用户名: 密码: 验证码:
磁力机械多场耦合及多学科优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁力机械的工作过程涉及到机械学、电磁学、材料学等多个学科,其内部普遍存在着电磁场、温度场、运动场等多个物理场,场内及场间存在着相互制约关系和耦联作用,它们决定了各子系统物理参数的变化关系和工作可靠性。磁力机械的分析研究与设计优化必须考虑这些耦合关系。论文系统地研究了磁力机械中存在的多场耦合及分析方法,并引入了考虑多场耦合的多学科优化设计方法,在一定程度上完善了磁力机械设计体系,并为求解类似的机电耦合系统提供了解决方案。
     论文从课题的研究背景出发,对磁力机械、动态特性研究、多场耦合及多学科优化问题的概念、特点、国内外研究现状进行了归纳总结,指出了现有设计分析方法的不足,分析了考虑多场耦合的多学科优化设计的重要意义。列举了磁力机械分析中的物理场数学模型,提出了通用的场描述数学模型,并讨论了场量方程的耦合矩阵形式,为全文的研究奠定了基础。
     论文在对多种局部耦合问题分类分析的基础上,建立了磁力机械的全局耦合分析模型,讨论了多场耦合的求解思路。系统性地研究了多场耦合问题的求解方法,包括场分解方法、耦合策略、耦合算法等。通过对各子问题求解过程的共性分析,明确了可进行表达、传递的数据信息和方法,并提出使用语义描述、数据传递及知识工程建立多场耦合分析系统的方法。为分析动态特性、热效应等具体的多场耦合问题提供了方法基础。
     对于磁力机械设计中的动态特性分析问题,论文在通用模型的基础上给出了适应不同情况的数学模型。针对微分方程,提出了基于交替迭代策略的间接耦合方法和基于全耦合策略的将耦合矩阵方程进行时空离散的直接耦合方法,求解了电-磁-运动的动力学耦合场问题,计算了动态设计参数,得到了动态特性曲线。对于磁力机械中电磁及机械运动共同作用下的温度场问题,论文详细分析了随时间变化的热源、热边界,热系数、传热机制等,并将机械损耗产生的热量纳入分析热源中。论述了磁力机械温度场与电磁场、机械运动的耦合关系,使用时步迭代方法解决了电磁-机械-热耦合问题,通过摩擦式电磁离合器主动组件的三维温度场分析实例详细说明了考虑耦合的温度场有限元分析方法和过程。
     将考虑多场耦合的多学科设计方法引入到磁力机械的优化设计中,避免了复杂系统计算时间过长、逻辑混乱的问题,以及传统串行算法割裂学科间耦合关系难以求解全局最优解的问题。为了解决CO算法不容易收敛的问题,提出了CO与SAND方法结合的二级多学科优化算法,给出了算法架构和计算流程。计算证明该方法有效地减少了子系统优化迭代次数,增强了算法的收敛性能。由于学科分析采用计算机模拟,计算时间长,因此优化中采用近似技术减少了繁琐的模拟计算,节省了时间和计算资源。最后用摩擦式电磁离合器的优化实例详细说明多学科优化设计方法的分析过程,并计算得到了优化结果,达到了多个优化目标。
The analysis and optimization design of magnetic mechanism involve several disciplines, such as mechanics, electromagnetism, material science. There also include several physical fields, such as electromagnetic field, thermal field, and dynamic field. The fields influence and affect each other, the relations among them decide the changing relations of physical parameters in subsystem, which should be considered in the analysis and optimation design of magnetic mechanism. The paper introduces the modeling and solving methods of multi-field coupling detailedly. The multi-discipline optimization design method considering multi-field coupling is introduced, which improves the design system of magnetic mechanism and provides a solution to solve the similar problems of mechanic/electrical coupling systems.
     Based on the research background of the project, the concepts, characterists and research current conditions of magnetic mechanology, dynamic characteristic, multi-field coupling, multi-discipline optimization are discussed, the disadvantages of current methods are pointed out, as well as the necessity of multi-discipline optimization design with multi-discipline coupling. Then the mathematic models of the fields in the coupling problem and the coupling matrix are introduced, which forms found for the research of the whole paper.
