用户名: 密码: 验证码:
碳纳米管负载过渡金属氮化物的合成及其在氨分解制氢中的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)以氢气作为燃料,无污染、质量轻、效率高,在电动汽车及各种可移动设备的动力电源方面具有潜在的应用前景。氨催化分解产物为H_2和N_2,不含易使燃料电池电极中毒的CO_x,被认为是最有希望用于车载质子交换膜燃料电池的制氢技术。然而,现有催化剂的制氢效率还不能满足车载燃料电池。因此,设计和合成高效稳定的氨分解催化剂具有重要的意义。过渡金属氮化物在许多涉氢反应中表现出与贵金属相类似的催化性能,有望成为新一代氨分解催化剂。鉴于此,本文以碳纳米管为载体,采用程序升温氮化法制备出性能优异的负载型钴钼双金属氮化物催化剂,对其制备条件、反应工艺以及反应机理等进行了研究,应用多种先进的表征手段对催化剂形貌、结构进行了细致而深入的研究,并与其催化性能相关联。主要包括以下几部分内容:
     1.论文首先对催化剂的活性组分进行了筛选。以碳纳米管为载体,采用程序升温氮化法制备了四种单组分金属氮化物(CoN_x/CNTs、F eN_x/CNTs、M oN_x/CNTs和NiN_x/CNTs)催化剂,并研究了它们的催化性能。进而选用Co和Mo制备出双组分金属氮化物催化剂。结果表明,当Co含量为2wt%、Mo含量为15wt%时,CoMoN_x/CNTs催化剂具有较好的氨分解活性。通过XRD、H_2-TPR以及XPS等表征发现,CoMoN_x/CNTs催化剂中存在γ-Mo2N、Co3Mo3N和Co4N等多种形式的氮化物,可能还有少量的MoO_3或CoMoO_4。CoMoN_x/CNTs催化剂表面Mo离子主要以Mo6+的高价态形式存在,其次还有少量的Mo~(4+)和Mo~(δ+)(0<δ <4)存在。
     2.研究了K、Ba、La、Ce和Zr等助剂对CoMoN_x/CNTs催化剂活性和稳定性的影响。结果发现,L a修饰的CoMoN_x/CNTs催化剂性能最好。X RD、B ET、T G-DSC、H_2-TPD、 H_2-TPR和XPS等测试结果表明,L a的引入,增加了催化剂表面低价态钼物种Mo~(δ+)(0<δ <4)的含量;降低了催化剂表面钝化层中氧化物的还原温度以及催化剂对H_2和N_2的吸附作用;提高了催化剂表面活性组分的分散度以及催化剂的热稳定性。
     3.金属氮化物的生成是“局部规整反应”,制备过程中氮化空速、升温速率、氮化温度、氮化气体组成和前驱体等对其结构和性能都有重要的影响。XRD和元素分析结果显示,提高空速有助于晶粒度小的氮化物生成。升温速率过快与过慢都不利于晶相完整、晶粒细小的氮化物形成。H2/N2-TPD结果表明,700℃下氮化得到的催化剂对氮气和氢气的吸附作用较弱,有利于氨分解反应的进行。XPS结果显示,当低温段V(H2):V(N2)=5:1,高温段V(N2):V(H2)=1:1时,催化剂表面低价态钼物种Moδ+(0<δ<4)所占的比例最高。
     4.考察了反应温度、反应气体空速以及氨气初始浓度对La-CoMoNx/CNTs催化剂氨分解活性的影响。结果表明,反应温度越高,催化剂上氨转化率越高。在同一温度下,空速越高,氨转化率越低。氨转化率与氨气初始浓度无关。最佳反应工艺条件为:反应气空速确定为10000h-1,反应温度以650℃左右为宜。
     5.比较了La-CoMoNx/CNTs催化剂与文献中报道的Ru/CNTs催化剂以及工业合成氨用熔铁催化剂的氨分解活性,并对其稳定性进行了研究。结果表明,本实验制备的La-CoMoNx/CNTs催化剂具有很好的催化活性,650℃时,氨转化率可达99%以上,且具有良好的稳定性。
     6.确定了La-CoMoNx/CNTs催化剂上氨分解反应的本征动力学方程为:
     同时验证了La-CoMoNx/CNTs催化剂上氨分解反应遵循Temkin-Pyzhev机理,表面氮原子的结合脱附为反应的速度控制步骤。
     本论文的创新之处:
     1.研制出适用于为燃料电池提供氢源的氨分解反应的La-CoMoNx/CNTs催化剂,该催化剂具有优异的催化活性以及良好的稳定性,优于目前工业合成氨中使用的熔铁催化剂以及文献中报道的Ru/CNTs等催化剂,在氨分解制氢反应中具有很好的应用前景。
     2.确定了La-CoMoNx/CNTs催化剂上氨分解反应的本征动力学方程为:
     同时验证了La-CoMoNx/CNTs催化剂上氨分解反应遵循Temkin-Pyzhev机理,表面氮原子的结合脱附为反应的速度控制步骤。
Proton exchange membrane fuel cell(PEMFC) is the most promising power source for electric cars as well as portable equipments due to its favorable advantages, such as high efficiency,low weight and less environmental impact. In recent years, ammonia decomposition has been attracted considerable attentions due to its use as a COx-free source of hydrogen for proton exchange membrane fuel cells. However, the activities of the present catalysts for ammonia decomposition are still low and could not meet the demand of on-board fuel cells. Therefore, the design and synthesis of highly efficient and stable catalysts for ammonia decomposition are of great significance.Transition metal nitrides are metallic interstitial compounds with unique physical and chemical properties because the element N fills into the metallic crystalline structure. They exhibit the catalytic characteristics similar to the precious metals and have shown excellent properties in a number of hydrogen-involved reactions such as ammonia synthesis and decomposition, HDN, HDS and F-T synthesis. A series of Co-Mo nitride catalysts supported on carbon nanotubes were synthesized through temperature programmed reaction. The physicochemical properties of the catalysts were characterized by XRD, BET, XRD, BET, SEM, TG/DSC, H_2-TPR/TPD, XPS techniques. In the meantime, the kinetic behavior of the ammonia decomposition reaction over high stable La-CoMoN_x/CNTs catalyst was investigated. A mechanism of the ammonia decomposition was proposed.
