用户名: 密码: 验证码:
岩土介质应变局部化问题的广义塑性梯度理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进一步探索岩土介质的强度与变形机理,就必然要深入分析其细观变形和破坏性态。大量实验表明,由于试样的微细观层面上的不均匀性的影响,试样在破坏时常常出现狭窄带状高应变梯度区的应变局部化现象。研究应变局部化问题实质上是研究岩土工程的基本科学问题——岩土介质的一种真实破坏过程。基于传统连续介质力学的应变梯度理论难以反映岩土介质最基本的力学性质,如果能将广义塑性力学同应变梯度理论结合起来,应该能够得到一些新的启迪。
     本文通过对宏观实验结果和CT实验结果的分析,提出一种可包含局部化变形的“相当小而非无穷小”的研究基元——“塑性梯度体元”,基于塑性梯度体元分析了应变局部化启动机制:建立起塑性应变的微分表达式后,随着硬(软)化模量从正值变为负值,变形模式将由均匀变形模式变为局部化变形模式。
     进而,基于广义塑性力学的双屈服面模型和对本文的塑性梯度体元的分析,构造了由梯度依赖的双屈服面得到的塑性剪切应变和塑性体积应变的微分方程表达式,从而建立了广义塑性梯度模型的理论框架,使其在反映岩土介质的基本力学性质的同时,也能反映介质的应变局部化特征。给出了一种可能的梯度依赖的双屈服面的形式。阐述了广义塑性梯度模型模拟局部化变形模式的机理。提出了模型各个参数,尤其是其中“局部化”参数的物理意义和通过宏观可测量的物理量结合数值分析反推材料局部化参数的途径。
     然后,在将位移进行离散的同时,也通过构造的C 1连续性的插值函数将塑性乘子在空间离散,得到一组以节点位移向量和节点塑性乘子向量为基本未知量的非线性方程组,从而建立了广义塑性梯度模型的数值模型,给出了相应的边界条件处理方法和数值算法。
     最后,编制了2维FORTRAN90数值分析程序和VB后处理程序;给出了数值算例。算例显示了塑性应变局限于局部处发生和急剧发展的过程;塑性剪切应变和塑性体积应变进入局部化变形模式后都主要集中在局部化带内,反映出岩土在一定条件下的剪胀机理;避免了病态的网格敏感性;局部化带宽度受局部化参数影响。
In order to explore the strength and deformation mechanism of the geo-materials, some researches on the deformation and failure process in meso-scope must be performed. Many experiments have shown that the strain localization is caused by asymmetrical of the sample in micro-scope occurred during failure. In fact, the purpose to investigate the strain localization is to describe the actual failure process of geo-materials. It is expected that some new revelations will be obtained if the Generalized Plastic Mechanics is combined with strain-gradient theory to establish the Gradient-dependent Generalized Plasticity Mechanics by which the strain localization characteristics and the basic mechanics characteristics of geo-materials can be described at the same time.
     The progress in this paper can be summarized as:
     1、Based on the results of macro-experiment and some CT-experiment for geo-materials, A new plasticity gradient volume unit is proposed, which can describle the local deformation. The startup mechanism of strain localization is analysised: when the hardening Modulus (or sofftting Modulus) change from positive to negative, the deformation pattern will change from uniformity pattern to localization pattern.
     2、Based on the theoretical frame of the Generalized Plastic Mechanics and the plastic strain gradient-dependent in the double yield functions, the differential expressions of plastical strains are constructed, then the frame of the Generalized Gradient-dependent Plastic Mechanics is established sequentially to describe the strain localization characteristics andthe basic mechanics characteristics of geo-materials. The model parameters, especially the parameters reflecting localization are also discussed and determined.
     3、Both the displacement and the plastic factor are discretized by interpolation function with C 1 continuity in space. A set of non-linear equations taking the displacements and the plastic factors of nodes as the unknown variables are obtained to solve the new proposed mechanic model, the border condition and the increment algorithm are also gived in this paper.
     4、A Fortran90 code with Post-processr in Visual Basic for the numerical modeling is given, after that, some numerical examples are implemented and the results demonstrate the development of plastic strain as well as the failure process with a localized strain in a narrow band, which reveal the failure mechanism of the samples in micro-scope.
