用户名: 密码: 验证码:
黄颡鱼精巢结构、精子发生及Sox基因扩增
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
性腺是鱼类进行繁殖活动的基础,为了完全掌握鱼类的繁殖规律,首先要对性别决定机制、性腺分化机理和性腺的组织学、组织化学等方面进行深入的研究。只有充分了解了性腺、的分化和发育的机理,认识他们的繁殖习性才能更好人工调控鱼类的繁殖过程,为鱼类养殖生产服务。由于鱼类精巢的结构比较复杂也比较原始,不同种鱼类其精巢的外部形态以及内部结构存在很大差异,所以受到国内外学者的普遍重视。黄颡鱼Pelteobagrus fulvidraco(Richardson)属鲶形目、鳞科、黄颡鱼属,俗称嘎牙子,是江河、湖泊、水库常见的小型经济鱼类,在我国南北各大水域均有产出。黄颡鱼体色艳丽,肉质细嫩鲜美,营养丰富,无肌间刺,可食部分大,不易死亡,适温范围广,是一种可开发的新型养殖对象。由于黄颡鱼雌雄性在性别决定以后表现出明显的生长差异,但关于这个特异性状的分子调控机制还是一个未知,尤其是与性别决定有关的Sox基因的研究目前还没有报道。因此,本试验深入地分析了精巢的组织学及超微结构,以期对黄颡鱼的精巢结构,精子发生等生殖生物学内容,同时初步的探讨了Sox基因表达的差异,以期进一步了解黄桑鱼的性别决定机制及性腺发育特征,为应用相应的调控手段进行性别控制,实现全雄性养殖提供理论基础。
     本研究以性成熟的黄颡鱼为试验材料,采用光学显微技术、透射电镜技术以及分子生物学中基因克隆技术对黄颡鱼精巢的组织学、超微结构以及黄颡鱼Sox基因进行研究探讨。得到结论如下:
     1.通过对黄颡鱼精巢的组织学研究,进一步证实黄颡鱼的精巢为典型的小叶型精巢,但其精小叶和贮精囊结构比较复杂,故在繁殖季节不能用外力挤出精子。
     2.黄颡鱼精原细胞分为两种,即A型和B型。但A型精原细胞又存在两种不同的形态,分别是A1型和A2型,两者的区别在于A1型不具有拟染色体,并且其线粒体内无嵴或有极少的嵴山现。
     3.黄颡鱼除A1型精原细胞外的各期生殖细胞都存在拟染色体,并且随着细胞的不断发育拟染色体逐渐变小分散,最后在精子内完全消失。
     4.黄颡鱼初级精母细胞的前期出现联会复合体,应是同源染色体之间进行同源基因交换的标志。
     5.黄颡鱼精子形成过程分为三个时期,即早期、中期和晚期。
     6.在扫描电镜下,黄颡鱼精子头部椭圆形,其长径约为1.70μm,短径约为1.50μm;尾部鞭毛长度大约为25~30μm,从植入窝正中伸出,植入窝口直径约为0.40μm,鞭毛直径约为0.18μm。
     7.本研究采用四种引物,以黄颡鱼DNA为模板进行扩增,结果显示:黄颡鱼在220bp、400bp、450bp、750bp和900bp左右都出现谱带,无性别差异。对220bp的谱带进行测序分析,证明该片段长度为221bp,且雌雄个体间仅有一个碱基不同,为同源基因。与人的SRY基因比较,同源性为41.67%。由于其同源性较低,故不能确定该基因是否参与性别分化。
Gonad was substructure that fishes carries out breeding activity. To completely master the breeding regularity of fishes, we should carry out penetrating investigation on mechanism of sex determination, mechanism of gonadal differentiation, histochemistry and histology of gonad and so on. Only we had understood the mechanism of gonadal differentiation and development and known the breeding habit of fishes, so we would have controlled the breeding activity of fishes and applied to production of fish farming. As testicular structure is relatively complexity and originality, and there is conspicuous difference with outer morphous and interior structure for different fishes, so it has been focused by at home and abroad scholars. Pelteobagrus fulvidraco (Richardson) belongs to the Order of Siluriformes (catfish) .family of Bagridae (Bagrid catfishes). It is now becoming an important economical fish for aquaculture in China. As female and male individuality of Pelteobagrus fulvidraco ( Richardson ) had a conspicuous difference on growth after sex determination, but the report about molecular control mechanism of this specificity didn't appear at present. So this investigation analysised structure of histology and uitrastructure of testis in depth, in order to understand the content of reproductive biology about structure of testis and spermatogenesis. Simultaneously, this investigation approached about Sox gene, in order to understand mechanism of sex determination and characteristic of gonadal development. To know the propagating regularity of the fish could greatly benefit the cultivation in pond.This investigation used sexually matured Pelteobagrus fulvidraco (Richardson) to make materials of experiment. The histology, uitrastructure of testis and sox gene were investigated by light microscope, transmission electron microscope and gene clone technology of molecule biology.1. In