     Some details are as follows:
     1. A series of carbon nanotubes supported transition metal nitrides such as CoN_x/CNTs, FeN_x/CNTs, MoN_x/CNTs and NiN_x/CNTs were prepared by temperature programmed method in N_2-H_2mixture gases. Their surface composition and catalytic performance for ammonia decomposition were compared. Furthermore, the CoMoN_x/CNTscatalyst with Co content of2wt%and Mo content of15wt%was found to be the most suitable catalyst for ammonia decomposition. The XRD results indicated that the activity centers are not a single phase, but the various kinds of γ-Mo2N, Co3Mo3N and Co4N, even a certain quantity of MoO_3and CoMoO_4. The XPS results suggested that there were Mo~(6+), Mo~(4+) and Mo~(δ+)(0<δ <4) ions on the surface of the Co-Mo nitride catalysts.
     2. The effects of cationic promoters (K, Ba, La, Ce and Zr) on the catalytic performance and surface properties of the catalysts were investigated. It was found that doping appropriate amount of K, Ba, La, Ce and Zr into CoMoNx/CNTs catalysts improved the catalytic activity to some extent, and the La-CoMoNx/CNTs catalyst showed the highest ammonia conversion of99%at650℃. The results of XRD, BET, TG/DSC, H2-TPR/TPD and XPS indicated that that the addition of promoters changed the state of active sites and the content of low valence molybdenum species Moδ+(0<δ<4), and the distribution of active species increased and the catalytic stability improved.
     3. The influence of the synthesis factors, such as including preparation methods, calcination temperature and type of oxide precursors, space velocity of nitriding gases, N2-H2ratio and nitriding temperature on catalytic activity of CoMoNx/CNTs was investigated in detail. The results showed the optimal nitriding conditions were as follows:the calcination temperature was500℃, calcination time was4h, the nitriding temperature was700℃, GHSV was10000h-1, the heating rate was1℃/min(300-500℃) and2.5℃/min(500-700℃), while the composition of nitriding gases was V(H2):V(N2)=5:1(300~500℃) and V(N2):V(H2)=1:1(500~700℃).
     4. The influence of reaction conditions including temperature, time, space velocity and pressure were studied. The results showed that temperature and space velocity have remarked influence on the catalytic activity of La-CoMoNx/CNTs for ammonia decomposition. The ammonia conversion increased with the increasing of reaction temperatures, reaching more than99%at650℃. It was also found that the ammonia conversion increased with the decreasing of GHSV of ammonia at the same temperature, and the content of ammonia in the raw materials had no effect on its activity. The optimal reaction conditions were as follows: the reaction temperature was about650℃and GHSV was10000h-1
     5. Thermal stability experiment shown that La-CoMoNx/CNTs catalyst had a better thermal stability, and the ammonia conversion maintained above95%for30h at600℃and NH3space velocity of5000h-1
     6. The reaction kinetics equation of ammonia decomposition on La-CoMoNx/CNTs was determined:
     The reaction mechanism was proposed. The reaction rate of ammonia decomposition over La-CoMoNx/CNTs was controlled by the combination desorption of nitrogen on the surface of the catalyst.
     The inovation of this dissertation are as follows:
     1. The La-CoMoNx/CNTs catalyst with good activity and stability for ammonia decomposition to produce hydrogen for fuel cells has been developed.
     2. The reaction kinetics equation of ammonia decomposition on La-CoMoNx/CNTs was determined:
     The reaction mechanism was proposed. The reaction rate of ammonia decomposition over La-CoMoNx/CNTs was controlled by the combination desorption of nitrogen on the surface of the catalyst.
引文
[1] BP世界能源统计年鉴,2012年6月.
    [2]毛宗强.氢能—21世纪的绿色能源[M].化学工业出版社:北京,2005.
    [3] Dunn S.. Hydrogen Futures: Toward a sustainable energy system[J]. World watchinstitue, Washington DC,2001.
    [4] Armaroli N., Balzani V.. The future of energy supply: Chanllenges andopportunities[J]. Angew Chem-Int Edit,2007,46(1-2):52-66.
    [5]林维明.燃料电池系统[M].化学工业出版社:北京,1996.
    [6]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学,2012,18(1):1-13.
    [7] Martin W., Ralph J.Brodd. What Are Batteries, Fuel Cells, and Supercapacitors?[J].Chemical Reviews,2004,104(10):4245-4270.
    [8] Polman E.A., Der kinderen J. M., Thuis F.M.A.. Novel compact steam reformer forfuel cells with heat generation by catalytic combustion augmented by inductionheating[J]. Catalysis Today,1999,47(1-4):347-351.
    [9]陈军,袁华堂.日本燃料电池的发展状况[J].电源技术,2002,26(1):39-42.
    [10]侯侠,任立鹏.燃料电池的发展趋势[J].云南化工,2011,38(2):34-36.
    [11] Wang X., Hsing I.M.. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymerelectrolyte fuel cells[J]. Electrochim. Acta,2002,47(18):2981-2987.
    [12] Inc P., Services E.G. Fuel Cells: A Handbook,5th ed.[M], US Department of Energy.2000,5-19:8-22.
    [13]黄明宇,倪红军,周一丹.质子交换膜燃料电池的研究与应用[J].南通大学学报(自然科学版),2005,4(4):10-13.
    [14] Gray P.G., Frost J.C.. Impact of Catalysis on Clean Energy in Road Transportation [J].Energy Fuels,1998,12(6):1121-1129.
    [15] Docter A., Lamm A.. Gasoline fuel cell systems[J]. Journal of Power Sources,1999,84(2):194-200.
    [16]任学佑.质子交换膜燃料电池的进展与前景[J].电池,2003,33(6):395-397.
    [17] Momirlan M., Veziroglu T.N.. Current status of hydrogen energy[J]. Renewable andSustainable Energy Reviews,2002,6):141-179.
    [18] Shinnar R.. The hydrogen economy, fuel cells and electric cars[J]. Technology inSociety,2003,25:455-476.
    [19]云洁.浅论燃料电池的国内外研究与进展[J].现代化工,2010,30增刊(2):106-111.
    [20]刘春娜.2011年国外燃料电池技术研发动态[J].电源技术,2011,35(11):1337-1338.
    [21]王刚.燃料电池电动汽车动力系统匹配及仿真研究[D].武汉:武汉理工大学,2008.
    [22]清华大学.质子交换膜燃料电池用铂/碳电极催化剂的制备方法[P].中国:001061704.4,2000-09-27.
    [23]中国科学院大连化学物理研究所.质子交换膜燃料电池的双极板[P].中国:98114178.1,2000-01-26.
    [24]周明,许庆利,蓝平.生物质制氢研究进展[J].吉林化工学院学报,2009,26(4).
    [25] Jensen M. W., Ross M.. The ultimate challenge: developing an infrastructure for fuelcell vehicles[J]. Environment: Science and Policy for Sustainable Development,2000,42(7):10-22.
    [26] Krumpelt M., Krause T.R.,Carter J.D., et al. Fuel processing for fuel cell systems intransportation and portable power applications[J]. Catalysis Today,2002,77:3-16.
