越冬期与繁殖前肌肉的营养成分[J].水利渔业.1994(6):23-24.
    [88]许豪文.运动生物化学概论[M].北京:高等教育出版社.2001.132-152.
    [89]徐增洪,徐跑,华伯仙,等.幼鳝对必需脂肪酸适宜需求量的初步研究[J].上海水产大学学报.2001.17(1)83-87.
    [90]尹洪滨,孙中武,孙大江,等.6种养殖鲟鳇鱼肌肉营养成分的比较分析[J].大连水产 学院学报.2004.19(2):92-96.
    [91]杨严鸥,崔奕波,熊邦喜,等.建鲤和异育银鲫摄食不同质量饲料时的氮收支和能量收支比较[J].水生生物学报.2003.27(6):572-577.
    [92]杨振才,谢小军,孙儒泳.日粮水平对鲇鱼日总代谢、特殊动力作用和活动代谢的影响[J].水生生物学报.1996.20(4):333-338.
    [93]杨奇慧,周歧存,迟淑艳,等.饲料中维生素A水平对凡纳滨对虾生长、饲料利用、体组成成分及非特异性免疫反应的影响[J].动物营养学报.2007.19(6):698-705.
    [94]杨兴棋,陈敏容,俞小牧,等.三倍体白鲫的生物学特性[J].水生生物学报.1994.18(2):156-163.
    [95]鄢庆枇,苏永全.口服免疫添加剂对养殖大黄鱼免疫机能的初步研究[J].集美大学学报:自然科学版.2001.6(2):134-137.
    [96]于东祥,韩阿寿,柳学周.真鲷幼鱼能源物质的研究[J].中国水产科学.1998.5(4):108-111.
    [97]于辉,李华,刘为民,等.梁子湖三种鲌肉质分析[J].水生生物学报.2005.29(5):502-506.
    [98]严安生,熊传喜.异育银鲫的含肉率及营养评价.水利渔业.1998.18(3):16-17.
    [99]殷名称.鱼类生态学[M].北京:中国农业出版社.1993.
    [100]殷名称,Batty R.S.温度和活动对仔鲱氧代谢的影响[J].海洋与湖沼.1995.26(3):285-294.
    [101]聂品.鱼类体液免疫研究新进展[J].水产学报.1999.21(1):69-73.
    [102]运动生物化学编写组.运动生物化学[M].北京:高等教育出版社.1986.173.
    [103]曾振灵,冯淇辉.氟诺酮类抗菌剂在畜禽体内的药物动力学研究进展[J].中国兽药杂志.1994.28(4):52-56.
    [104]周仕杰,何大仁,吴清天.几种幼鱼曲线游泳能力的比较研究[J].海洋与湖沼.1993.24(6):621-626.
    [105]周兴华,郑曙明,吴青,等.齐口裂腹鱼肌肉营养成分的分析[J].大连水产学院学报.2005.20(1)20-24.
    [106]张爱芳.实用运动生物化学[M].北京:北京体育大学出版社.2005.66-74,92-102.
    [107]占秀安,钱利纯,李卫芬.甜菜碱对中华鳖肌肉和裙边食用品质指标的影响[J]水产科学.2001,20(4)4-6.
    [108]张硕,陈勇.黑鲪幼鱼趋流性的初步研究[J].上海水产大学学报.2005.14(3):282-287.
    [109]张雅斌,张柞新,郑伟,等.不同给药方式下鲤对诺氟沙星的药代动力学研究[J].水产学报.2000.24(6):559-563.
    [110]张缨.实用运动免疫学[M].北京:北京体育大学出版社.2005.137-138.
    [111]张贤刚.水温对尼罗罗非鱼几种血液指标影响的初步研究[J].淡水渔业.1991.(2):15-17.
    [112]朱秋华,钱国英.3种药物在甲鱼体内的残留研究[J].中国水产科学.2001.8(3):50-53.
    [113]朱晓鸣,解绶启,崔奕波.摄食水平对异育银卿生长及能量收支的影响[J].海洋与湖沼.2000.31(5):471-479.
    [114]庄平.鲟科鱼类个体发育行为学及其在进化与实践上的意义.中国科学院水生生物研究所博士论文.1999.
    [115]Alsop D.H,Wood C.M.The interactive effects of feeding and excrecise on oxygen consumption,swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss)[J].The Journal of Experimental Biology.1997.200:2337-2346.