     Based on the classification and analysis of some local coupling problems, the global coupling design model is built. The solving method of multi-field coupling problems is researched systemically, including field partition method, coupling strategy, coupling algorithms, etc. The common features of the solving process of sub-problems are analyzed; the information which can be represented and transferred is clarified as well as their methods. A method to build a multi-field coupling system with semantics presentation, data transfer and knowledge engineering is proposed. All the above provide a method foundation for the specific analysis of multi-field coupling problems, such as dynamic characteristics analysis, thermal effect analysis.
     Referring to the analysis of dynamic characteristics, the mathematic models are given for the different conditions based on the common models. A sequence coupling method based on iteration strategy and a direct coupling method based on fully coupling strategy to discrete time and space dimensions are proposed to solve the electrical-magnetic-motive dynamic coupling problem, the dynamic design parameters and dynamic characteristic graphs are given. Referring to the analysis of thermal field influencing by both electromagnetic effects and mechanical moving effects, the time-changing heat sources and boundary conditions are carefully analyzed, as well as the thermal coefficients and heat transfer mechanism. The mechanic loss is pointed out, and the heat from it is added into the heat source. The coupling relation of thermal field and electromagnetic field, mechnial motion in magnetic mechanism is discussed; the electromagnetic– mechanic- thermal field is solved by time step iteration method. An example of 3D thermal analysis of the active part of frictional electromagnetic clutch is performed to illustrate the process and the feasibility of the FEM method and solving process considering coupling.
     The multi-discipline optimization design considering multi-field coupling is introduced in the design of magnetic mechanism, which solves the problem of the long calculation time, poor logic, and the difficulty to get the global optimal solution caused by the traditional sequential method cutting the coupling relations of disciplines. To deal with slow convergence or no convergence of CO, a devised CO and SAND integrating method is proposed in this paper, the architecture and process are given. The result shows that the optimization method proposed is useful to decrease the calculating time and increase the convergence ability of CO. Also, using the approximation models instead of complicated simulation models saves a lot of calculate time and resources. An example of optimization of frictional electromagnetic clutch is given to illustrate the analysis process of MDO, the optimization results are got and several objectives are accomplished.
引文
[1]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥工业大学,2006.
    [2]田杰.稀土永磁齿轮的理论与实验研究[D].合肥:合肥工业大学博士学位论文,1999
    [3]杨红,赵韩.稀土永磁弹簧的力学特性研究[J].农业机械学报,2003(1):111~113
    [4]杨志轶.飞轮电池储能关键技术研究[D].合肥:合肥工业大学博士学位论文,2002
    [5]赵韩,杨志轶.飞轮储能装置设计初探[J].太阳能学报,2002,23(4):493~497
    [6]赵韩,王勇.飞轮电池用轴向推力轴承的结构参数设计研究[J].中国机械工程,2003,10(增刊):19~22
    [7]赵韩,王勇.径向电磁轴承结构设计与分析[J].农业机械学报,2005,7:122~125
    [8] Zhao Han.Two-Dimensional Static Magnetic Field Analysis Using the Boundary Point Method[A].The Fourth International Conference on Electromagnetic Field Problems and Applications(ICEF 2000)[C], Tianjin, China, 2000.9
    [9]赵韩,杨志轶.永磁齿轮传动力矩三维分析与计算[J].农业机械学报,2001,11,32(6):95~98
    [10]赵韩,王勇,李露.材料线性特性对铁心磁路磁场计算的影响分析[J].磁性材料与器件,2005,6:24~26
    [11]赵韩,李露,王勇,余伟,曹亮.电磁推力轴承结构分析[J].机床与液压,2006,5:68~70
    [12]赵韩,李露,王勇.电磁轴承中磁场时间和空间变化对涡流的影响[J].农业机械学报,2007.6:129~133
    [13]田金铭.电磁离合器设计与应用[M].江苏:江苏科学技术出版社,1982.3
    [14] http://www.keb.de/en/products/magnet-technology/clutches-and-brakes.html[OL]
    [15] http://www.dfls.com.cn/ct.htm[OL]
    [16]赵韩,王勇,田杰.磁力机械研究综述[J].机械工程学报,2003,12:31~36
    [17]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:.机械工业出版社,2005.
    [18]姚立海,章锦腾.电磁场数值计算的无网格算法[J].大电机技术,2003.06.
    [19]王长清.现代计算电磁学基础[M].北京:北京大学出版社,2006
    [20]沈钺,虞烈.电磁轴承及控制系统的设计原理及参数选择[J].轴承,2001,9:13~16
    [21] R. L. Stoll, The Analysis of Eddy Currents. Oxford[M].England:Clarendon Press, 1974.