    [27] Holladay J.D., Wang Y, Jones E.. Review of development in portable hydrogenproduction using microreactor technology[J]. Chemical Reviews,2004,104:4767-4790.
    [28] Gasteiger H.A., Kocha S.S., Sompalli B., et al. Activity benchmarks and requirementsfor Pt, Pt-alloy, and mon-Pt oxygen reduction catalysts for PEMFCs[J]. AppliedCatalysis B:Environment,2005,56:9-35.
    [29] Hansgen D.A., Vlachos D.G., Chen J.G.. Using first principles to predict bimetalliccatalysts for the ammonia decomposition reaction[J]. Nature Chemistry,2010,2:484-489.
    [30] Plana C., Armenise S., Monzon A., et al. Ni on alumina-coated cordierite monolithsfor in situ generation for CO-free H2from ammonia[J]. Journal of Catalysis,2010,275:228-235.
    [31] Lu A.H., Nitz J.J., Comotti M., et al. Spatially and size selective synthesis of Fe-basednamoparticles on ordered mesoporous supports as highly active and stable catalystsfor ammonia decomposition[J]. Journal of the American Chemical Society,2010,132:14152-14162.
    [32] Chen W.h., Ermanoski I., Madey T.E.. Decomposition of Ammonia and Hydrogen onIr Surfaces: Structure Sensitivity and Nanometer-Scale Size Effects[J]. Journal of theAmerican Chemical Society,2005,127(14):5014-5015.
    [33] Boisen A., Dahl S., Norskov J.K., et al. Why the Optimal Ammonia Synthesis Catalystis not the Optimal Ammonia Decomposition Catalyst[J]. Journal of Catalysis,2005,230(2):309-312.
    [34] Szmigiel D., Rarog-Pilecka W., Miskiewicz E., et al. Ammonia Decomposition Overthe Ruthenium Catalysts Deposited on Magnesium-aluminum Spinel[J]. AppliedCatalysis A: General,2004,264:59-63.
    [35] Yin S.F., X B.Q., Ng C.F., et al. Nano Ru/CNTs: a highly active and stable catalyst forthe generation of CO-free hydrogen in ammonia decomposition[J]. Applied CatalysisB:Environment,2004,48:237-241.
    [36] Sorensen R.Z., Nielsen L.J.E.. Jensen S., et al. Catalytic ammonia decomposition:miniaturized production of COx-free hydrogen for fuel cells[J]. CatalysisCommunications,2005,6(3):229-232.
    [37] Chellappa A.S., Fischer C.M., Thomson J.W.. Ammonia decomposition kinetics overNi-Pt/Al2O3for PEM fuel cell applications[J]. Applied Catalysis A:General,2002,227:231-240.
    [38] Liang C.H., Wei Z.B., Xin Q., et al. Carbon supports promoted by barium andpotassium compounds[J]. Applied Catalysis A:General,2001,208:193-201.
    [39] Metkemeijer R., Achard P. Comparison of ammonia and methanol applied indirectly inhydrogen fuel cell[J]. International Journal of Hydrogen Energy,1994,19:535-540.
    [40] Metkemeijer R., Achard P.. Ammonia as a feedstock for a hydrogen fuel cell reformerand fuel cell behaviour[J]. Journal of Power Sources,1994,49:271-282.
    [41] Szmigiel D., Rarog-Pilecka W., Miskiewicz E., et al. Ammonia decomposition overthe ruthenium catalysts deposited on magnesium–aluminum spinel[J]. AppliedCatalysis A:General,2004,264:59-63.
    [42] Dahl S., Sehested J., Jacobsen C.J.H., et al. Surface Science Based MicrokineticAnalysis of Ammonia Synthesis over Ruthenium Catalysts[J]. Journal of Catalysis,2000,192(2):391-399.
    [43] Topsoe H., Boudart M., Norskov J.K.. Frontiers in Catalysis: Ammonia Synthesis andBeyond[J]. Topics of Catalysis,1994,1(3-4):1-5.
    [44] Yin S.F., Zhang Q.H., Xu B.Q., et al. Investigation on the Catalysis of COx FreeHydrogen Generation from Ammonia[J]. J. Catal.,2004,224:384-389.
    [45] Goetcsch D.A., Schmit S.J.. Production of hydrogen by autothermic decomposition ofammonia:WO.087770,2001.
    [46] Jedynak A., Kowalczyk Z., Szmigiel D., et al. Ammonia decomposition over thecarbon-based iron catalyst promoted with potassium[J]. Applied Catalysis A:General,2002,237:223-226.
    [47] Choudhary T.V., Sivadinarayana C., Goodman D.W.. Catalytic ammoniadecomposition:COx-free hydrogen production for fuel cell applications[J]. CatalysisLetters,2001,72(3-4):197-201.
    [48] Yin S.F., Xu B.Q., Zhu W.X., et al. Carbon nanotubes-supported Ru catalyst for thegeneration of COx-freehydrogen from ammonia[J]. Catalysis Today,2004,93-95:27-38.
    [49] Ganley J.C., Thomas F.S., Seebauer E.G., et al. A priori catalytic activity correlationsthe difficult case of hydrogen production from ammonia[J]. Catalysis Letters,2004,96(3-4):117-122.
    [50] Rarog W., Kowalczyk Z., Sentek J., et al. Decomposition of ammonia over potassiumpromoted ruthenium catalyst supported on carbon[J]. Applied Catalysis A: General,2001,208:213-216.
    [51] Rarog-Pilecka W., Szmigiel D., Kowalczyk Z., et al. Ammonia decomposition over thecarbon-based ruthenium catalyst promoted with barium or cesium[J]. Journal ofCatalysis,2003,218:465-469.
    [52] Yin S.F., Xu B.Q., Zhou X.P., et al. A mini-review on ammonia decompositioncatalysts for on-site generation of hydrogen for fuel cell applications[J]. AppliedCatalysis A:General,2004,277:1-9.
    [53] Chellappa A.S., Fischer C.M., Thomson W.J.. Ammonia decomposition kinetics overNi-Pt/Al2O3for PEM fuel cell applications [J]. Applied Catalysis A:General,2002,227:231-240.
    [54]阳卫军,陶能烨,刘丰良, et al.活性炭负载Fe、Ni催化氨分解的研究[J].湖南大学学报,2006,33(5):100-104.
    [55] Yin S.F., Xu B.Q., Zhou X.P., et al. A mini-review on ammonia decompositioncatalysts for on-site generation of hydrogen for fuel cell applications[J].Appl.Catal.A:Gen.,2004,277:1-9.
