用户名: 密码: 验证码:
水母毒素的分离纯化及蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水母(Jellyfish)分布广、种类多、资源丰富。水母毒素主要分布于触手的刺丝囊细胞中,是一类结构新颖且具有多种生物活性的蛋白。但是,由于水母种类的不同,其毒素的结构、生物活性也存在一定的差异。本论文以近年来经常在我国近海区域大规模出现的霞水母(Cyanea sp.)和沙蜇(Stomolophus meleagris)为研究对象,研究水母毒素的提取制备方法、生物活性、分离纯化及其蛋白质组学分析等,主要结果如下:
     1.对水母毒素的提取制备方法进行了研究。以霞水母为研究对象,首先制备水母的刺丝囊细胞,然后采用组织研磨器Mini-beadbeater破碎刺丝囊细胞提取毒素,并且研究了提取过程中蛋白酶抑制剂对霞水母毒素溶血活性的影响,结果发现1mmol/LEDTA和4μg/mL PepstantinA能够有效地保护霞水母毒素的溶血活性。
     2.研究了水母毒素的溶血活性,并经纯化得到具有溶血活性的蛋白。霞水母和沙蜇毒素对鸡血红细胞均具有明显的溶血活性,其半溶血率HU50分别为10和10.5μg/mL;理化因素对溶血活性的影响中,温度的影响最敏感,在37℃时溶血活性最强,但是当温度超过45℃时,其溶血活性明显降低。采用离子交换层析(DEAE Sepharose Fast Flow)和凝胶过滤层析(Superdex75/200)等分离纯化方法,分别从霞水母和沙蜇毒素中分离到具有溶血活性蛋白CnPH和SmTX,其对鸡血红细胞的半溶血率HU50分别为5和70μg/mL。
     3.研究了水母毒素的体外抗氧化活性,并对沙蜇毒素的抗氧化活性蛋白进行分离纯化。结果表明,霞水母和沙蜇毒素对羟自由基(·OH)的半清除率EC50分别为200和500μg/mL,对超氧阴离子(O2-·)的半清除率EC50分别约为5.5和75μg/mL。利用硫酸铵分级沉淀和凝胶过滤(Superdex75)两种分离方法,从沙蜇毒素中分离到分子量为90kDa具有抗氧化活性的蛋白SmP90,该蛋白具有明显的清除超氧阴离子自由基(O2-·)的能力,其半清除率EC50约为16μg/mL,并且测定其N末端序列为:Asn-Leu-Asp-Thr-Pro-Tyr-Cys-Phe-Tyr-Ser-Gly-Asp-Tyr-Gly-Gly。
     4.以沙蜇毒素蛋白为载体,利用Shotgun蛋白质组学方法首次对水母毒素的蛋白组成进行分析,共鉴定出181种蛋白。利用生物信息学方法将鉴定出来的蛋白质进行信息学分析,包括按照生物学进程、细胞组分及分子功能将其分别分为13、9和7类;并且从生物学通路里映射到33条相应的通路,在此基础上构建了基因网络来分析这些蛋白质可能存在的酶-酶、蛋白-蛋白以及基因表达之间的相互关系。
     通过本文的研究表明:霞水母和沙蜇毒素具有明显溶血活性和抗氧化活性,经过分离纯化,分别从霞水母和沙蜇毒素内分离到溶血活性蛋白CnPH和SmTX及抗氧化活性蛋白SmP90;并应用蛋白质组学方法分析了沙蜇刺丝囊细胞毒素蛋白,共鉴定出181种蛋白质并且利用生物信息学方法对其进行了统计分析。
Jellyfish is widely distributed in almost every ocean from the surface to the deepsea with plenty of species, which is a very rich kind of marine biological resource.Jellyfish venom, primarily in the nematocyst of the tentacles, is a complex mixturewith novel structure and many biological activities. However, the structure andactivities vary a lot among species. In present study, jellyfish Cyanea sp. andStomolophus meleagris, which have often bloomed in the coast of china in recentyears, were chosen as the research object to study the extraction, preparing,bioactivities, isolation and proteomic analysis of the jellyfish venom and the resultsare as follows:
     1. An extraction method of the jellyfish venom was studied by usingMini-Beadbeater to disrupt the nematocysts and extract the venom. Firstly, weprepared the nematocysts from the tentacles and then studied the protection of thevenom proteins by the protein inhibitors in the extraction. The results showed that1mmol/L-1EDTA and4μg/mL Pepstantin A could protect the biological activityvery well.
     2. Hemolytic activity and the influencing factors on the hemolytic activity of thejellyfish venom were studied, including temperature, pH, and metal ion and so on.In addition, we have also purified two hemolytic proteins from the venom. Theresults showed that both jellyfish venoms from Cyanea sp. and Stomolophusmeleagris were hemolytic to the chicken red blood cells with the HU50of10and10.5μg/mL. Temperature was shown to be one of the most sensitive factors to thehemolytic activity of the venom. The optimal temperature for the hemolyticactivity of the venom was37°C, however, it decreased seriously when the temperature increased higher than45°C. An anion-exchange chromatographycolumn packed with DEAE Sepharose Fast Flow and a size-exclusionchromatography column with Superdex75/200were used to purify the hemolyticproteins. Finally, we have isolated two hemolytic proteins, CnPH and SmTX, withthe HU50of5and70μg/mL, approximately.