    [22] J. Lammeranerand M. Stafl.Eddy Currents[M]. London, England:lliffe Books, 1964.
    [23] R. W. Buntenbach.Improved circuit models for inductors wound on dissipative magnetic cores[J]. presented at the 2nd Asilomar Conf. on Circuits and Systems, Pacific Grove, CA, 1968
    [24] P. J. Lawrenson and T. J. E. Miller.Transient solution of the diffusion equation by discrete Fourier transformation. in Finite Elements in Electrical and Magnetic Field Problems[M], M. V. Chari and P. P. Silvester, Eds. New York, NY: Wiley, 1980.
    [25] K. R. Shao and K. D. Zhou.Transient response in Slot embedded conductor for voltage source solved by boundary element method[J].IEEE Trans. Magn.,1985, MAG-21,6(11): 2257~2260.
    [26] P. P. Silvester.Eddy current modes in linear solid-iron bars[J].Proc. lnst. Elec. Eng., 1965,112(8):1589~1594
    [27] M. E. F. Kasarda et al., Design of a high speed rotating loss test rig for radial magnetic bearings [J]. Proceedings of the 4th International Symposium on Magnetic Bearings, Zurich, 1994.
    [28] L. S. Stephens, Design and coontrol of active magnetic bearings for a high speed machining spindle[D], doctoral dissertation, University of Virginia, 1995.
    [29] Norio Takahashi, Toshiomi Sakura, Zhiguang Cheng. Nonlinear Analysis of Eddy Current and Hysteresis Losses of 3-D Stray Field Loss Model (Problem 21)[J]. IEEE TRANSACTIONS ON MAGNETICS, 2001.37,1(9):3672~3675
    [30] Oriano Bottauscio, Mario Chiampi, Alessandra Manzin. Advanced Model for Dynamic Analysis of Electromechanical Devices[J]. IEEE TRANSACTIONS ON MAGNETICS,2005,41(1):36~46
    [31] E. K.C.Chan, S.Williamson. Factors Influencing The Need For Upwinding In Twodimensional Field [J].IEEE Trans. on Mag.,1992,28(3):1611~1614
    [32] M.Ito,T.Takahashi, M.Odamura. Up-wind Finite Element Solution of Travelling Magnetic Field Problems [J]. IEEE Trans. on Mag., Vol.28, No.2, March 1992:1605~1610
    [33]章跃进.旋转电机磁场计算数值解析结合法研究[D].上海:上海大学,2005.
    [34]付文智,李明哲,崔相吉.准恒力电磁铁的吸力特性研究[J].机械工程学报.2003,39(7):119~122
    [35]张惠娟.运动电磁系统涡流场有限元研究[D].天津:河北工业大学,2000.5.
    [36]费鸿俊,张冠生.电磁机构动态分析与计算[M].北京:机械工业出版社,1993.10:4~10.
    [37]许志红,张培铭.基于神经网络的智能交流接触器分断过程设计模型的建立[J].电工电能新技术,2005.10:22~25
    [38]孙园,许志红.基于ANSYS软件的智能交流接触器电磁系统设计[J].低压电器,2006.11:3~8
    [39]许志红,张培铭.智能交流接触器全过程动态优化设计[J].中国电机工程学报,2005.8:468~472
    [40]许志红,张培铭.基于蚁群算法的智能交流接触器优化设计[J].电工电能新技术,2005.7:9~12
    [41]陈丽辉,张培铭.基于遗传算法的智能直流接触器优化设计[J].低压电器,2004.11:3~6
    [42]陈丽安,张培铭,缪希仁.基于免疫遗传算法的智能化电磁电器全局优化设计[J].电工电能新技术,2003.1:17~20
    [43]缪希仁,张培铭.多目标动态优化高级遗传算法及其在智能化电磁电器设计中的应用研究[J].电工技术学报,1999.8:27~30
    [44]罗恒廉,李智华,费鸿俊.模拟退火法在电磁系统参数优化设计中的应用[J].电工技术杂志,1999.5:34~36
    [45]林莘著.永磁机构与真空断路器[M].北京:机械工业出版社.2002.5.