    [56] Choudhary T.V., Sivadinarayana C., Goodman D.W.. Catalytic ammoniadecomposition:COx-free hydrogen production for fuel cell applications[J]. Catal. Lett.,2005,72:197-201.
    [57] Oyama S.T.. Kinetics of ammonia decomposition on vanadium nitride[J]. Journal ofCatalysis,1992,133:358.
    [58] Choi J-G. Ammonia decomposition over Vanadium carbide catalysts[J]. Journal ofCatalysis,1999,182(1):104-116.
    [59] Wise R.S., Markel E.J.. Catalytic NH3decomposition by topotactic molybdenumoxides and nitrides: effect on temperature programmed γ-Mo2N synthesis[J]. Journalof Catalysis,1994,145(2):335-343.
    [60] Liang C.H., Li W.Z., Wei Z.B., et al. Catalytic decomposition of ammonia overnitrided MoNx/α-Al2O3and NiMoNy/α-Al2O3catalysts[J]. Industrial and engineeringChemistry Research,2000,39(10):3694-3697.
    [61] Lu C.S., Li X.N., Zhu Y.F., et al. Ammonia Decomposition over Bimetallic NitridesSupported on γ-Al2O3[J]. Chinese Chemical Letters,2004,15:105-109.
    [62] Tsai W., Vajo J.J., Weinberg W.H.. Inhibition by Hydrogen of the HeterogeneousDecomposition of Ammonia on Platinum[J]. Journal of Chemical Physics,1985,89:4926.
    [63] Shustorovich E., Bell A.T.. Synthesis and decomposition of ammonia on transitionmetal surfaces: bond-order-conservation-Morse-potential analysis [J]. Surface Science,1991,259: L791-L796.
    [64] Tsai W., Weinberg W.H.. Steady-state decomposition of ammonia on ruthenium(001)surface[J]. Journal of Physical Chemistry,1987,91:5302-5307.
    [65] Hashimoto K., Toukai N.. Decomposition of ammonia over a catalyst consisting ofruthenium metal and cerium oxides supported on Y-form zeolite[J]. Journal ofMolecular Catalysis A:Chemical,2000,161:171-178.
    [66] Ganley J.C., Thomas F.S., Seebauer E.G., et al. A priori catalytic activity correlations:the difficult case of hydrogen production from ammonia[J]. Catalysis Letters,2004,96(3-4):117-122.
    [67] Lanzani G., Laasonen K.. NH3adsorption and dissociation on a nanosized ironcluster[J]. International Journal of Hydrogen Energy,2010,35:6571-6577.
    [68] Leruth N.G., Valcarcel A., Clotet A., et al. DFT Characterization of Adsorbed NHxSpecies on Pt(100) and Pt(111) Surface[J]. Journal of Physical Chemistry B,2005,109:18061-18069.
    [69] Leruth N.G., Valcarcel A., Ramirez P.J., et al. Ammonia Dehydrogenation overPlatinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsored NHxSpecies[J]. Journal of Physical Chemistry C,2007,111(2):860-868.
    [70] Chen J.G.. Carbide and Nitride Overlayers on Early Transition Metal Surfaces:Preparation, Characterization and Reactivities[J]. Chemical Reviews,1996,96:1477-1498.
    [71] Oyama S.T.. Preparation and catalytic properties of transition metal carbides andnitrides[J]. Catalysis Today,1992,159:179-200.
    [72] Bemhard E., Richard D., Masao T., et al. Theoretical calculations on the structureselectronic and magnetic properties of binary3d transition meatal nitrides[J]. Journal ofMaterials Chemistry,1999,9:1527-1537.
    [73] Fang J.S., Yang Li.C., Hsu C.S., et al. Phase transition behavior of reactive sputteringdeposited Co-N thin films using transmission electron microscopy[J]. Journal ofVacuum Science&TechnologyA:Vacuum, Surfaces, and Films,2004,22(3):698-704.
    [74] Sifkovits M., Smolinski H.. Interplay of chemical bonding and magnetism in Fe4N,Fe3N and ξ-Fe2N[J]. Journal of Magnetism and Magnetic Materials,1999,204(3):191-198.
    [75] Iwama S., Hayakawa K., Arizumi T. Journal of Crystal Growth,1984,66:189.
    [76] Pfund A.H.. Journal of the Optical Society of America,1933,23:375.
    [77] Volpe L., Boudart M.. Compounds of molybdenum and tungsten with high specificsurface area I. nitrides[J]. Journal of Solid State Chemistry,1985,59:332-347.
    [78] Kojima R., Aika K.. Molybdenum nitride and carbide catalysts for ammoniasynthesis[J]. Applied Catalysis A: General,2001,219:141-147.
    [79] Mariadasson G. D., Shin C.H., Bugli G.. Tamaru 's model for ammonia decompositionover titanium oxynitride[J]. Journal of Molecular Catalysis. A: Chemical,1999,141:263-267.
    [80] Kim J.H., Kim K.L.. A study of preparation of tungsten nitride catalysts with higharea[J]. Applied Catalysis A,1999,181:103-111.
    [81] Li S., Lee J.S.. Molybdenum nitride and carbide prepared from heteropolyacids1.preparation and characterization[J]. Journal of Catalysis,1996,162:76-87.
    [82] Nagai M., Suda T., Oshikawa K., et al. CVD synthesis of alumina-supported tungstennitride and its activity for thiophene hydrodesulfurization [J]. Catalysis Today,1999,50:29-37.
    [83] Markel E.J., Burdick S.E., Leaphart M.E., et al. Synthesis, characterization andthiophene desulfurization activity of unsupported Mo2N macrocrystalline catalysts[J].Journal of Catalysis,1999,182:136-147.
    [84] Li S., Lee J.S., Hyeon T., et al. Catalytic hydrodenitrogenation of indole overmolybdenum nitrides and carbides with diffenrent structure[J]. Applied Catalysis A,1999,184:1-9.
    [85] Volpe L., Boudart M.. Compunds of molybdenum and tungsten with high specificsurface area. II. Carbides[J]. Journal of Solid State Chemistry,1985,59(3):348-356.
    [86] Volpe L., Boudart M.. Compouds of molybdenum and tungsten nitrides and carbideswith high specific surface area—I:Nitrides[J]. Journal of Solid State Chemistry,1985,59:332-347.
    [87] Jaggers C.H., Michacls J.N., Stacy A.M.. Chemistry of Materials,1990,2:150.
    [88] Choi J.G., Curl R.L., Thompson L.T.. Journal of Catalysis,1994,146:218.
    [89] Nagai M., Goto Y., Miyata A., et al. Temperature-Programmed Reduction and XRDStudies of Ammonia-Treated Molybdenum Oxide and Its Activity for CarbazoleHydrodenitrogenation[J]. Journal of Catalysis,1999,182:292-301.