引文
【1】沈珠江.土体结构性的数学模型—21 世纪土力学的核心问题[J].岩土工程学报,1996,18 (1):95-97
    【2】黄文熙.土的工程性质[M].北京:水利水电出版社,1983:1-10
    【3】徐志英.岩石力学(第三版) [M].北京:中国水利水电出版社,1991: 74-75
    【4】李国琛,耶纳 M. 塑性大应变微结构力学(第二版) [M].北京:科学出版社,1998:207-215
    【5】赵锡宏,张启辉.土的剪切带和数值分析[M].北京:机械工业出版社,2003:1-75
    【6】沈珠江.理论土力学[M].北京:中国水利水电出版社,2000,5:74-75
    【7】Skempton AW.Long-term stability of clay slopes[J]. Geotechnique, 1964, 14(1):77-101
    【8】Xiaoping Zhou, Qiuling Ha, Yongxing Zhang, Keshan Zhu. Analysis of deformation localization and the complete stress–strain relation for brittle rock subjected to dynamic compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 41 (1):1-9
    【9】T.Y. Lai, Ronaldo I. Borja, Blaise G. Duvernay, Richard L. Meehan. Capturing strain localization behind a geosynthetic-reinforced soil wall[J]. Int. J. Numer. Anal. Meth. Geomech., 2003;27(2):425-451
    【10】D. J. Holcomb, J. W. Rudnicki. Inelastic constitutive properties and shear localization in Tennessee marble[J]. Int. J. Numer. Anal. Meth. Geomech., 2001,25(3):109-129
    【11】X. Wang, D. Chan, N. Morgenstern. Kinematic modelling of shear band localization using discrete finite elements[J]. Int. J. Numer. Anal. Meth. Geomech., 2003; 27():289-324
    【12】黄茂松,钱建固.饱和土体应变局部化的复合体理论[J].岩土工程学报,2002,24(1):21-25
    【13】Besuelle P, Desrues J, Raynaud S. Experimental characterization of the localization phenomenon inside a vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, (37):1223-1237
    【14】潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究[J].岩石力学与工程学报,2002, 21 (2): 215-218
    【15】郑捷,姚孝新,陈融.岩石变形局部化的实验研究[J].地球物理学报,1982,26(6):554-562
    【16】潘一山,杨小彬.白光数字散斑相关方法研究岩石变形局部化[J].岩土工程学报,2002,24(1): 97-100
    【17】马少鹏,金观昌等.岩石材料基于天然散斑场的变形观测方法研究[J].岩石力学与工程学报,2002, 21(6):792-796
    【18】王春华,康小敏,张平.煤岩截割的变形局部化实验研究[J].煤矿开采,2002,49(1):6-8
    【19】杨更社,谢定义,张长庆.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):215-218
    【20】吴紫汪,马巍,蒲毅彬.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3):1-6
    【21】李晓军.CT技术在土体结构性分析中的应用初探[J].岩土力学,1999,20(2):62-66
    【22】陆启韶.分岔与奇异性[M].上海科技教育出版社,非线性科学丛书,第二版.1997:1-120
    【23】R. Hill, J.W. Hutchinson. Bifurcation phenomena in the plate tension test [J]. Journal of Mechanics and Physics of Solids, 1975, 23: 239-264
    【24】Pietruszczak S, Niu X. On the description of localized deformation[J]. International Journal of Numerical and Analytical Method in Geomechanics, 1993, 17:791-805
    【25】钱建固,黄茂松. 土体应变局部化现象的理论解析[J].岩土力学, 2005,26(3):432-436
    【26】Ellen K, Ekkehard R, de Borst R. An anisotropic gradient damage model for quasi-brittle materials[J]. Computer Methods of Applied Mechanical and Engineering, 2000, 183(1) :333-345
    【27】Mindlin R D. Influence of Couple-stresses on stress Concentration[J].Experiment Mechanics, 1962, 3(1): 1-7
    【28】H.B. M?hlhaus, I. Vardoulakis. The thickness of shear band in granular materials[J].Geotechnique, 1987,37(3):271-283.