    [46]吕延军,刘恒,虞烈.非线性径向主动电磁轴承-转子系统的耦合动力学特性及稳定性[J].机械强度,2005,27(3):301~306
    [47]孟杰,陈小安,合烨.高速电主轴电动机—主轴系统的机电耦合动力学建模[J].机械工程学报, 2007,(12).
    [48]李海滨,冯国泰.叶轮机械中的多场耦合分析技术[J].航空发动机, 2002,(02).
    [49]高行山,赵亚溥,吕胜利,邓子辰.微机电系统多场耦合仿真分析[J].动力学与控制学报, 2004,(01).
    [50]孙道恒,黄元庆,郑炜,朱立秒,李文望. MEMS系统级仿真建模理论与方法的研究[J].厦门大学学报(自然科学版), 2001,(02).
    [51]林利红,陈小安,周超群,周伟.精密传动系统的机电耦合建模及仿真分析[J].重庆大学学报(自然科学版), 2007,(11).
    [52]冯峥宇.桥式起重机运行系统非平稳状态机电耦合仿真研究[D].武汉科技大学, 2007
    [53]王伟.大型星载薄膜天线结构—热—电磁耦合问题分析[D].西安电子科技大学, 2007.
    [54] Jean-Philippe Parmantier. Numerical Coupling Models for Complex Systems and Results[J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. 2004,46,3(8):359~367
    [55]钟掘,陈先霖.复杂机电系统耦合与解耦设计——现代机电系统设计理论的探讨[J].中国机械工程, 1999,(09).
    [56]钟掘等.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社.2007.07.
    [57]贺尚红,段吉安,钟掘.机电系统通用建模矩阵法[J].中南工业大学学报(自然科学版),2002,(05).
    [58]王艾伦.复杂机电系统(键合图—模态分析)方法研究[D].中南大学,2004.
    [59]王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究[J].机械工程学报,2003,(04).
    [60]冯国泰,黄家骅,李海滨,王松涛,顾中华.涡轮发动机三维多场耦合数值仿真的数学模型[J].上海理工大学学报,2001,(03).
    [61]宋少云,李世其.耦合场协同仿真中节点载荷插值的混合法[J].计算机仿真,2006,(08).
    [62] Mark Cross, Avril Slone, FENET - MULTI-PHYSICS ANALYSIS (MPA) THEME: A REVIEW OF COMMERCIALMPA CAPABILITY IN 2005 [Z].
    [63] Sang Hun Lee. A CAD–CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques[J]. Computer-Aided Design, 2005,(37):941~955
    [64] G. La Rocca, M.J.L. van Tooren. Enabling distributed multi-disciplinary design of complex products: a knowledge based engineering approach[J]. Design Research,2007,3(5):333~351
    [65] Cecil G Armstrong. XML/STEP/OMG Technologies to Facilitate Generic Coupling of Different Analysis Codes[C]. Technology Workshop.Copenhagen, Denmark.2002,2,27th-28th.
    [66] J. Michopoulos, P. Tsompanopoulou. DESIGN ARCHITECTURE OF A DATA DRIVEN ENVIRONMENT FOR MULTIPHYSICS APPLICATIONS[C]. Proceedings of DETC’03. ASME 2003 Design Engineering TechnicalConferences and Computers and Information in Engineering Conference. Chicago, Illinois USA, September 2-6, 2003.
    [67] Jian Guo, Osvaldo.M.Querin. THE DESIGN OF A COMPUTATIONAL FRAMEWORK FOR MULTIPHYSICS SIMULATION AND OPTIMIZATION OF MEMS[C]. Proceedings of ESDA08. The 9th Biennial ASME Conference on Engineering Systems Design and Analysis. July 7-9, 2008, Haifa, Israel
    [68] PHYSICA. documentation http://www.gre.ac.uk/~physica/documentation.htm[OL]
    [69] FENET. www.fe-net.org[OL]
    [70] http://www.multiphysics.org/[OL]
    [71] SOBIESKI J S. On the sensitivity of complex, internally coupled systems[J].AIAA Journal,1990, 28(1):153~16O.
    [72] BRAUN R D,KR0O I M.Development and application of the collaborative optimization architecture in a multidisciplinary design environment[A].International Congress on Industrial and Applied Mathematics[C].Reston,VA,USA:AIAA,1995:2O~39.
    [73] TAPPETA R V,RENAUD J E.Multi-objective collaborative optimization[J].ASME Journal of Mechanical Design,1997,119(3):403~411.