    [116]Arnold S.J.Behavior,energy and fitness[J].American Zoologist.1988.28:815-827.
    [117]Arnold G.P.Rheotropism in fishes[J].Biological Reviews.1974.49:40-55.
    [118]Andrew S,Kanea J.D.Salierno et.al.A video-based movement analysis system to quantify behavioral stress responses of fish[J].Water Research.2004.38:3993-4001.
    [119]Anderson D.P,Moritomo T,Grooth R.Neutro-phi,1 glass-adherent nitroblue tetrazolium assay gives early indication of immunization effectiveness in rainbow trout[J].Veterinary Immunol Immunopathol.1992.30:419-429.
    [120]Anadon A,Martinez-Larranaga M.A,Velez C et al.Phannacokinetics of norfloxacin and its N-desethyl-and oxo-metabolites in broiler chickens[J].American Journal of Veterinary Reseach.1992.53(11):2084-2089.
    [121]Azuma T,Noda S,Yada T.et al.Profiles in growth,smoltification,immune function and swimming performance of 1-year-old masu salmon Oncorhynchus masou masou reared in water flow[J].Fisheries Science.2002.68.1282-1294.
    [122]Bainbridge R.The Speed of Swimming as Rclaced to and to the Freuency and Amplitude of Tail Beat[J].Journal of Experimental Biology.1958.35:109-133.
    [123]Ballestrazzi R,Lanari R,Dagaro E etal.The effect of dietary protein level and source on growth body-composition,total ammonia and reactive phosphateexcretion of growing sea bass (Dicentrarchus labrax)[J].Aquaculture.1994.127:197-206.
    [124]Bengtson D,Willey S,Mcaffrey E,etal.Effects of water welocity on conditioning of summer flounder Paralichthys dentatus for net pens[J].Journal of Applied Aquaculture.2003.14:133~142.
    [125]Blake R.Fish locomotion[M].Cambridge:Cambridge University Press.1983.208.
    [126]Blake R.W.Biomechanics of rheotaxis in six teleost genera[J].Canadian Journal of Zoology.2006.84:1173~1186.
    [127]Blake R.W,Chan K.H.S,Kwok E.W.Y.Finlets and the steady swimming performance of Thunnus albacares[J].Journal of Fish Biology.2005.67:1434~1445.
    [128]Blake R.W,Kwok P.Y.L,Chan K.H.S.The energetics of rheotactic behaviour in Pterygoplichthys spp.(Teleostei:Loricariidae)[J].Journal of Fish Biology.2007.71:623~627.
    [129]Blazka P,Volf M,Cepela M.A new type of respirometer for the determination of the metabolism of fish in the active state[J].Physiologia Bohemoslovenica.1976.9:553~558.
    [130]Brafield A.E.Laboratory studies of energy budgets[M].London.Croom Helm.In Fish Energetics:New Perspectives.1985.257~281.
    [131]Bread CM.The Locomotion of fishes[M].Zoologica(New York).1926.4:159~197.
    [132]Brett J.R,Sutherland D.B.Respiration metabolism of rumpkinseed (Lepomis gibbosus)in relation to swimming speed[J].Journal of Fish.Research Board of Canada.1965.22:405~409.
    [133]Brett J.R.Groves T.D.D.Physiological energetics[M].In:Fishphysiology (W.S.Hoarseds).Academic Press.New York.1979.8:279~352.
    [134]Brett J.R.The respiratory metabolism and swimming performance of young soekeye salmon[J].Journal of the Fisheries Research Board of Canada.1964.21:1183~1226.
    [135]Brett J.R.Zala C.A.Daily pattern of nitrogen excretion and oxygen consummations of sockeye salmon (oncorhynchus nerka).Journal of the Fisheries Research Board of Canada.1975.32:2479~2486.
    [136]Brett J.R.Feeding metabolic rates of young soekeye salmon Oncorhyochus merka in relation to cation level and temperature [J].Fish.Marine.Service.Reserch.Devel Technical Report.1976.43.
    [137]Brett J.R,Sutherland D.B.Respiration metabolism of rumpkinseed (Lepomis gibbosus)in relation to swimming speed[J].Journal of the Fisheries Research Board of Canada.1965.22:405~409.
    [138]Brett J.R.Satiation time,appetite,and maximum food intake of sock eyey salmon(Oncorhynchus nerka)[J].Journal of the Fisheries Research Board of Canada.1971.29:409~415.