    [90]龚树文,陈皓侃,李文,等.制备参数对β-Mo2N0.78催化剂加氢脱硫活性影响的研究[J].燃料化学学报,2003,31(6):543-547.
    [91]柳云骐,刘晨光,阙国和.大比表面积γ-Mo2N催化剂合成条件的考察[J].石油大学学报(自然科学版),2000,24(3):30-37.
    [92] Volpe L., Boudart M.. Topotactic preparation of powders with high specific surfacearea[J]. Catalysis Reviews:Science and Engineering,1985,27:515-538.
    [93] Jaggers C.H.,Michaels J.N., Stacy A.M.. Preparation of High-Surface-AreaTransition-Metal Nitrides:Mo2N and MoN[J].Chemistry of Materials,1990,2:150-157.
    [94] Kojima R., Aika K.. Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis[J]. Chemical Letters,2000,5:514-515.
    [95] Wise R. S.,Markel E.J.. Catalytic NH3decomposition by Topotactic molybdenumoxides and nitrides:Effect on temperature programmed γ-Mo2N[J]. Journal ofCatalysis,1994,145:335.
    [96] Demczyk B. G., Choi J. G., Thompson L. T.. Surface structure and composition ofhigh-surface-area molybdenum nitrides[J]. Surface Science,1994,78(1):63-69.
    [97] Volpe L., Boudart M.. Ammonia synthesis on molybdenum nitride[J]. The Journal ofPhysical Chemistry,1986,90:4874-4877.
    [98] Jacobsen C.J.H.. Novel class of ammonia synthesis catalysts[J]. ChemicalCommunications,2000,12:1057-1058.
    [99] Boisen A., Dahl S., Jacobsen C.J.H.. Promotion of binary nitride catalysts: isothermalN2adsorption, microkinetic model, and catalytic ammonia synthesis activity[J].Journal of Catalysis,2002,208:180-186.
    [100] Kojima R., Aika K..Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis Part1. Preparation and characterization [J]. Appied Catalysis A: General,2001,215:149-160.
    [101] Kojima R., Aika K..Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis Part3. Reactant gas treatment[J]. Appied Catalysis A: General,2001,219:157-170.
    [102] Kojima R., Aika K.. Molybdenum nitride and carbide catalysts for ammoniasynthesis[J]. Appied Catalysis A: General,2001,219:141-147.
    [103] Xiang Y. Z., Li X. N.. Supported cobalt molybdenum bimetallic nitrides for ammoniadecomposition[J]. Chinese Journal of Chemical Engineering,2005,13(5):696-700.
    [104] Liu H.C., Wang H., Shen J.H., et al. Influence of Preparation Conditions on theCatalytic Performance of MoNx/SBA-15for Ammonia Decomposition[J]. Journal ofGas Chemical,2006,15(3):178-180.
    [105]张新波,许莉勇,袁俊峰,等.共沉淀法制备氧化铝负载Co-Mo双金属氮化物催化剂[J].催化学报,2009,30(7):613-618.
    [106] Markel E.J., Van Zee J.W.. Catalytic hydrodesulfurization by molybdenum nitride[J].Journal of Catalysis,1990,126(2):643-657.
    [107] Nagai M., Miyao T., Tuboi T.. Hydrodesulfurization of dibenzothiophene onalumina-supported molybdenum nitride[J]. Catalysis Letters,1993,18(1/2):9-14.
    [108] Logan J.W., Heiser J. L., Mccrea K.R., et al. Thiophene hydrodesulfurization overbimetallic and promoted nitride catalysts[J]. Catalysis Letters,1999,56(4):165-171.
    [109]王宇红,李伟,关乃佳,等. TiO2负载氮化钼催化剂的HDS活性与反应动力学的研究[J].石油学报(石油加工),2000,16(6):18-22.
    [110] Schlatter J.C., Oyama S.T., Metcalfe J.E.. Catalytic Behavior of selectedTransition-Metal Carbides, Nitrides, and Borides in the Hydrodenitrogenation ofQuinoline[J]. Industrial and Engineering Chemistry Research,1988,27:1648-1653.
    [111] Choi J.G., Brenner J.R..Synthesis and characterizationof molybdenum nitride HDNcatalysts [J].Catalysis Today,1992,15:201-222
    [112] Li S.Z., Lee J.S. Hyeon T., et al. Catalytic hydrodenitrogenation of indole overmolybdenum nitride and carbids with different structures[J]. Applied Catalysis A:General,1999,184(1):1-9.
    [113] Colling C. W.,Thompson L.T.. The structure and function of supported molybdenumnitride hydrodenitrogenation catalysts[J]. Journal of Catalysis,1994,146(1):193-203.
    [114] Chu Y. J., Wei Z. B., Li C.,et al. NiMoNx/Al2O3catalyst for HDN of pyridine[J].Applied Catalysis A: General,1999,176(1):17-26.
    [115] Saito M., Anderson R.B.. The activity of several molybdenum compounds for themethanation of CO[J]. Journal of Catalysis,1980,63:438-446.
    [116] Yao Z.W., Zhang X.H., Peng F., et al. Novel highly efficient alumina-supported cobaltnitride catalyst for preferential CO oxidation at high temperatures[J]. InternationalJournal of Hydrogen Energy,2011,36:1955-1959.
    [117] Yao Z.W., Zhu A.M.,Au C.T., et al. Redox properties of cobalt nitrides for NOdissociation and reduction[J]. Catalysis Letters,2009,130:63-71.
    [118] Wu Z.L., Li C. Ying P.L.,et al. A Novel Reaction on a Mo2N/Al2O3Catalyst:Low-Temperature Isomerization of But-1-ene[J]. Chemical Communications,2001,8:701-702.
    [119] Li Y.Z., Fan Y.N., He J.,et al. Selective Liquid Hydrogenation of Long Chain LinearAlkadienes on Molybdenum Nitride and Carbide Modified by Oxygen[J]. ChemicalEngineering Journal,2004,99(3):213-218.
    [120]张宏哲.碳纳米管负载金属催化剂的制备及性能研究[D].辽宁:大连理工大学,2006.
    [121] Monthioux M.. Filling single-wall carbon nanotubes[J]. Carbon,2002,40:1809-1823.
    [122] R M. Study on the properties and engineering applications of block-type carbonnanotubes. Tsinghua University, Beijing,China,2000.
    [123] Zhang Y.,Zhang H.B.,Lin G.D., et al. Preparation, characterization and catalytichydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J].Appied Catalysis A: General,1999,187:213-214.