    [74] KhatibW, Fleming P J . Evolutionary computing app lied to MDO test problems [A]. In: Ramana P, Grandhi V, Col L, eds. 7 th A IAA /USAF /NASA / ISSMO Symposium on Multidisciplinary Analysis and Optimization [C]. Reston: AIAA, 1998:1980~1989.
    [75] SOBIESKI J S . Multi-disciplinary design optimization: an Emerging,new Engineering discipline[A]. HERSK0VITS J. Advances in Structural Optimization . Kluwer Academic EC.Netherlands:Kluwer Academic Publisher,1995:483~496.
    [76] TAYLOR E R.Evaluation of multidisciplinary design optimization techniques as applied to spacecraft design[A].Proceedings of Aerospace Conference[C]. USA:IEEE,2000,1:371~384.
    [77]余熊庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报,2000,21(1):1~6.
    [78]陈琪锋,戴金海.多目标的分布式协同进化MDO算法[J].国防科技大学学报,2002.24(4):12~15.
    [79] He Lin-shu,W ang Shu he,Ren Yan-rong,et a1. An Approach For Rapid Conceptual DESIGN Of Spacecraft Component [C].Conference paper on the 6th Asia Pacific Conference on Multilateral Cooperation in Space Technology and Applications(APC-MCSTA).Beijing,2001.9:84~89.
    [80]吴宝贵,黄洪钟,原薇.汽车设计的多学科设计优化方法[J].应用科学学报,2005.7(23):420~423.
    [81]王婧超,李立州,岳珠峰.涡轮叶片MDO实现的进展[J].科学技术与工程,2005.4(5):457~459.
    [82]俞必强,翁海珊,邱丽芳.微机电系统多学科设计优化[J].机械工程学报,2006.5(42):65~68.
    [83]龚春林.多学科设计优化技术研究[D].西安:西北工业大学硕士论文,2004.4.
    [84]林锉云,董加礼编著.多目标优化的方法与理论[M].长春:吉林教育出版社,1992.8
    [85]傅晓锦.盘式制动器多目标优化的神经网络方法[J].现代机械.2000.2:6~10.
    [86]缪希仁,张培铭.多目标动态优化高级遗传算法及其在智能化电磁电器设计中的应用研究[J].电工技术学报.1999.8:27~30.
    [87]颜力.飞行器多学科设计优化若干关键技术的研究与应用[D].国防科学技术大学,2006.
    [88]刘麟.基于粒子群算法的多目标函数优化问题研究[D].武汉理工大学, 2005.
    [89]王鲁.基于遗传算法的多目标优化算法研究[D].武汉理工大学, 2006.
    [90] Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization[J]. Civil Engineering Systems, 1998,15(3):207~243.
    [91]吴进波.免疫算法和模拟退火算法求解TSP问题的研究[D].武汉理工大学,2007
    [1]电磁场. http://zh.wikipedia.org/wiki/[OL]
    [2]颜威利,杨庆新,汪友华等.电气工程电磁场数值分析[M].北京:机械工业出版社,2005.9.
    [3]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001.11
    [4]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥工业大学,2006.
    [5]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社,2000.5.
    [6] Comsol Multiphysics 3.5 user manual[Z]
    [7]曾余庚,徐国华,宋国乡.电磁场有限单元法[M].北京:科学出版社.1982.6
    [8]梁振光,唐任远.大型变压器三维瞬态涡流场场路耦合模型[J].电工技术学报,2003.5 (18)
    [9]林莘.永磁机构与真空断路器[M].北京:机械工业出版社,2003.4.
    [10] ANSYS Release 9.0 Documentation/Verification Manual[DB/OL] Chap3参考文献
    [1] M. van der Giet, C. Schlensok, B. Schmuelling, K. Hameyer.Com-parison of 2D and 3D Coupled Electromagnetic and Structure-Dynamic Simulation of Electrical Machines[J].Proceedings of the 16th Conference on the Computation of Electromagnetic Fields,2007,6,24th-28th: 373~374
    [2] Hrvoje Jasak. MULTI-PHYSICS SIMULATIONS IN CONTINUUM MECHANICS[J].5th International Congress of Croatian Society of Mechanics,2006,9:21~23
    [3] ANSYS Release 9.0 Documentation/Verification Manual[DB/OL]
    [4]高行山,赵亚溥,吕胜利,邓子辰.微机电系统多场耦合仿真分析[J].动力学与控制学报, 2004,(01).