    [139]Briggs C.T,Post J.R.Field metabolic rates of rainbow trout estimated using electromyogram telemetry[J].Journal of Fish Biology.1997.51(4):807~823.
    [140]Brody S.Bioenergetics and growth[M].New York:Hafner Publish-ing.1964.76.
    [141]Boisclair D,Sirois P.Testing assumptions of fish bioenergetics models by direct estimation of growth,consumption,and activity rates[J].Transactions of the American Fisheries Society.1993.122:784~796.
    [142]Burel C,Person J,Gaumet F.Effect of temperature on growth and metabolism in juvenile turbot[J].Journal of Fish Biology.1996.49:678~692.
    [143]Boyce S.J.Nitrogen excretion in the Antarctic plunderfish[J].Journal of Fish Biology.1999.54:72~81.
    [144]Bratten B.R.Bioenergetics-a review on methodology[M].In:Halver,J.E.and Tiews,K.(eds.).Proc.World Symp.On Finfish Nutrition and Fishfeed Technology.Berlin.Heenemann.1979.2:461~504.
    [145]Carlos A.M,Erik B.T,John F et al.Effect of temperature on growth and survival of Chirostoma estor Jordan 1879,monitored using a simple viedo technique for remote measurement of length and mass of larval and juvenile fishes[J].Aquaculture.2002.209(1~4):369~377.
    [146]Cui Y,Liu J.Comparison of energy budget among six teleosts-B,Metabolic rates[J].Comparative Biochemistry and Physiology.1990.97A:169~174.
    [147]Conover R.J,Corner D.S.Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles[J].Marine Biology.1968.48:49~75.
    [148]Cater C.G,Houlihan D.F,Owen S.F.Protein synthesis,nitrogen excretin and long-term growth of juvenile Pleuronectes flessu[J]s.Journal of Fish Biology.1998.52(2):72~84.
    [149]Chandroo K.P,Steven J.C,McKinley R.S et al.Use of electromyogram telemetry to assess the behavioural and energetic responses of rainbow trout,Oncorhynchus mykiss (Walbaum)to transportation stress[J].Aquaculture Research.2005.36(2):1226-1238.
    [150]Christiansen J,Jobling M.The behavior and the relationship between food intake and growth of juvenile Artic charr.Salvelinus alpinus L,subjected to susstained exercise [J].Canadian Journal Zoology.1990.68:2185-2191.
    [151]Chiu S.W,Wang Z.M,Leung T.M.Nutritional value of Ganoderma extract and assessment of its genotoxicity and anti-genotoxicity using comet assay of mouse lymphocytes[J].Food and Chemical Toxicology.2000.38(2~3):173~178.
    [152]Dabrowski K.R.A new type of metabolism chamber for the determination of active and postprandial metabolism offish,and consideration of results for coregonid and salmon juveniles.Journal of Fish Biology.1986.28:105.
    [153]Davison W,Goldspink G.The effect of training on the swimming muscles of the goldfish (Carassius aurarus).Journal of Experimental Biology.1978.74:115~122.
    [154]Davison W.The effects of exercise training on teleost fish,a review of recent literature.Comparative Biochemistry and Physiology.1997.117A:67~75.
    [155]Davidson W.A,Goldspink G.The effect of prolonged exercise on the lateral musculature of the rainbow trout (Salrno rrufra)[J].Journal of Experimental Biology.1977.70:1~12.
    [156]East P,Magan P.The effect of locomotor activity on the growth of brook charr,Salvelinus fontinalis Mitchil[J].Canadian Journal of Zoology.1987.65:843~846.
    [157]Eliott J.M,Davison W.Energy equivalents of oxygen consumption in animal energetics[J].Oecologia.1976b.19:195-201.
    [158]Eliott J.M.The energetics of feeding,metabolism and growth of brown trout (Salmo trutta L.)in relation to body weight.Water temperature and ration size[J].Journal of Animal Ecology.1976.45:923~948.
    [159]Elliott J.M.Number of meals in a day,maximum weight of food consumed in a day,and maximum rate of feeding for brown trout,Salmo trutta.[J].Freshwater Biology.1975.5:287~303.
    [160]Elliott J.M.Energy losses in the waste products of brown trout(Salmo trutta L)[J].Journal of Animal Ecology.1976b.45:561~580.