the histology research, the result indicated that the testis was lobular type, which was typical of most teleosts. But the structures of seminiferous lobule and seminal vesicle were relatively complexity.2. The spermatogonium consisted of A type and B type, and the spermatogonium of A type had two different type, namely A l type and A2 type, which the A1 type did not have chromatoid body. There was no formation of sleeves or few sleeves occurring in the mitochondria of Al type.3. Each germ cell had chromatoid body except for the spermatogonium of Al type, and the chromatoid body became small and dispersed with the cell developing constantly, disappearing completely in the sperm.4. The prophase of primary spermatocyte would appear synaptonemal complex, which should been the symbol that the homologous chromosome carried through the change of homologous gene.
    5. The formation of spermatozoa included three periods: prophase. metaphase and anaphase.6. According to the observation in the scan electron microscope, the head of sperm was ellipse, the long diameter being 1.70 μm and the short diameter being 1.50 urn: the length of flagellum of tail was about 25~30μm, the diameter being 0.18μm.7. In addition, the templates from DNA of Pelteobagrus fulvidraco( Richardson) were PCR amplified with the four primer. The results indicated that the 220 bp、 400 bp、 450 bp、750 bp and 900 bp bands were appeared, which showed that there were no sexual difference. Then the 200 bp bands were sequenced, the result proved that the length of the segment was 221 bp, and there was only a different basic group between male and female, which was homologous gene. The identity of the sequence with SRY gene of human was 41.67%. As the homology to the SRY gene was lower, whether this gene was concerned with sexual differentiation was uncertain.
引文
1. Alex H, Ian C P, Norman G H. 2004, 70. Reproductive biology and protandrous hermaphroditism in Acanthopagrus latus. Environmental Biology of Fishes. 257~272.
    2. Arkadiy R, Waltraud K. 2004, 58. Ultrastructural study of spermatogenesis in Phoronopsis harmeri (Lophophorata, Phoronida). Helgol Mar Res. 1~10.
    3. Au D W T, Reunov A A, Wu RSS. 1998, 118. Four lines of spermatid development and dimorphic spermatozoa in the sea urchin Anthocidaris crassispina (Echinodermata, Echinoida). Zoomorphology, 159~168.
    4. Baroiller J F, Nakayama I, Foresti F, 1996, 35 (4). Chourrout D. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongatus. Zoological Studies. 279~285.
    5. Bergstrom D E, Young M, Albrecht K H et al. 2000, 28 (34). Related function of mouse SOX3, SOX9 and SRYHMG domains assayed by male sex determination. Genesis. 111~124.
    6. Billard R, FostierA, Well C et al. 1982, 39. Endocrine control of spermatogenesis in teleost fish. Can J Fish Aquat Sci. 65~79.
    7. Billard R. 1986, 26(4). Spermiogenesis and spermatology of soma teleost fish species. Repord Nutr Sci Develop. 877~920.
    8. Callard G, Mak P, Dubois W et al. 1989, 2. Regulation of spermatogenesis, the shark testis model. J. Exp. Zool. 23~34.
    9. Christanem. 1980, 26 (4). The "blood-testis" barrier in anematode and a fish. A generalizeble concept. J. Ultr Res. 877-920.