    [5]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,2002,10,Vol33(5):522~525
    [6]周顺荣.电磁场与机电能量转换[M].上海:上海交通大学出版社,2006.1.
    [7] John G. Michopoulos, Charbel Farhat, Jacob Fish. Modeling and Simulation of Multiphysics Systems[J].Journal of Computing and Information Science in Engineering.2005,5(9):198~214
    [8] Felippa, C. A. and T. L. Geers, Partitioned analysis of coupled mechanical systems[J],Engrg.Comput.,1988.5: 123~133
    [9] Mark Cross, Avril Slone. Characterising closely coupled MULTI-PHYSICS simulation[R]. FENET THEMATIC NETWORK, 2002.9
    [10] Antti Villberg. Design Challenges of an Ontology-Based Modelling and Simulation Environment[D]. Espoo,2007,10,3rd
    [11] Rudy Hirschheim, Heinz K. Klein, Kalle Lyytinen. Information Systems Development and Data Modelling: Conceptual and Philosophical Foundations [J]. Cambridge University Press, 1995.
    [12] STEP APPLICATION HANDBOOK ISO 10303 VERSION 3. http://www.tc184-sc4.org[OL]
    [13] JJ Shah, M Mantyla. Parametric and Feature-Based CAD/CAM [M]. New York:John Wiley & Sons. 1995
    [14] Lee S H. A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques[J]. Computer-Aided Design, 2005,37(3): 941~955.
    [15] Jochen Boy, Phil Rosche. Recommended Practices for Material Identification and Density[OL]. CAx Implementor Forum. 2005,7,12th.
    [16] Keith Hunten, P.E. PPT:AP209 ARM Overview [Z]
    [17] AP209 Edition 2 Overview [Z]. Rev 1.2 . 2008,9.
    [18] Tomiyama Lab. The University of Tokyo Masaharu YOSHIOKA National Center for Science Information systems. Knowledge Intensive Engineering Framework: KIEF Manual. 2000,1,12.
    [19] Jian Guo, Osvaldo.M.Querin. THE DESIGN OF A COMPUTATIONAL FRAMEWORK FOR MULTIPHYSICS SIMULATION AND OPTIMIZATION OF MEMS[C]. Proceedings of ESDA08. The 9th Biennial ASME Conference on Engineering Systems Design and Analysis. 2008,7,7th-9th, Haifa,Israel
    [20] Toàn Nguyên, Jean-Antoine Désidéri. Cooperative Design Workflows for Multiphysics Applications[C]. In: CDVE, Springer,2008(5220):281~285.
    [21] Xiangzhong Feng. Ship Collaborative Design Based on Multiagent and Ontology[J]. Cooperative Design, Visualization, and Engineering. 2008: 249~252
    [22] Brian Lees, Cherif Branki, Iain Aird b. A framework for distributed agent-based engineering design support[J].Automation in Construction.2001,10:631~637
    [1] http://www.magnemotion.com/index.shtml[OL]
    [2] www.thesciencefair.com [OL]
    [3] http://machinedesign.com/article/magnetic-bearings-come-of-age-0916 [OL]
    [4]费鸿俊,张冠生.电磁机构动态分析与计算[M].北京:机械工业出版社,1993.10.
    [5]张惠娟.运动电磁系统涡流场有限元研究[D].天津:河北工业大学,2000.5.
    [6] B.Lequesne.Dynamic model of solenoids under impact excitation,including motion and eddycurrents[J].IEEE Trans. Mag.,Vo1.26,1990: 1107~1116
    [7] Y.Kawase,Y.Ohdachi,Dynamic analysis of automotive solenoid valve using finite element method[J].IEEE Trans. Mag.,Vo1.27,1991: 3939~3942
    [8] E.Vassent, G. Meunier, AFoggia and G.Reyne. Simulation of induction machine operation using a step by step mite element method coupled with circuits and mechanical equations[J].IEEE Trans. Mag., Vol.27, 1991: 5232~5234
    [9] E.Li and P.M.McEwq.Analysis of circuit breaker solenoid actuator using the decoupled CAD-FE-integral technique[J].IEEE Trans. Mag., Vo1.28,1992: 1279~1282
    [10]王海峰,徐建源.直接耦合法对非线性电磁系统动态特性的计算与研究[J].华北电力大学学报,2002.(5):210~213
    [11]胡建伟,汤怀民.微分方程数值方法[M].北京:科学出版社,1999,1:138~143
    [12] Z.Ren , A.Razek.A Strong Coupled Model for Analysing Dynamic Behaviours of Non-linear Electromechanical Systems[J].IEEE TRANSACTIONS ON MAGNETICS, VOL. 30, NO. 5, SEPTEMBER 1994:3252~3255
    [13]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社2000.4:166~169
    [14]单智杰.灯泡贯流式水电站厂房三维静动力分析[OL]. http://co.163.com/forum/content/1793_459025_1.htm
    [15]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:.机械工业出版社,2005.