    [161]Elliott,J.M.Energetics of freshwater teleosts,adaptiveness in Teleosts[M].Academic Press. London In Fish Phenology:Symposium.Zool.Sco.Lond.1979.44:2961.
    [162]Enders EC,Boisclair D,Boily P et al.Effect of body mass and water temperature on the standard metabolic rate of juvenile yellow perch(Pflavescens Mitchill)[J].Environmental Biology of Fishes.2006.76 (2):399~401.
    [163]Engin K,Cater C.G.Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis)as influenced by dietary protein level[J].Aquaculture.2001.194:123~136.
    [164]Evelyn J.S,Tillmann J.B.Hemoglobin level,metabolic rate and swimming performance in triploid brook trout (Salvelinus fontinalis)[J].Aquaculture.1995.137:355~358.
    [165]Foster I,Ogata H.Growth and whole-body lipid content of juvenile red sea bream reared under different conditions of exercise training and dietary lipid[J].Fisheries Science.1996.62(3)404~409.
    [166]Fu S.J,Xie X.J,Cao Z.D.Effect of Fasting and Repeat Feeding onMetabolic Rate in Southern Catfish,Silurus meridionalis [J].Marine and Freshwater Behaviour and Physiology.2005.38 (3):191~198.
    [167]Franklin C.E,Davison W,Mckenzie J.C.The role of the spleen during exercise in the antartic teleost Pagothenia borchgrevinki[J].Journal of Experimental Biology.1993.174:381~386.
    [168]Glass C.W.Behavioural studies of the principles underlying mesh penetration by fish[J].ICES Marine.Science Symposium.1993.7:249~266.
    [169]Gerstner C.L,Webb P.W.The station-holding performance of the plaice Pleuronectes platessa on artificial substratum ripples[J].Canadian Journal of Zoology.1998.76:260~268.
    [170]German E.M,Raul H.P,Douglas E.C.Effect of water velocity on the growth of California halibut (Parali chthys californicus)juveniles[J].Aquaculture.2007.271:206~215.
    [171]Gnaiger E.Caculation of energetic and biochemical equivalents of respratory oxygen consumption[M].In:Gnaiger.E.,Forstner.H.(eds)Polargraphic oxygen sensors.Springer Verlag.Berlin.1983.337~345.
    [172]Gray J.Studies in Animal Locomotion.I.The Movement of Fish with Special Reference to the Eel[J].Journal of Experimental Biology.1933.10:88~104.
    [173]Hackbarth A,Moraes G Biochemical responses of matrinxa Brycon cephalus (Gunther,1869)after sustained swimming[J].Aquaculture Research.2006.37 (11)1070~1078.
    [174]Herskin J,Steffensen J.F.Energy saving in sea bass swimming in a school:measurements of tail beat frequency and oxygen consumption at different swimming speeds[J].Journal of Fish Biology.1998.53:366~376.
    [175]Hiroshi Y.O,Hiromi O.Effects of Water Velocity on Growth Performance of Juvenile Japanese Flounder Paralichthys olivctceus[J].Journal of the World Aculture Society.2000.31(2):225~231.
    [176]Hiroshi Y O,hiromi O.The effects of swimming exercise on growth and whoe-body protein and fat contents of fed and unfed fingerling yellowtail[J].Fisheries Science.2000.66:1100~1105.
    [177]Houlihan D.F,Laurent P.Effects of exercise training on the performance.Growth,and protein turnover of rainbow trout(Salmo gairdneri)[J].Canadian Journal of Fisheries and Aquatic Sciences.1987.44:1614~1621
    [178]Hiroshyi O,Dhiromoik.Effects of Water Velocity on Growth Performance of Juvenile Japanese Flounder Paralichthys olivaceus [J].Journal of the world aquaculture society.2000.31(2)225~231.
    [179]Houston A.H.Blood and circulation[M].American Fisheries Society.Bethesda.MD.USAin:Methods for Fish Biology.1990.273~334.
    [180]Hultmark D.Insect immunity:purification and properties of three inducible bacterici-dal proteins from hemolymph of immunized pupae of Hyalophera cecropia[J].European Journal of Biochemistry.1980.106:7~16.
    [181]Hoar W.S,Randall D.J.Fish Physiology VII.Locomotion [M].Academic Press(New York).1978.101~187.