    [124] Planeix J.M., Coustel N.,Coq B., et al. Application of carbon nanotubes as supports inheterogeneous catalysis[J]. Journal of the American Chemical Society,1994,116:7935-7936.
    [125] Brotons V., Coq B., Planeix J.M.. Catalytic influence of bimetallic phase for thesynthesis of single-walled carbon nanotubes[J]. Journal of Molecular CatalysisA:Chemical,1997,116:397-403.
    [126] Sonia D.D., Angel B.M., Bhabendra K.P.,et al. Semi hydrogenation ofPhenylacetylene catalyzed by Palladium nano partieles supported on carbonmaterials[J]. Journal of physical and Chemistry C,2008,112(10):3827-3834.
    [127] Nhut J.M., Vieira R., Pesant L., et al. Synthesis and catalytic uses of carbon andsilicon carbide nanostrures[J]. Catal. Today,2002,76:11-32.
    [128] Tessonnier J. P., Pesant L., Ehret G., et al. Pd nanoparticles introduced insidemulti-walled carbon nanotubes for selective bydrogenation of cinnamaldehyde intohydrocinnamaldehyde[J]. Applied Catalysis A: General,2005,288(1-2):203-210.
    [129] Zhao Y., Li C.H.,Yu Z.X., et al. Effect of microstructures of Pt catalysts supported oncarbon nanotubes(CNTs) and activated carbon(AC) for nitrobenzene hydrogenation[J].Materials Chemistry and Physics,2007,103(2-3),225-229.
    [130] Cai Y.,Lin J.D.,Chen B., et al. Novel ruthenium catalyst K-Ru/Carbon nanotubescatalyst for ammonia syn-thesis[J]. Chinese Chemical Letters,2000,11(4):373-374.
    [131] Chen H.B.,Lin J.D.,Cai Y., et al.Novel multi-walled nanmotubes-supported andalkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J].Applied Surfaces Science,2001,180(3-4),328-335.
    [132] Liang C.H., Li Z.L., Qiu J.S., et al. Graphitic nanofilaments as novel support of Ru-Bacatalysts for ammonia synthesis[J]. J.Catal.,2002,211:278-282.
    [133] Li W. Z.,Liang C. H., Zhou W. J., et al. Preparation and characterization ofmultiwalled carbon nanotube-supported platinum for cathode catalysts of directmethanol fuel cells[J].The Journal of Physical Chemistry B,2003,107:6292-6299.
    [134] Steigerwalt E.S., Deluga G.A., Cliffel D.E., et al. A Pt-Ru/graphitic carbon nanofibernanocomposite exhibiting high relative performance as a direct-methanol fuel cell anodecatalyst[J]. Journal of Physical Chemistry B,2001,105(34):8097-8101.
    [135] Tavasoli A.,Sadagiani K.,Khorashe F. et al. Cobalt supported on carbon nanotubes apromimising novel Fischer-Tropsch synthesis catalyst[J]. Fuel Processing Technology,2008,89:491-498.
    [136]李春波,潘伟雄,邱显清.碳纳米管的制备及其在钌络合物催化氧化环己烯中的应用[J].天然气化工,2002,27(5):8-11.
    [137] Luo J Z, Gao L Z, Leung Y L, et al. The decomposition of NO on CNTs and1wt%Rh/CNTs[J]. Catalysis Letters,2000,66:91-97.
    [138] Gao R., Tan C. D., Baker R. T. K. Ethylene hydroformylation on graphite nanofibersupported rhodium catalysts[J]. Catal. Today,2001,65:19-29.
    [139] Giordano R., Serp P., Kalck P., et al. Preparation of rhodium catalysts supported oncarbon nanpfibers by a surface mediated organometallic reaction[J]. European Journalof Inorganic Chemistry,2003,4:610-617.
    [140] Makowski P., Thomas A.,Kuhn P., et al. Organic materials for hydrogen storageapplications: from physisorption on organic solids to chemisorption in organicmolecules[J]. Energy Environmental Science,2009,2:480-490.
    [141] Zhang J.,Xu H.Y., Ge Q. J., et al. Highly efficient Ru/MgO catalysts for NH3decomposition: Synthesis, characterization and promoter effect[J]. CatalysisCommunications,2006,7:148-152.
    [1] Goetsch D.A., Schmit S.J. Production of hydrogen by autothermic decomposition ofammonia: WO.0187770,2001.
    [2] Choudhary T.V., Svadinaragana C., Goodman D.W.. Catalytic ammoniadecomposition:COx-free hydrogen production for fuel cell applications[J]. CatalysisLetters,2001,72(3-4):197-201.
    [3] Yin S.F., Xu B.Q., Zhou X.P., et al. A mini-review on ammonia decompositioncatalysts for on-site generation of hydrogen for fuel cell applications[J]. AppliedCatalysis A:General,2004,277:1-9.
    [4] Choi J.G.. The influence of surface properties on catalytic activities of tantalumcarbides[J]. Applied Catalysis A: General,1999,184(2):189-201.
    [5] Choi J.G.. Ammonia decomposition over vanadium carbide cataylsts[J]. Journal ofCatalysis,1999,182(1):104-116.
    [6] Liang C.H., Li W.Z., Xin Q., et al. Catalytic decomposition of ammonia over nitridedMoNx/α-Al2O3and NiMoNy/α-Al2O3catalysts[J]. Industrial and EngineeringChemistry Research,2000,39(10):3694-3697.
    [7] Kim D.W., Lee D.K., Lhm S.K. CoMo bimetallic nitride catalysts for thiopheneHDS[J]. Catalysis Letters,1997,43:91-95.
    [8] Kojima R., Aika K.I.. Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis: Part1.Preparation and characterization[J]. Applied Catalysis A:General,2001,215:149-160.
    [9] Wang Y.H., Li W., Zhang M.H., et al. Applied Catalysis A:General,2001,215(39.
    [10] Chu Y.J., Wei Z.B., Yang S.W., et al. Applied Catalysis A:General,1999,176:17.
    [11]房永彬.载体对Ni-B催化剂邻氯硝基苯液相加氢性能的影响[J].工业催化,2006,14(10):59-61.
    [12]房永彬.负载Pt-B非晶态催化剂的氯代硝基苯加氢性能[J].工业催化,2007,15(11):35-37.
    [13] Yin S.F., Xu B.Q., Zhu W.X., et al. Carbon nanotubes-supported Ru catalyst for thegeneration of COx-freehydrogen from ammonia[J]. Catalysis Today,2004,93-95:27-38.
    [14] Yin S.F., Xu B.Q., Ng C.F., et al. Nano Ru/CNTs: a highly active and stable catalystfor the generation of CO-free hydrogen in ammonia decomposition[J]. AppliedCatalysis B:Environment,2004,48:237-241.