    [16] FLUX中文帮助[OL]
    [17]杨红,赵韩.快速电磁离合器力矩特性的有限元分析[J].轻工机械.2004.1:74~76
    [18]赵克中,徐成海,窦淑萍等.磁力驱动器涡流损失的研究[J].化工机械,2003,36(6):326~328
    [19]郑士泉著.电气电磁装置非线性瞬态过程的分析研究[D].西安:西安交通大学博士论文,1989.
    [20] KEB公司电磁离合器与制动器产品说明书[OL]
    [21]张东,江建中,施进浩.车用轮毂式永磁无刷直流电动机的设计[J].微特电机.2005.6:5~8
    [22]王鑫,李伟力,程树康.实心转子永磁同步电动机起动性能[J].电机与控制学报.2007.7:349~353
    [23]王曙鸿,赵录怀,邱捷等,单一方程描述理想开关特性的电机场路耦合动态仿真[J].中国电机工程学报.2004.6:141~146
    [24] E. Vassent, G. Meunier, A. Foggia, and G. Reyne, Simulation of induction machine operation using a step by step finite element method coupled with circuits and mechanical equations[J]. IEEE Trans. Magn., 1991,11(27): 5232~5234
    [25]刘瑞芳,严登俊,胡敏强.永磁无刷直流电动机场路耦合运动时步有限元分析[J].2007.4:59~64
    [26] Stoll, R. L. The Analysis Of Eddy Currents[M]. Oxford University Press, 1974
    [27] N. Allen, D.Rodger. Description of TEAM Workshop Problem 24: Nonlinear Time-Transient Rotational Test Rig[OL].
    [28]王勇,赵韩.转子支承系统中的向心电磁轴承结构设计[J].轴承.2004.8:1~4
    [1]唐兴伦,范群波,张朝晖等.ANSYS工程应用教程—热与电磁学篇[M].北京:中国铁道出版社,2003.1.
    [2]王勇.场路结合并考虑耦合的磁力机械分析[D].合肥:合肥工业大学博士论文,2006.5:61~67
    [3]张冠生.电器学[M].北京:机械工业出版社,1980,12:186~188
    [4]颜威利,杨庆新,汪友华等.电气工程电磁场数值分析[M].北京:机械工业出版社,2005.9.
    [5]赵韩,李露,王勇.有限元分析涡流效应[J].现代制造工程,2006.6.4~6
    [6] B.布尚[英].摩擦学导论[M].北京:机械工业出版社,2007.1.
    [7]田金铭.电磁离合器设计与应用[M].江苏:江苏科学技术出版社,1982.3:126
    [8]张明慧.大型电机温度场的网络拓扑法分析计算及前后处理[D].西安:西安交通大学硕士学位论文,2003
    [9]岳丹婷,金以铨.工程热力学和传热学[M].大连:大连海事大学出版社,2002.1.
    [10]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京:机械工业出版社,1998
    [11]袁伟.鼓式制动器温升计算模型及其应用研究[D].西安:长安大学硕士论文,2003.
    [12]李亮,宋健,李永,郭振宇.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报,2005,17(12):2869~2877
    [13]王峰.交流接触器磁系统的稳态热分析[J].低压电器,2007.1:10~12
    [14]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001.11
    [15]曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2005.1:80~83
    [16]钱国新,孙文玉,高俊峰.摩擦式电磁离合器(制动器)结合功的测量及可靠寿命的试验方法[J].机床电器,1996.6:12~16.
    [17] A. J. Day, M. Tirovic, T. P. Newcomb.Thermal effects and pressure distributions in brakes [J]. J.of Auromobile Engineering, 1991,Part D:199~205
    [18]刘志军.交流鼠笼式异步电机谐波电磁场及温度场分析与研究[C].ANSYS用户年会论文,2006.