    [182]Holk K,Lykkeboe G.The impact of endurance training on arterial plasma K~+ levels and swimming performance of rainbow trout[J].Journal of Experimental Biology.1998.201C.1373~1380.
    [183]Ikeda T.Nutrition ecology of marine zooplankton[J].Mem Fac Fish Hokkaido Univercity.1974.22:1~77.
    [184]Ingebrigtsen K.Factors affecting drug disposition in fish[J].Acta Veterinaria.Scand. 1991.87:44~56.
    [185]Israeli D,Kimmel E.Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision[J].Aquacultural Engineering.1996.15(6):423~440.
    [186]James A.F,Robert C.S.Effect of to temperature on diel ammonia excretion of fingerling walleye[J].Aquaculture.1992.102:115~126.
    [187]Jobling M.Bioenergetics:feed intake and energy partitioning[M].London:Chapman & Hall.1993.1~44.
    [188]Jobling M,Baardvik B.M,Christiansen J.S.The effects of prolonged exercise training growth performance and production parameters in fish[J].Aquaculture International.1993.1:95~111.
    [189]Jobling M.Fish Bioenergetics.Chapman & Hall,London,UK.1994.309.
    [190]Jobling M.The influence of feeding on the metabolic rate of fishes:a short review[J].Journal of Fish Biology.1981.18:385~340.
    [191]Jobling M.A study of some factors affecting rates of oxygen consumption of plaice,Pleuronectes platessa[J].Journal of Fish Biology.1982.20:501~516.
    [192]James A.F,Robert C.S.Effect of to temperature on diel ammonia excretion of fingerling walleye[J].Aquaculture.1992.102:115~126.
    [193]Jurs K.A,Bastrop R.Amino acid metabolism in fish.In:Biochemistry and Molecular Biology of Fishes.Elsevier,Amsterdam,the Netherlands[J].Metabolic Biochemistry.1995.(4)159~190.
    [194]Kato S,Tamada K,Shimada Y,et al.A quantification of goldfish behavior by an image processing system[J].Behavioural Brain Research.1996.80(1):51~55.
    [195]Kato S,Nakagawa T,Ohkawa M,et al.A computer image processing system for quantification of zebrafish behavior[J].Journal of Neuroscience Methods.2004.134 (1):1~7.
    [196]Kieffer J.D,Alsop D,Wood CM.A respirometric analysis of fuel use during aerbolic swimming at different temperatures in rainbow trout (Oncorhynchus mykiss)[J].Journal of Experimental Biology.1998.201:3123~3133.
    [197]Koch F,Wieser W.Partitioning of energy in fish:can reduction of swimming activity compensate for the cost of production [J].Journal of Experimental Biology.1983.107. 141~146.
    [198]Kristiansen T.S,FernoA,HolmJ.C,et al.Swimming behaviour as an indicator of low growth rate and impaired welfare in Atlantic halibut (Hippoglossus hippoglossus L.)reared at three stocking densities[J].Aquaculture.2004.230 (1-4):137~151.
    [199]Knudsen P.K,Jensen F.B.Effects of exhausting exercise and catecholamines on K+balance,acid-base status and blood respiratory properties in carp[J].Comparative Biochemistry and Physiology.1998.119A,301~307.
    [200]Lauff R.F,Wood CM.Respiratory gas exchange,nitrogenous waste excretion and fuel usage during aerobic swimmg in juvenile rainbow trout [J].Comparative Physiology.B 1996b.166:501~509.
    [201]Lauff R.F,Wood CM.Respiratory gas Exchange,nitrogenous waste excretion,and fuel usage during starvation in juvenile rainbow trout[J].Comparative Physiology.B.1996a.165:542~551.
    [202]Lauff R.F,Wood CM.Efects of training on respiratory gas exchange,nitrogenous waste excretion and fuel usage during aerobic swimming in juvenile rainbow rout(Oncorhynchus mykiss)[J].Canada Journal of Fish aquatic Science.1997.54:566~571.
    [203]Liu S.J,Liu Y,Zhou G.J,et al.The formation of tetraploid stocks of red crucian carpxcommon carphybrids as an effect of interspecific hybridization [J].Aquaculture.2001.192:171~186.
    [204]Lee C.G,Devlin R.H,Farrell A.P.Swimming performance,oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched coho salmon [J].Journal of Fish Biology.2003.62:753~766.