    【29】Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of Mechanics and Physics of Solids, 1991,41(1):1825-1857
    【30】赵吉东,周维垣,刘元高,杨若琼.岩石类材料应变梯度损伤模型研究及应用[J].水利学报,2002,7: 70-74.
    【31】赵吉东.岩土工程稳定破坏的应变梯度损伤局部化分岔模型及应用:[博士学位论文][D].清华大学,2002,4
    【32】R. de Borst, H.B. M?hlhaus. Gradient-dependent plasticity: formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, 35():521-539
    【33】潘一山,徐秉业,王明洋.岩石塑性应变梯度与Ⅱ类岩石变形行为研究[J].岩土工程学报,1999, 21(4): 471-474
    【34】王学滨,潘一山,马瑾.剪切带-弹性岩体的稳定及失稳滑动理论研究[J].岩土工程学报,2002,24(3): 360-362
    【35】张洪武,张新伟.基于广义塑性本构模型的饱和多孔介质应变局部化分析[J].岩土工程学报, 2000,22 (1):23-29
    【36】李锡夔,Cescotto S. 梯度塑性的有限元分析及应变局部化分析[J].力学学报,1996,28(5):575-584
    【37】王学滨,潘一山,盛谦,丁秀丽.岩体假三轴压缩机变形及变形局部化剪切带数值模拟[J].岩土力学, 2001, 22 (3):323-326
    【38】Zienkiewicz O C, Huang M. Localization problems in plasticity using finite elements with adaptive remeshing[J]. International Journal of Numerical and Analytical Method in Geomechanics,1995, 19(): 127-148
    【39】Belytschko T, Fish J and Englemann B E. A finite element with embedded localization zones[J]. Computational Methods in Applied Mechanical Engineering, 1988,70(1):59-89
    【40】徐连民,王兴然.用有限变形理论研究黏性土试样中变形的局部化问题[J].岩土工程学报,2004,26(2): 225-228
    【41】 杨天鸿,唐春安,芮勇勤,朱万成,李元辉,谭国焕.不同围压作用下非均匀岩石水压致裂过程的数值模拟[J].计算力学学报,2004,(21)4:419-424
    【42】周辉,谭云亮,冯夏庭等.岩体破坏演化的物理细胞自动机(PCA)(Ⅱ)—模拟例证[J].岩石力学与工程学报,2002,21(6):782-786
    【43】Fleck N A, Muller G M, Ashby M F. Strain Gradient Plasticity: theory and experiment[J]. Acta. Metall. Mater., 1994, 42(5):475-487
    【44】Stelmashenko N A, Walls A G, Brown L M.. Micro-indentations on W and Mo Oriented Single Crystals: an STM Study[J]. Acta. Mater., 1993, 41(4): 2855-2865
    【45】Stolken J S, Evans A G.A micro-bend test method for measuring the plasticity length scale[R]. Harvard University Report Mech..Division Engineering and Applied Sciences,Harvard University, Cambridge, 1997:1-220
    【46】黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和 SG 理论[J].机械强度,1999, 21(2) :81~87
    【47】黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二) ——基于细观机制的 MSG 应变梯度塑性理论[J].机械强度,1999,21(3) :161-165
    【48】徐松林.岩石(大理岩)全过程和应变梯度的研究及其分岔理论分析:[博士学位论文][D].武汉:中科院武汉岩土力学研究所,2000,5: 1-115
    【49】陈胜宏,王鸿儒,熊文林.节理岩体偶应力影响的研究[J].水利学报,1990,8(1):32-36
    【50】佘成学,熊文林,陈胜宏.具有弯曲效应的层状结构岩体变形的 Cosserat 介质分析方法[J].岩土力学, 1994,15(4):12-19
    【51】刘俊,陈胜宏.节理岩体三维偶应力理论[J].岩土力学,1995, 16(4):20-29
    【52】Cerrolaza M., Sulem J., Elbied A.. A Cosserat nonlinear finite element analysis software for blocky structures[J]. Advances in engineering Software, 1999,30(1):69-83