    [1]俞必强,翁海珊,邱丽芳.微机电系统多学科设计优化的研究[A].北京:全国博士生学术论坛论文集. 2005
    [2] Giesing, J., Barthelemy, J.-F. A Summary of Industry MDO Applications and Needs[J].AIAA Paper. 1998,4737(9).
    [3]龚春林.多学科设计优化技术研究[D].西安:西北工业大学硕士论文,2004.06
    [4]吴宝贵,黄洪钟,原薇.汽车设计的多学科设计优化方法[J].应用科学学报,2005.04(23):420~423.
    [5]陈魁著.试验设计与分析[M].北京:清华大学出版社,2005.7.
    [6]刘英,王凤歧.产品稳健设计响应面模型法的试验设计[J].机械设计与制造,2005,7(7):34~36.
    [7]钟毅芳,陈柏鸿,王周宏编著.多学科综合优化设计原理与方法[M].武汉:华中科技大学出版社,2006.4.
    [8]王群京,鲍晓华,钱喆,倪有源.基于遗传神经网络的漏磁非线性回归分析[J].合肥工业大学学报(自然科学版),2005.28(9):105
    [9]鲍晓华,王群京,倪有源,李争.基于支持向量机的汽车爪极发电机高效电磁建模分析[J].汽车工程,2006.02:186~189
    [10]穆雪峰,姚卫星,余雄庆,刘克龙,薛飞.多学科设计优化中常用代理模型的研究[J].计算力学学报, 2005.10:608~612
    [11]王凌.智能优化算法及其应用[M].清华大学出版社,2001.10
    [12] Isight Help[DB/OL]
    [13]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].哈尔滨:国防科学技术大学博士论文,2004.4.
    [14]卫田,范文慧,高丽,王威.多学科设计优化的数值算法及其组合算法比较的研究[J].高技术通讯.2006.l6(12)
    [15]余雄庆,丁运亮.多学科设计优化及其在飞行器设计中应用[J].航空学报,2000,21(1):1~6.
    [16] KhatibW, Fleming P J . Evolutionary computing applied to MDO test problems [A].In: Ramana P, GrandhiV, ColL, ds.7 th AIAA /USAF /NASA / ISSMO Symposium on Multidisciplinary Analysis and Optimization [C].Reston: AIAA,1998.1980~1989.
    [17]谷良贤,龚春林.多学科设计优化方法比较[J].弹箭与制导学报,2005.1(25):60~62.
    [18]费鸿俊,张冠生.电磁机构动态分析与计算[M].北京:机械工业出版社,1993.10:51.
    [19]李晓斌,金振中,张为华.点火瞬态过程仿真模型参数辨识[J].固体火箭技术.2007.30(4):287~291
    [20]穆雪峰,姚卫星,余雄庆.多学科设计优化中常用代理模型的研究[J].计算力学.2005, 22(5):608~612
    [21]翟旭平.基于遗传算法的异步电机多目标优化设计的研究[D].南京:东南大学硕士论文,2000.3:61~63
    [22]陆俭国,苏秀苹.电器电磁系统可靠性优化设计理论与应用[M].北京:机械工业出版社,2003.2:64~83
    [23]林锉云,董加礼编著.多目标优化的方法与理论[M].长春:吉林教育出版社,1992.8:55~167
    [24]郭卫,杨勇强,赵栓峰.基于模糊理论的圆盘式摩擦离合器多目标优化设计[J].机械强度,2006.28(5):780~784
    [25]金培玉,张耀荣,于惠力.电磁摩擦离合器的参数分析及优化设计[J].哈尔滨科学技术大学学报,1994.9:45~50
    [26]田金铭.电磁离合器设计与应用[M].江苏:江苏科学技术出版社,1982.3:59
    [27]吴先宇,罗世彬,陈小前等.基于响应面模型的二维高超声速进气道优化[J].宇航学报.2007.5:1127~1132
    [28] Kroo I.,Manning V. Collaborative optimization:status and directions[R]. AIAA-2000-4721, 2000.[29] Victorio E. Sonzogni, Angel Queizan. Simultaneous analysis and design of large structures by domain decomposition[C]. 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro, 30 May - 03 June 2005, Brazil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700