    10. Clarkson M J, Harley V R. 2002, 13(3). Sex with two SOX on: SRY and SOX9 in testis development. Trends in Endocrinology and Metabolism. 106~111.
    11. Constantino M G, Elsa S. 2004, 70. Sperm competition in a viviparous fish. Environmental Biology of Fishes. 211~217.
    12. Craik J C A. 1986, 38 (A). Levels of calcium and ironin the ovaries and eggs of cod, Gadusmorhua L, and place plcuronectes platessa L. Comp Biochem physiol. 515~517.
    13. Deurs B V, Lastein U. 1973, 42. Ultra structure of spermatozoa of the teleost Pantodon buchholzi Peters, with particular reference to the midpiece. J Ultrastruct Res. 517~533.
    14. Fawcett D W. 1975, 44. The mammalian spermatozoon. Develop Biol. 394~436.
    15. Frojdman K, Harley V R, Pelliniemi L J. 2000, 113 (1). Sox9 protein in rat sertoil cells is age and stage dependent. Histochem Cell Biol. 31~36.
    16. Galay B M, Llewellyn L, Mylonas C C et al. 2004, 137 (2). Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax). Biochemistry and molecular biology. 279~284.
    17. Gardiner D M. 1978, 13. Fine structure of the spermatozoon of the vivparouc teleost, Cymatogaster aggregate. J Fish Biol. 435~438.
    18. Gelsleichter J, Rasmussen L EL, Manire C A , Tyminski J, Chang B, LombardiCarlson L. 2002, 26.Serum steroid concentrations and development of reproductive organs during puberty in male bonnethead sharks, Sphyrna tiburo. Fish Physiology and Biochemistry. 389— 401.
    19. Graves J A M. 1998, 20 (3). Interactions between SRY and SOX genes in mammalian sex determination. BioEssays. 264—269.
    20. Gwo J C, Gwo H H, Chang SL. 1993, 216 (1). Ultrastructure of the spermatozoon of the teleost fish Acanthopagrus schlegeli (Perciformes: Sparidae). Journal of Morphology. 29-33.
    21. HUANG X, ZHOU R J, CHENG H H, GUOYQ, YUQX. 1998, 44(2) . The Sox genes in two species of fresh water fishes. Acta Zoologica Sinica. 239—240.
    22. HurkR, Van den. 1978, 186. Morphological and enzyme cytochemical aspects of the testis and vas deferens of the Rainbow trout, Salmo gairdner. J. Cell. Tiss. Res. 309—325.
    23. KandaH, Kojima M, Miyamoto N et al. 1998, 211 (2). Rainbow trout Sox24, anovel member of the Sox family, is a transcriptional regulator during oogenesis. Gene. 251—257.
    24. Koster R W, Kuhnlein R P, Wittbrodt J. 2000, 95 (1—2) . Ectopic Sox3 activity elicits sensory placode formation. MechDev. 175—187.
    25. Lucia M, Maria BR. 1997, 117. Ultrastructure and histochemistry of the testicular efferent duct system and spermiogenesis in Opistognathm whitehurstii (Teleostei, Trachinoidei) . oomorphology. 93 - 102.
    26. Luis O L , Roberto CM , Alicia HE. 2004, 71. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: support for a single south western Atlantic population with synchronized migratory movements. Environmental Biology of Fishes. 199— 209.
    27. Mattei X, Siau Y, Thiaw O T, Thiam D. 1993, 43 (6). Peculiarities in the organization of testis of Ophidion sp. (Pisces, Teleostei). Evidence of two types of spermatogenesis in teleost fish. Journal of Fish Biology. 931—937.
    28. Nagahama Y, 1983. The functional morphology of teleost gonads. In: Hoar W S, Randall DJ, Donaldson E M (eds), fish physiology. Vol, IX, Part A (M). New York, Academic Press. 223—250.
    29. Nakamura M, Kobayashi T, Chang XiaoTian et al. 1998, 281 (5). Gonadal sex differentiation in teleost fish. Journal of Experimental Zoology. 362—372.