    【53】范华林,金丰年,浦奎源.关于“岩石塑性应变梯度与Ⅱ类岩石变形行为研究”的讨论[J].岩土工程学报, 2000, 22(3): 261-262
    【54】Stemberg E., and Muki R.. The Effect of Couple-stresses on the Stress Concentration Around a crack. [J]. Int. J. Solids Struct., 1967, 3(1):69-95
    【55】Sih G. C., Liebowitz H. Mathematical Theories of Brittle Fracture (in Fracture, Vol.Ⅱ) [M]. New York :Academic Press, 1968: 69-95
    【56】Bazant, Er-Ping Chen.结构破坏的尺度律[J].力学进展,1999, 29(3):383-433
    【57】赵冰,李宁,盛国刚.软化岩土介质的应变局部化研究进展——意义·现状·应变梯度[J].岩土力学,2005, 26(3):111-118
    【58】王学彬,潘一山.基于梯度塑性理论的岩样单轴压缩扩容分析[J].岩石力学与工程学报,2004, 23(5),721-724
    【59】王学滨,张智慧,潘一山.基于梯度塑性理论的岩样拉压剪破坏统一失稳判据[J].岩土力学,2003,24 (增): 138-142
    【60】郑颖人,沈珠江,龚晓南.广义塑性力学——岩土塑性力学原理[M].北京:中国建筑工业出版社,2003: 1-95
    【61】郑颖人.广义塑性力学讲座(1)——广义塑性力学理论[J].岩土力学,2000,21(2):188-191
    【62】郑颖人,段建立,陈瑜瑶.广义塑性力学讲座(2)——广义塑性力学中的屈服面与应力应变关系[J].岩土力学, 2000,21(3):305-308
    【63】郑颖人,陈瑜瑶,段建立.广义塑性力学讲座(3)——广义塑性力学的加卸载准则与土的本构模型[J].岩土力学, 2000, 21(4):426-429
    【64】郑颖人,孔亮.塑性力学的分量理论——广义塑性力学[J].岩土工程学报,2000,22 (3) :269-274
    【65】赵冰,李宁,盛国刚.考虑弹塑性耦合的单轴压缩岩样梯度塑性分析[J].西北农林科技大学学报(自然科学版), 2005, 33(9):137-140
    【66】谢定义.21 世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114
    【67】龚晓南.21 世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242
    【68】刘祖典,党发宁.土的弹塑性理论基础[M].西安:世界图书出版公司,2002,10: 1-95
    【69】章根德.土的本构模型及其工程应用[M].北京:科学出版社,1995:
    【70】郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989: 1-195
    【71】龚晓南.土塑性力学[M].杭州:浙江大学出版社,1990: 1-77
    【72】Roscoe K H, Schofield A N, Thurairajh A. Yielding of Clays in States Wetter than Critical[J]. Geotechnique, 1963, 13(3):12-33
    【73】魏汝龙.正常压密粘土的塑性势[J].水利学报,1964,1(6):11-21
    【74】黄文熙,濮家骝,陈愈炯.土的硬化规律与屈服函数[J].岩土工程学报, 1980,2(1):1~12
    【75】沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11~19
    【76】殷宗泽.一个土体的双屈服面应力应变模型[J]. 岩土工程学报,1988,10(4):64-71
    【77】沈珠江.土的三重屈服面应力应变模式[J].固体力学学报,1982,(2):163-174
    【78】郑颖人,严德俊.基于试验拟合的土的多重屈服面模型(见:郑颖人、高大钊、袁建新主编,第五届全国岩土力学数值分析与解析方法讨论会论文集)[C].武汉:武汉测绘科技大学出版社,1994:9-10
    【79】杨光华.土的本构模型的数学理论及其应用:[博士学位论文][D].北京:清华大学水电系,1999:1-223
    【80】陆有忠,杨有贞,郑璐石.浅析传统塑性位势理论与广义塑性位势理论[J].岩土力学,2003,24(增):207 -211
    【81】郑颖人,刘元雪.塑性位势理论的发展及其在岩土本构模型中的应用(庄逢甘主编.现代力学与科技进步文集)[C].北京:清华大学出版社, 1997:1115-1118
    【82】孔亮.复杂应力状态下土体弹塑性本构模型研究:[博士学位论文][D].重庆:后勤工程学院,2003:
    【83】刘元雪.岩土本构理论的几个基本问题研究[J].岩土工程学报,2001,23 (1):45-48
    【84】郑颖人,王敬林. 对岩土塑性理论中两个基本问题的讨论[J].重庆建筑,2002,1(1):21~23
    【85】沈珠江.科学家不应只是解释现象——关于岩土本构理论研究方向的述评[J].岩土工程学报,2005, 27(12): 1494~1495