    [15] Amadou J., Chizari K., Houlle M., et al. Catal Today,2008,138:62.
    [16] Garcia-Garcia F.R., Alvarez-Rodriguez J., Rodriguez-Ramos I., et al. Carbon,2010,48(267).
    [17] Shao Y.Y., Sui J.H., Yin G.P., et al. Applied Catalysis B:Environment,2008,79:89.
    [18]高伟洁,郭淑静,张洪波,等.氮掺杂碳纳米管对其负载的Ru催化剂上合成氨的促进作用[J].催化学报,2011,32(8):1418-1423.
    [19]谌春林,张建,王锐,等.氮掺杂多壁纳米碳管的合成和定量表征[J].催化学报,2010,31(8):948-954.
    [20]梁长海. Ru-Mn+/C催化剂上氨合成反应性能研究:助剂和载体的影响[D].大连:中科院大连化学物理研究所,2000.
    [21] Kojima R., Aika K.I.. Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis[J]. Chemistry Letters,2000:514-515.
    [22] Jacobsen C.J.H., Dahl S., Clausen B.S., et al. Catalyst Design by Interpolation in thePeriodic Table: Bimetallic Ammonia Synthesis Catalysts[J]. Journal of the AmericanChemical Society,2001,123:8404.
    [23]张新波,许莉勇,袁俊峰,等.共沉淀法制备氧化铝负载Co-Mo双金属氮化物催化剂[J].催化学报,2009,30(7):613-618.
    [24]郭栋,周亚松,魏强.氧化铝负载氮化镍钼的制备及其加氢精制性能研究[J].燃料化学学报,2009,37(4):459-463.
    [25] Meng M., Fu Y.L., Liu Z.L., et al. Preparation and Structural Characterization ofHighly Dispersed γ-Mo2N Supported on Alumina[J]. Chemical Journal of ChineseUniversities,2002,23(6):1113.
    [26] Aika K., Kubota J., Kadowaki Y., et al. Molecular sensing techniques for thecharacterization and design of new ammonia catalysts[J]. Applied Surface Science,1997,121/122:488-491.
    [27] Kowalczyk S., Jodzis S., Rarog W., et al. Applied Catalysis A:General,1998,173:153.
    [28] Murata S., Aika K.. Applied Catalysis A:General,1992,82:1.
    [29] Kowalczyk Z., Krukowski M., Rarog-Pilecka W., et al. Carbon-based rutheniumcatalyst for ammonia synthesis:Role of the barium and caesium promoters and carbonsupport[J]. Applied Catalysis A:General,2003,248(1-2):67-73.
    [30]李忠来.碳纳米管负载钌催化剂上氨合成及氨分解的TAP研究[D].辽宁:中国科学院大连化学物理研究所,2004.
    [31]王文祥,赵合全.工业催化,1997,1:13.
    [32]王文祥,孙淑君.化学学报,1988,46:179.
    [33] Ocampo A.L., Miranda-Hernandez M., Morgado J., et al. Characteization andevaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes byelectrochemical impedance[J]. Journal of Power Sources,2006,160(2):915-924.
    [34] Chen P., Zhang H.B., Lin G.D., et al. Growth of carbon nanotubes by catalyticdecomposition of CH4or CO on a Ni-MgO catalyst[J]. Carbon,1997,35(10-11):1495-1501.
    [35] Verhaak M.J.F.M., Dillen V., Geus A.J., et al. Applied Catalysis A:General,1993,105:239.
    [36]孟明,伏义路,刘振林.氧化铝负载高分散γ-Mo2N的制备与结构表征[J].高等学校化学学报,2002,23:11-13.
    [37]肖进兵,罗有训,罗根祥,等.氧化铝负载氮化钼的表面性质及加氢脱氢性能[J].催化学报,2001,22(6):571-574.
    [38]王立楠,张雄伟,储伟,等. CeO2修饰SiO2担载Cu-Ir双金属催化剂的研究[J].高等学校化学学报,2005,26(8):1057-1511.
    [39] Cheng W.H., Shi C.Y., Liu T.H., et al. Stability of copper based catalysts enhanced bycarbon dioxide in methanol decomposition[J]. Applied Catalysis B: Environmental,1998,18:63-70.
    [40]卢春山.负载型过渡金属氮化物制备和催化性能研究[D].浙江:浙江工业大学,2003.
    [41] CHU Y., WEI Z., YANG S.. NiMoNx/γ-Al2O3catalyst for HDN of pyridine[J].Applied Catalysis A:General,1999,176(1):17-26.
    [42] WEI Z.B., XIN Q., GRANGE P.. Surface species and the stability of γ-Mo2N[J]. SolidState Ionics,1997,101-103(part2):761-767.
    [43]项益智,吕井辉,卢春山,等.负载型钴钼金属氮化物的制备及其表明化学研究[J].稀有金属材料与工程,2010,39(增刊2):521-525.
    [44] Bem D.S., Olsen H.P., Loye H.C.Z. Chemistry of Materials,1995,7:1824.
    [45] Chellappal A.S., Fischer C.M., Thomson W.J. Ammonia decomposition kinetics overNi-Pt//Al2O3for PEM fuel cell applications [J]. Applied Catalysis A:General,2002,227:231-240.
    [46] Bradford M.C.J., Fanning P.E., Vannice M.A. Kinetics of NH3decomposition overwell dispersed Ru[J]. Journal of Catalysis,1997,172:479-484.
    [47] Mariadassou G.D., Shin C.H., Bugli G.. Tamaru' s Model for Ammonia Decompositionover Titanium Oxynitride[J]. Journal of Molecular Catalysis A: Chemical,1999,141:263-265.
    [48]张宏哲.碳纳米管负载金属催化剂的制备及性能研究[D].辽宁:大连理工大学,2006.
    [49] Ingier-Stocka E.. TG and DTA Evaluation of Cobalt Salts and Complexes Mixed withActivated Carbon[J]. Journal of Thermal Analysis and Calorimetry,2001,65:561-573.
    [50] Makay D., Hargreaves J.S.J., Rico J.L., et al. Journal of Solid State Chemistry,2008,181:325.
    [51] Rodriguez-Reinoso F.. The role of carbon materials in heterogenedus catalysis[J].Carbon,1998,36:159-175.
    [52]黄仲涛,林维明,庞先桑,等.工业催化剂设计与开发[M].广州:华南理工大学出版社,1991:230-237.
    [53] CHOI J.G., BRENNER J.R., COLLING C.W.. Synthesis and characterization ofmolybdenum nitride hydroden itrogenation catlysts[J]. Catalysis Today,1992,15(2):201-222.