    30. Parsons GR, GrierHJ. 1992, 261. Seasonal changes in shark testicular structure and spermatogenesis. J. Exp. Zool. 173 — 184.
    31. Pavlov D A, Knudsen P, Emel'yanova N. G, Moksness E. 1997, 10(3). Spermatozoon ultrastructure and sperm production in wolffish (Anarhichas lupus), a species with internal fertilization (sperm morphology). Aquatic Living Resources (France). 187—194.
    32. Pratt H L. 1988, (3). Elasmobranch gonad structure: A description and
     survey. Copeia. 719~729.
    33. Ramasamy P, Brennan G P, Halton D W. 1995, 25 (1). Ultrastructure of the surface structures of Allodiscocotyla diacanthi (Polyopisthocotylea: Monogenea) from the gills of the marine teleost fish, Scomberoides tol. International Journal for Parasitology. 43~54.
    34. Ratt H L. 1993, 38 (1). The storage of spermatozoa in the oviducal glands of western North Atlantic sharks. Environmental Biology of Fishes (Historical Archive). 139~149.
    35. Roose J, Korver W, Boer R de et al. 1999, 57 (2). The Sox-13 gene: structure, promoter characterization, and chromosomal localization. Genomics San Diego. 301~305.
    36. Rosel P E. 2003, 4. PCR-based sex determination in Odontocete cetaceans. Conservation Genetics. 647~649.
    37. Sekiyal, Koopman P, Tsuji k et al. 2001, 169 (3). Dexamethasone enhances SOX9 expressiong in chondrcytes. J Endocrinol. 573~579.
    38. Silveira H P, Azevedo C. 1990, 22(1). Fine structure of the spermatogenesis of Blennius pholis (PiscesBlenniidae). Submicros Cytol Pathol. 103~108.
    39. Sinclair A H, Berta P, Palmer M S, Hawkins J R, Griffiths B L et al. 1990, 346. A gene from this human sex determineg region encodes a potrin with homology to a conserved DNA binding motif. Nature. 240~244.
    40. Teshima K, Mizue K. 1972, 14 (3). Studies on sharks. I. Reproduction in the female sumitsuki shark Carcharhinus dussumieri. Marine Biology (Historical Archive). 222~231.
    41. Teshima K. 1981, 29 (2). Studies on the reproducetion of Japanese smooth dogfishes, Mustelus manazo and M. griseus. J. Shinonoseki Univ. Fish. 113~119.
    42.白秀娟,李剑虹,顾志刚.2001,5(3).中国林蛙Sox基因的PCR扩增.经济动物学报.37~39.
    43.曹伏君.1999,19(1).鲫(♀)鲤(♂)杂交F1代精巢细胞学研究.湛江海洋大学学报.4~9.
    44.常重杰,杜启艳,邵红伟.2002,24(4).Sox基因家族研究的新进展.遗传.470~476.
    45.常重杰,周荣家,余其兴.2000,22(1).Sox基因家族研究现状.遗传.51~53.
    46.常重杰,周荣家,余其兴.2000,22(3).两种泥鳅中PdSox8和PdSox9的分析.遗传.153~156.
    47.常重杰,周荣家,余其兴.2000,27(2).大鳞副泥鳅中PdSox9基因保守区的序列分析.遗传学报.121~126.
    48.陈红菊,岳永生.2002,33(3).保安湖鳜鱼(Siniperca Chuatsi)卵巢发育的组织学观察.山东农业大学学报(自然科学版).290~296.
    49.陈明茹,丘书院,杨圣云,苏碧惠,陈丽华.2002,26(5).条纹斑竹鲨雌性生殖系统的初步研究.海洋科学.52~54.
    50.陈明茹,丘书院,杨圣云.1999,18(4).闽南近海尖头斜齿鳖的精巢结构及精子发育.台湾海峡.393~397.
    51.陈永,魏刚,黄林.1996,18(4).性成熟鳃精巢发育的显微结构研究.西南农业大学学报.375~378.