    【86】胡亚元.关于率无关塑性力学和广义塑性力学的评述[J].岩土工程学报,2005,27(1): 128~131
    【87】丁卫华,仵彦卿,蒲毅彬,崔中兴,曹广祝.X射线岩石CT的历史与现状[J].地震地质,2003, 25(3): 467 -476
    【88】吴紫汪,蒲毅彬,马巍,常小晓.冻土蠕变过程体积变化的 CT 分析[J].冰川冻土,1995,17 (增):41-46
    【89】卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的 CT 实验研究[J].岩土力学,2002,23(4): 417-422
    【90】葛修润,任建喜,蒲毅彬,马巍,朱元林.岩石细观损伤扩展规律的 CT 实时试验[J].中国科学(E辑), 2000,30 (2):104-111
    【91】陈蕴生.单轴压缩条件下非贯通裂隙介质损伤演化特征的试验研究:[硕士学位论文][D].西安:西安理工大学,2002
    【92】孙红,葛修润,蒲毅彬,牛富俊,马巍.三轴应力条件下上海灰色粘土的 CT 细观试验研究[J].岩土力学,2004,25(9):1455-1459
    【93】Z. Hashin, Analysis of composite materials-urvey[J]. ASME J. Appl. Mech.,1983,50(): 481-505
    【94】赵冰,李宁,盛国刚.广义梯度塑性模型的理论框架[J].西安理工大学学报,2005,21 (4):111-118
    【95】Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modeling of soil behaviors[J]. Int. J. Num. Anal Meths Geomech, 1990, 14:151-190
    【96】 H.B. Muhlhaus, E. C. Aifantis. A variational principle for gradient plasticity[J]. Int. J. Solids Struct. , 1991,28:845-857
    【97】J. Pamin, R. de Borst. Simulation of crack spacing using a reinforced concrete model with an internal length parameter[J]. Archive of Applied Mechanics,1998,68 (3):613-625
    【98】王宝善,李娟,陈颙.高孔隙岩石局部化变形研究新进展[J].地球物理学进展,2004,19(2):222-229
    【99】赵冰,李宁,盛国刚,王桂尧. 应变梯度理论在岩土力学中的进展述评[J].长沙交通学院学报,2005, 21(1): 47-52
    【100】刘源,缪馥星,苗天德.二维颗粒堆积体中力的传递与分布研究[J].岩土工程学报,2005,27(4): 468-473
    【101】H.B. M?hlhaus, I. Vardoulakis. The thickness of shear band in granular materials[J]. Geotechnique, 1987,37(3):271-283
    【102】Silva M D, Rajchenbach J. Stress transmission through a model system of cohesionless elastic grains[J]. Nature, 2000, 406: 708-710
    【103】Jacek Tejchman. Behaviour of granular bodies in induced shear zones[J]. Granular Matter, 2000, 1(2): 77-96
    【104】G. E. Exadaktylos, I. Vardoulakis. Microstructure in linear elasticity and scale effects:a reconsidera- tion of basic rock mechanics and rock fracture mechanics[J]. Tectonophysics, 2001, 35:81-109
    【105】张洪武.微观接触颗粒岩土非线性力学分析模型[J].岩土工程学报,2002,24(1):12-15
    【106】刘恩龙,沈珠江,陈铁林.棒状结构体试件破损过程的试验研究[J].岩石力学与工程学报,2005, 24(12): 2003-2008
    【107】王勖成,邵敏.有限单元法基本原理和数值方法 (第二版) [M] .北京:清华大学出版社,2003
    【108】朱伯芳.有限单元法原理与应用(第二版) [M]. 北京:中国水利水电出版社,1998
    【109】张允真,曹富新.弹性力学及其有限元法[M].北京:中国铁道出版社,1983
    【110】D.R.J.Owen, E. Hinton. Finite Elements in Plasticity. U.K., Swansea: Pineridge Press Limited, 1980
    【111】钱伟长.广义变分原理[M]. 北京:知识出版社,1985
    【112】K. Washizu. 弹性和塑性力学中的变分法[M]. 北京:科学出版社,1975:
    【113】江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科技出版社,1994:
    【114】J. L. Batoz, G. Dhatt. Incremental Displacement Algorithms for Nonlinear Problems[J]. Int. J. Num. Meth. Engng., 1979, (14), 1262-1267
    【115】郑宏,李焯芬,谭国焕,葛修润.有限元分析的位移控制法及其应用[J].岩土工程学报,2002,24 (1):81~85
    【116】Riks E. An incremental approach to the solution of snapping and buckling problem[J].Int. J. solids Structures, 1979,15:529~551
    【117】Crisfield M A. A fast incremental/iterative solution procedure that handles "Snap-sugh”[J]. Computers and structures,1981,13:55~62
    【118】Yang Yeong Bin, Shiech Ming Shan. Solution method for nonlinear problems with multiple critical points[J]. AIAA Joumal, 1990, 28(12):2110-2116
    【119】苏先樾,王颖坚,武际可.含参数的非线性方程组的数值解法[J].计算结构力学及其应用,1988, 5(3):1-9
    【120】潭浩强,田淑清. FORTRAN77 语言结构化程序设计[M]. 北京:清华大学出版社,1990
    【121】徐士良. FORTRAN 常用算法程序集[M]. 北京:清华大学出版社,1992
    【122】J. Bockmann. Christopher, Lars Klander, Lingyan Tang. Visual Basic 程序员实用例库[M].北京:电子工业出版社,1999
    【123】Shari Lawrence Pfleeger. Software Engineering: Theory and Practice (second edition) [M]. Pearson Education, 2001
    【124】张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究:[博士学位论文][D],西安:西安理工大学.2004,8
    【125】K.C. Hwang, H. Jiang, Y. Huang, H. Gao, N. Hu. A finite deformation theory of strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 2002, 50:81-99
    【126】F. Oka, A. Yashima, K.Sawada, E.C.Aifantis. Instability of gradient-dependent elasto-viscoplastic model for clay and localization analysis[J]. Methods Appl. Mech. Engrg., 2000, 183:67-86
    【127】李锡夔,唐洪祥.压力相关弹塑性 Cosserat 连续体模型与应变局部化有限元模拟[J].岩石力学与工程学报,2005,24(9):1497-1505
    【128】宋二祥.软化材料有限元分析的一种非局部方法[J].工程力学,1995,12(4):93-100
    【129】陈万吉.应变梯度理论有限元 C0-1 分片检验及其变分基础[J].大连理工大学学报,2004, 44(4): 474-477
    【130】李雷,吴长春,谢水生.基于 Hellinger-Reissner 变分原理的应变梯度杂交元设计[J].力学学报,2005, 37(3):301-306
    【131】A.Glema, T.Lodygowski, P. Perzyna. Interaction of deformation waves and localization phenomena in inelastic solids[J]. Comput. Methods Appl. Mech. Engrg.,2000,183: 123-140
    【132】P. Grammenoudis, C. Tsakmakis. Hardening rules for finite deformation micropolar plasticity: Restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin[J]. Continuum Mech. Thermodyn, 2001, 13:325-363
    【133】R. Chambon, D. Cailleriea, C. Tamagnini. A strain space gradient plasticity theory for finite strain. Comput[J]. Methods Appl. Mech. Engrg., 2004, 193:2797-2826
    【134】李育超,凌道盛,陈云敏.Cosserat 连续介质的 Mohr Coulomb 屈服准则及其应用[J].浙江大学学报(工学版) ,2005, 39(2):253-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700