    [205]Leon K.A.Effect of exercise on feed consumption.growth.food conversion and stamina of brook trout[J].Progressive Fish Culturist.1986.48:43~46.
    [206]Martinez F.J,Garcia-Riera M.P,Canteras M,et al.Blood parameters in rainbow trout Oncorhynchus mykiss:simultaneous influence of various factors[J].Comparative Biochemistry and Physiology.1994.107A:95~100.
    [207]Marit B,Orjan K,Ian A.J,et al.Effect of sustained exercise on white muscle structure and flesh quality in farmed cod(Gadus morhua L.)[J].Aquaculture Research.2003.34:55-64.
    [208]Mcfarlane W.J,Cubitt K.F,Williams H,et al.Can feeding status and stress level be assessed by analyzing patterns of muscle activity in free swimming rainbow trout (Oncorhynchus mykissWalbaum)Aquaculture.2004.239(4):467~484.
    [209]Michiels C,Rues M,Toussaint O et al.Importance of Se-glutathione per-oacidase,camlase and Cu/Zn-SOD for cell against oxidative stress[J].Free Radical Biology Medicine.1994.17:235~248.
    [210]Moyes C.D,West T.G.Exercise metabolism of fish[M].In:Biochemistry and Molecular Biology of Fishes.Metabolic Biochemistry,Elsevier,Amsterdam,the Netherlands.1995(4).367~392.
    [212]Nakagawa H.H,Nishino,G.R.Nematipor,et al.Effects of water velocities on lipid young-of-the-year striped bass (Morone saxarilis).reserves in ayu[J].Nippon Suisan Gakkaishi.1991.57:1737~1741.
    [213]Nahhas R,Jones N.V,Goldspink G.Growth,training and swimming ability of young trout (Salmogair dnerii R.)maintained under different salinity conditions[J].Journal of the Marine Biological Association of the United Kingdom.1982.62:699~708.
    [214]Ogata H.Y,Oku H.Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus [J].World Aquaculture Society.2000.31:225~231.
    [215]Pandian T.J,Vivekanandan E.Energetics of Feeding and Digestion[M].New Perspectives.1985.99~124.
    [216]Pablo A.R,Johan W.S.Behavioural responses under different feeding methods and light regimes of the African catfish (Clarias gariepinus)juveniles[J].Aquaculture.2004.231:347~359.
    [217]Plakas S.M,ElSaid K.R,Musser S.M.Pharmacokinetics tissues distribution and metabolism of flumequine in channel catfish (Ictalurus punctatus)[J].Aquaculture.2000.187:1~14.
    [218]Postlethwaite E.K,McDonald D.G.Mechanisms of Na~+ and Cl~-regulation in freshwater-adapted rainbow trout Oncorhynchus mykiss during exercise and stress[J].Journal of Experimental Biology.1995.198:295~304.
    [219]Richards J.G,Mercado A.J,Clayton C.A.Substrate utilization during graded aerobic exercise in rainbow trout[J].Experimental Biology.2002.2050~2077.
    [220]Rice J.A.Bioenergetic modeling approaches to evaluation of stress in flshes[J].American Fisheries Society Symposium.1990.8:80~92.
    [221]Samueisen O.B.,Ervik A.Single dose pharmacokinetics study of flumequine after intravenous,intraperitoneal and oral administration to Atlantic halibut(Hippoglossus hippoglossus)held in seawater at 9℃[J].Aquaculture.1997.158:215~227.
    [222]Steffenak L.,Hormazabal V Yndestad M.Reservoir of quinolone residues in fish[J].Food Addition.Contain.1991.8:777~780.
    [223]Svendsen J.C,Skov J,Bildsoe M,et al.Silntra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions[J].Journal of Fish Biology.2003.62(4):834~846.
    [224]Satchel G.H.Physiology and Form of Fish Circulation[M].Cambridge University Press,Camb ridge.1991.UK.235.
    [225]Shephard R.J.Immune changes induced by exercise in an adverse environment [J].Canada Journal of Physiology.Pharmacol.1998.76(5):539~546.
    [226]Stevens E,Dizon A.E.Energetic of locomotion in warm-bodied fish[J].Annual Review of Physiology.1982.44:121~131.
    [227]Steffensen J.F,Farrellt A.P.Swimming performnance,venous oxygen tension and cardiac performance of coronary-ligated rainbow trout,oncorhynchus mykiss,exposed to progressive hypoxia[J].Comparative.Biochemistry Physiology.1998.119(2):585~592.