    52.董江水,张定东.2003,24(6).罗非鱼的SR基因PCR扩曾分析.水产养殖.25~29.
    53.方永强,翁幼竹,周品等.2002,21(3).大黄鱼性早熟的机制——精巢中间质细胞和足细胞的显微和超微结构.台湾海峡.275~279.
    54.方永强.1991,37(2).文昌鱼sertoli细胞超微结构的进一步研究.动物学报.123~125.
    55.方展强.1993,(1).尼罗罗非鱼精子发生的超微结构研究.华南师范大学学报(自然科学版).68-74.
    56.符路娣,方展强.2004,(2).鳜精巢的组织学和超微结构观察.华南师范大学学报(自然科学版).114~119.
    57.葛肖燕.2002.斑马鱼Sox9b基因片段扩增及其同源性分析.复旦大学莙政学者论文集.391~400.
    58.龚启祥等.1982,6(3).香鱼卵巢发育的组织学研究.水产学报.221~234.
    59.管汀鹭.1989,(2).金鱼精子发生中的拟染色质小体.动物学报.124~129.
    60.管汀鹭.1990,23(1).金鱼精子质膜和核膜区域特异性.实验生物学报.877~920.
    61.洪万树,翁幼竹,林君卓,方永强,戴燕玉.2001,23(5).鲻鱼精子发生和形成的超微结构研究.海洋学报.116~120.
    62.胡成钰,洪一江,林光华等.1993,1(3).繁殖季节黄颡鱼LPseudobugrus fuleridraco]性腺的研究.江西科学.159~163.
    63.湖南师范学院生物系鱼类研究小组.1975,5(4).青鱼性腺发育的研究.水生生物学集刊.471~483.
    64.黄道明,林永泰,万成炎,江鸿舒.1997,2.鲂成熟卵巢发育的组织学观察.水利渔业.3~7.
    65.黄银久,梁玉华,胡明洁.2003,28(4).黑斑蛙Sox基因PCR扩增产物研究.蚌埠医学院学报.286~288.
    66.江寰新,尤永隆,林丹军,苏敏.2004,33(1).中华乌塘鳢鱼精巢的形态结构观察.福建农林大学学报(自然科学版).89~93.
    67.姜新发.1998,22(4).长江江豚精巢发育和组织学特征的研究.水生生物学报.341~345.
    68.林丹军,尤永隆,陈莲云.2000,21(5).卵胎生硬骨鱼褐菖鲉精巢的周期发育.动物学研究.337~342.
    69.林丹军,尤永隆,苏敏.2003,27(6).黑脊倒刺鲃精巢结构和精子发生的研究[J].水生生物学报.563~571.
    70.林丹军,尤永隆.1998,19(5).褐菖鲉精细胞晚期的变化及精子结构研究.动物学研究.359~366.
    71.林丹军,尤永隆.2000,21(4).卵胎生硬骨鱼褐菖鲉卵巢的周期发育研究.动物学研究.269~274.
    72.林光华,张丰旺.1989,13(3).兴国红鲤精巢发育的研究.江西大学学报(自然科学版).1~9.
    73.刘文彬,张轩杰.2004,27(1).黄颡鱼精巢发育和周年变化及精子的发生与形成.湖南师范大学自然科学学报.66~70.
    74.刘修业,崔同昌,王良臣等.1990,14(2).黄鳝性逆转时生殖腺的组织学与超微结构的变化.水生生物学报.166~169.
    75.刘雪珠,杨万喜.2002,20(3).硬骨鱼类精子超微结构及其研究前景.东海海洋.32~37.
    76.刘雪珠,杨万喜.2004,22(1).平鲷精子的超显微结构.东海海洋.43~48.
    77.孟庆闻,苏锦祥,李婉端.1987.鱼类比较解剖.北京:科学出版杜.403.
    78.倪海儿等.1999,18(1).东海宽体舌鳎卵巢周年变化的组织学观察.浙江海洋学院学报.34~43.
    79.聂刘旺,单祥年,汪鸣等.2001,25(3).中华鳖4个Sox基因保守区的序列分析.水生生物学报.245~250.