    [1] Kojima R., Aika K.I.. Cobalt molybdenum bimetallic nitride catalysts for ammoniasynthesis: Part1.Preparation and characterization[J]. Applied Catalysis A:General,2001,215:149-160.
    [2] Xiang Y.Z., Li X.N.. Supported cobalt molybdenum bimetallic nitrides for ammoniadecomposition[J]. Chinese Journal of Chemical Engineering,2005,13(5):696-700.
    [3] Trawczynski J.. Effect of synthesis conditions on the molybdenum nitride catalyticactivity[J]. Catlysis Today,2001,65:343-348.
    [4] Oyama S.T.. Preparation and catalytic properties of transition metal carbides andnitrides[J]. Catalysis Today,1992,159:179-200.
    [5] Volpe L., Boudart M.. Compouds of molybdenum and tungsten nitrides and carbideswith high specific surface area I:Nitrides[J]. Journal of Solid State Chemistry,1985,59:332-347.
    [6] Wise R.S., Markel E.J.. Synthesis of High Surface Area Molybdenum Nitride in theMixtures of Nitrogen and Hydrogen[J]. Journal of Catalysis,1994,145:344-350.
    [7] CHOI J.G., BRENNER J.R., COLLING C.W.. Synthesis and characterization ofmolybdenum nitride hydroden itrogenation catlysts[J]. Catalysis Today,1992,15(2):201-222.
    [8] Li Y., Fan Y., Chen Y.. The Preparation of Molybdenum Oxynitride by HydrazineReduction of MoO3at Moderate Temperature and its Application in the SelectiveHydrogenation of Long Chain Linear Alkadienes[J]. Catalysis Letters,2002,82(142):111-116.
    [9] Chiu H.T., Chuang S.H., Lee G.H.. Low-Temperature Solution Route to MolybdenumNitride[J]. Advanced Materials,1998,10:1475-1480.
    [10] Marehand R., Tessier F., Disalvo F.J.. New Routes to Transition Metal Nitrides,Preparation and Characterization of New Phase[J]. Journal of Materials Chemistry,1999,9:297-302.
    [11]柳云骐,刘晨光.合成大比表面积γ-Mo2N的新方法[J].无机化学学报,1999,15(4):541-544.
    [12]王宇红.负载型氮化钼催化剂及其加氢性能的研究[D].天津:南开大学,2001.
    [13]刘武灿.负载型过渡双金属氮化物催化剂性能研究[D].浙江:浙江工业大学,2005.
    [14]王萍,周志军,田晓飞,等.负载型氮化钴钼催化剂的制备及催化性能[J].石油化工高等学校学报,2003,16(2):13-15.
    [15]张新波,许莉勇,袁俊峰,等.共沉淀法制备氧化铝负载Co-Mo双金属氮化物催化剂[J].催化学报,2009,30(7):613-618.
    [16] Jaggers C.H., Michaels J.N., Stacy A M. Preparation of High-Surface-AreaTransition-Metal Nitrides:Mo2N and MoN[J]. Chemistry of Materials,1990,2:150-157.
    [17] Choi J.G., Curl R.L., Thompson L.T.. Journal of Catalysis,1994,146:218.
    [18] Zhang Y. J.. Catalysis Today,1996,30(1):135.
    [19]柳云骐,刘晨光,阙国和.大比表面积γ-Mo2N催化剂合成条件的考察[J].石油大学学报(自然科学版),2000,24(3):31-37.
    [20] Choi J.G., Brenner J.R., Colling C.W. Catalysis Today,1992,15:201.
    [21] Nagai M., Goto Y., Miyata A., et al. Temperature-programmed reduction and XRDstudies of ammonia-treated molybdenum oxide and its activity for carbazolehydrodenitrogenation[J]. Journal of Catalysis,1999,182(2):292-301.
    [22]张新波.涉氢催化剂的制备与催化性能研究[D].浙江:浙江工业大学,2010.
    [23]李新生,盛世善,陈恒荣,等.用XPS和H2化学吸附研究钝化Mo2N的还原作用
    [J].物理化学学报,1995,11(8):678-680.
    [1]朱曾坤.镍基低温氨分解催化剂及其载体的研究[D].天津:天津大学,2007.
    [2]张建.氨分解制氢与钯膜分离氢的研究[D].大连:中国科学院大连化学物理研究所,2006.
    [3] Yin S.F., Xu B.Q., Zhu W.X., et al. Carbon nanotubes-supported Ru catalyst for thegeneration of COx-freehydrogen from ammonia[J]. Catalysis Today,2004,93-95:27-38.
    [1] Yin S.F., Xu B.Q., Ng C.F., et al. Nano Ru/CNTs: a highly active and stable catalystfor the generation of CO-free hydrogen in ammonia decomposition[J]. AppliedCatalysis B:Environment,2004,48:237-241.
    [2] Yin S.F., Zhang Q.H., Xu B.Q., et al. Investigation on the Catalysis of COx FreeHydrogen Generation from Ammonia[J]. Journal of Catalysis,2004,224:384-396.
    [3] Chellappal A. S., Fischer C.M., Thomson W. J.. Ammonia decomposition kinetics overNi-Pt//Al2O3for PEM fuel cell applications [J]. Applied Catalysis A:General,2002,227:231-240.
    [4] Rarog-Pilecka W., Szmigiel D., Kowalczyk Z., et al. Ammonia decomposition over thecarbon-based ruthenium catalyst promoted with barium or cesium[J]. Journal ofCatalysis,2003,218:465-469.
    [5] Tsai W., Weinberg W.H. Steady-state decomposition of ammonia on the Ru(001)surface[J]. Journal of Physical Chemistry,1987,91:5302-5307.
    [6] Egawa C., Nishida T., Naito S., et al. Ammonia decompostion on (1110) and (0001)surfaces of ruthenium[J]. Journal of the Chemical Society, Faraday Transactions,1984,80:1595-1604.
    [7] Tamaru K.. A "new" general mechanism of ammonia synthesis and decomposition ontransition metals[J]. Accounts of Chemical Research,1988,21:88-94.
    [8] Bradford M.C.J., Fanning P.E., Vannice M.A. Kinetics of NH3decomposition overwell dispersed Ru[J]. Journal of Catalysis,1997,172:479-484.
    [9] Oyama S. T. Journal of Catalysis,1992,133:358-369.
    [10] Wise R. S., Markel E. J.. Journal of Catalysis,1994,145:335.
    [11] Perego C., Peratello S.. Experimental methods in catalytic kinetics[J]. Catalysis Today,1999,52:133-145.
    [12]卢春山.负载型过渡金属氮化物制备和催化性能研究[D].浙江:浙江工业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700