    [228]Ueno R,Okada Y,Tatsuno T.Pharmacokinetics and metabolism of miloxacin in cultured eel[J].Aquaculture,2001.193:11~24.
    [229]Takeuchi T,Watanabe T.Requirement of carp for essential fatty acids[J].Bull Jap Soc SciFish.1977.43:541~551.
    [230]Tyrpenou A.E,lossifidouE.G Psomas I.E et al.Tissue distribution and depletion of sarafloxacin hydroch-loride after in feed administration in gilthead seabream (Spares aurata L.)[J].Aquaculture.2003.215:291~300.
    [231]Thillart G.V,Ginneken V.V,Korner F,et al.Endurance swimming of European eel [J].Journal of Fish Biology.2004.65:312~318.
    [232]Totland G,Kryvi H,Jodestol K,et al.Growth and composition of the swimming muscle of adult Atlantic salmon(Salmo salar L)during long-term sustained swimming[J]. Aquaculture.1987.66:299~313.
    [233]Yanase K,Arimoto T.A hydro-mechanical approach to the scaling of swimming performance in the sand lathead Platycephalus bassensis Cuvier:effects of changes in morphological features based on fish size[J].Journal of Fish Biology.2007.71:1751~1772.
    [234]Young P.S,Cech J.J.J.Optimum exercise conditioning velocity for growth,muscular development,and swimming performance in young-of-the-year striped bass(Morone saxatilis)[J].Canadian Journal of Fisheries and Aquatic Sciences.1994.51:1528~1534.
    [235]Young P.S,Cech J.J.J.Effects of exercise conditioning on stress responses and recovery in cultured and wild young-of-the-year striped bass,Morone saxatilis[J].Canadian Journal of Fisheries and Aquatic Sciences 1993b.50:2094~2099.
    [236]Vander J,Lingen C.D.Respiration rate of adult pilchard (Sardinops Sagax)in relation to temperature,voluntary swimming speed and feeding behaviour[J].Marine Ecology Progress Series.1995.129 (1~3):41~54.
    [237]Verbeeten B.E,Carter C.G,Purser G.J.The combine effect of feeding time and ratin on growth performance and nitrogen metabolism of greenback flounder.[J].Journal of Fish Biology.l999.55:1328~1344.
    [238]Warren C.E,Davis,E.Laboratory studies on the feeding,bioenergetics and grow of fish[M].In the Biological Basis of Freshwater Fish Production (S.D.Gerking,ed.).Blackwell Scientific Publication:Oxford:1967.175~214.
    [239]Wardle C.S.Under water observation technologies;present status and review of results in fish and shrimp behaviour research[J].Contributions FAO expert consulation on selective shrimp trawl development at Mazatlan,Mexico.1986.1~39.
    [240]Wardle C.S,Soofiani N.M,O'Neill F.G,et al.Measurements of aerobic metabolismof a school of horse mackerel at different swimming speeds[J].Journal of Fish Biology.1996.49(5):854~862.
    [241]Weatherley A.H,Gill H.S.Protein,lipid,water and caloric contents of immature rainbow trout,Salmogairdenri Richardson,growing at different rates[J].Journal of Fish Biology.1983.23:653~673.
    [242]Winston GW,Di G.R.T.Prooxidant and antioxidant mechanism in aquatic organism[J].Aquatic Toxicology.1991.24:143~152.
    [243]Winger P.D,He P,Walsh S.J.Swimming endurance of American plaice (Hippoglossoides platessoides)and its role in fish capture[J]Journal of Marine Science.1999.56:252~265.
    [244]Wilga C.D,Lauder G.V.Functional morphology of the pectoral fins in bamboo sharks,Chiloscy llium plagio sum:benthic vs.pelagic station-holding [J].Journal of Morphology.2001.249:195~209.
    [245]Wood CM.Acid-base and ion balance,metabolism,and their interactions,after exhaustive exercise in fish[J].Journal of Experimental Biology.1991.160.285~308.
    [246]Wratten S.D.Vdeo Techniques in Animal Ecology and Behavior.Published by Chapaman &Hal 1.1994.
    [247]Zdzislaw Z,Krystyna D,Krzysztof K.Rate of oxygen consumption and ammonia excretion of juvenile Eurasian perch Perca fluviatilis L[J].Aquaculture International.2003.11(3):277~288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700