    80.孙大江,韩志忠,曲秋芝,王新洋,王丙乾.2002,15(2).史氏鲟全人工繁殖研究—Ⅰ 精子生物学特性观察.水产学杂志.32~34.
    81.孙帼英.1985,9(4).大银鱼卵巢的成熟期和产卵类型.水产学报.360~367.
    82.王宏元,张育辉.2004,32(1).北方山溪鲵精巢支持细胞的显微与超微结构观察.陕西师范大学学报(自然科学版).86~89.
    83.王吉桥.2003,18(6).黄颡鱼Pelteobagrus fulvidraco(Richardson)的生物学与养殖技术.现代渔业信息.3~8.
    84.王令玲,仇潜如,邹世平等.1989(6).黄颡鱼生物学特点及其繁殖和饲料.淡水渔业.23~24.
    85.王瑁,杨圣云,陈明茹.2000,19(1).闽南-台湾浅滩渔场金色小沙丁鱼精巢的发育.台湾海峡.17~21.
    86.肖亚梅,刘筠.1995,(19)4.黄鳝由间性发育转变为雄性发育的细胞生物学研究.水产学报.297~304.
    87.许玉德,钟建兴,郑森林,许莉.1999,38(4).单性罗非鱼及其亲本精巢的组织学和LDH同工酶的比较.厦门大学学报(自然科学版).628~632.
    88.尹洪滨,孙中武,刘玉堂.2001,7(4).索氏六须鲶精巢结构与精子发生、形成与排出方式的研究.中国水产科学.1~5.
    89.尤永隆,林丹军,陈莲云.2001,22(6).大黄鱼的精子发生.动物学研究.461~466.
    90.尤永隆,林丹军,钟秀容.2002,21(1).卵胎生硬骨鱼褐菖鲉精子发生的超微结构研究.热带海洋学报.70~75.
    91.尤永隆,林丹军.1996,17(4).鲤鱼精子超微结构的研究.动物学研究.377~ 383.
    92.尤永隆,林丹军.1996,29(3).黄颡鱼Pseudobagrus fulvidraco精子的超微结构.实验生物学报.235~239.
    93.尤永隆,林丹军.1998,44(3).尼罗罗非鱼精子形成中核内囊泡的释放.动物学报.257~263.
    94.尤永隆,林丹军.2003,36(1).黑脊倒刺鲃生精细胞拟染色体的形成过程.实验生物学报.67~75.
    95.尤永隆.1997,43(2).大黄鱼精子的超微结构.动物学报.119~126.
    96.张小爱,张海军,聂刘旺,阚显照.2001,22(2).虎纹蛙Sox基因的PCR扩增及SSCP分析.淮北煤师院学报.31~33.
    97.张小雪,董元凯.1994,4.黄鳝精巢显微和超微结构的研究.水利渔业.9~11.
    98.张秀华,吴登俊.2004,31(7).性别决定机理与性别鉴定的研究进展.中国畜牧兽医.23~25.
    99.张旭晨,王所安.1992,38(4).细鳞鱼精巢超微结构和精子发生.动物学报.355~358.
    100.张训蒲,龚世园,吴育煊,张建伟,何胜秋.1994,13(6).淤泥湖近太湖新银鱼和寡齿新银鱼卵巢发育的研究.华中农业大学学报.601~606.
    101.张耀光,罗泉笙,钟明超.1992:13(3).长吻鮠精巢发育的分期及精子的发生和形成.动物学研究.281~287.
    102.张耀光,谢小军.1996,20(1).南方鲇的繁殖生物学研究:性腺发育及周年变化.水生生物学报.8~16.
    103.郑曙明.1997,6.铜鱼精子发生中的超微结构研究.水利渔业.22~24.
    104.郑小真,林丹军,尤永隆.2000,16(2).性成熟黄颡鱼Pseudobugrus fulvidraco(Richardson)精巢的年周期变化Ⅰ:生精部的周年变化.97~101.
    105.周定刚,谭永洪,曹五七,张大祥.2002,20(3).黄鳝精巢发育的周年变化.四川农业大学学报.256~261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700