     3. The in vitro antioxidant activities of jellyfish venom were investigated and theresults showed that both venom proteins from Cyanea sp. and Stomolophusmeleagris had antioxidant activity including hydroxyl radical scavenging activityand superoxide anion radical scavenging activity. The EC50of the hydroxyl radicalscavenging activity and superoxide anion radical scavenging activity of the venomproteins from Cyanea sp. and Stomolophus meleagris were200and500,5.5and75μg/mL. A90kDa antioxidant protein, which was named as SmP90, wassuccessfully isolated from the nematocyst venom proteins of jellyfishStomolophus meleagris by50%ammonium sulphate precipitation and gelfiltration chromatogram, superdex75. SmP90had superoxide anion radicalscavenging activity with the EC50of16μg/mL and the N-terminal amino acidssequences of Asn-Leu-Asp-Thr-Pro-Tyr-Cys-Phe-Tyr-Ser-Gly-Asp-Tyr-Gly-Gly.
     4. Shotgun proteomic analysis of the nematocyst proteins was carried out by nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) for the firsttime. A total of181proteins had been identified. Bioinformatic analysis was alsoapplied to better understand the identified proteins. In the Gene Ontology (GO)annotation, all the identified proteins were classified into13,9and7groupsaccording to biological process, cellular component and molecular function,respectively. Pathways analysis of the identified proteins was conducted with33corresponding pathways found. On the basis of pathway analysis, we constructedthe gene network to analyze the relationship of those genes each other, whichcontained enzyme-enzyme relation, protein-protein interaction and geneexpression interaction.In present study, the nematocyst venom from the jellyfish Cyanea sp. andStomolophus meleagris had hemolytic activity and antioxidant activity. Two hemolytic proteins, CnPH and SmTX, and an antioxidant protein, SmP90, wereisolated from the jellyfish venom proteins. Shotgun proteomic analysis of thenematocyst proteins was carried out to gain comprehensive insight into the proteincomponent and search some novel bioactive molecules. A total of181proteins hadbeen identified and the bioinformatic analysis those identified proteins were carriedout, which would be significant to the deeper study and application of the jellyfishvenom in the future.
引文
1.张芳,孙松,杨波.胶州湾水母类生态研究Ⅰ.种类组成与群落特征.海洋与湖沼,2005,36(6):507-517.
    2.洪惠馨.水母与海蜇.生物学通报,2002,37(2):13-16.
    3.马喜平,凡守军.水母类在海洋食物网中的作用.海洋科学,1998,(2):38-42.
    4. M ller H. Scyphomedusae as predators and food competitors of larvae fish.Meeresforschung,1980,28(2-3):90-100.
    5.江静波,陈俊民,陈作如,等.无脊椎动物学.第二版.北京:高等教育出版社,1982,97.
    6.仲霞铭,汤建华,刘培挺.霞水母(Cyanea nozakii Kishinouye)爆发与海洋生态之关联性探讨.现代渔业信息,2004,19(3):15-17.
    7.董靖,王彬,刘春洋.白色霞水母各发育阶段的形态.水产学报,2006,30(6):761-765.
    8.高尚武,洪惠馨,张士美.中国动物志无脊椎动物.第二十七卷.北京:科学出版社,2002,225-226.
    9.缪宇平.海洋生物毒素—一类重要的新药研究先导化合物.海洋渔业,2004,26(2):140-146
    10.邴晖,高炳淼,于海鹏,等.海洋生物毒素研究进展.海南大学学报自然科学版.2011,29(1):78-85.
    11.王艳,周培根,戚晓玉.海洋生物中毒素的研究进展.上海水产大学学报,2002,11(3):283-288.
    12.刘凤云,李赏,周艳荣,等.海洋生物毒素的药物开发前景.生物技术通讯,2002,13(5):392-394.
    13.张明辉.海洋生物活性物质的研究进展.水产科技情报,2007,34(5):201-205.
    14. Olivera B M. ω-conotoxin MVIIA: from marine snail venom to analgesic drug.Fusetani N (ed): Drugs from the sea,2000,74-85.
    15. Miljanich G P. Ziconotide: neuronal calcium channel blocker for treating severechronic pain. Curr Med Chem,2004,11(23):3029-3040.
    16. Barton M E, White H S. The effect of CGX-1007and CI-1041, Novel NMDAreceptor antagonists, on kinding acquisition and expression. Epilepsy Res,2004,59(1):1-12.
    17. Sanchez-rodriguez J, Torrens E, Segura-puertas L, et a1. Partial purification andcharacterization of a novel neurotoxin and three cytolysins from box jellyfish(Corybdea marsupialis) nematocyst venom. Arch Toxico1,2006,80(3):163-168.
    18. D Brinkman, J Burnell, Partial purification of cytolytic venom proteins from thebox jellyfish, Chironex fleckeri, Toxicon,2008,51(5):853-863.
    19. Chung J J, Ratnapala L A, Cooke I M, et al. Partial purification andcharacterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdeaalata) venom, Toxicon,2001,39(7):981-990.
    20. Luesch H, Harrigan G G, Goetz G, et al. The cyanobacterial origin of potentanticancer agents originally isolated from sea hares. Current Medicinal Chemistry,2002,9(20):1791-1806.
    21. Hong B C, Nimjie R Y, Yang C Y. The organocatalytic direct self-trimerization ofacrolein: application to the total synthesis of montiporyne F. Tetrahedron Lett.,2007,48(7):1121-1125.
    22. Luo S, Akondi K B, Zhang S D, Atypical α-conotoxin LtIA from Conus litteratustargets a novel microsite of the alpha3beta2nicotinic receptor. J Biol Chem,2010,285(16):12355-12366.
    23. Forns P, Piro J, Cuevas C, et al. Constrained derivatives of stylostatin1.1.synthesis and biological evaluation as potential anticancer agents. J Med Chem,2003,18,46(26):5825-5833.
    24.陈慧萍,吴文言,徐安龙.海洋肽类活性物质研究概括.海洋科学,2001,25(11):25-31.
    25.傅余强,顾谦群,方玉春,等.海洋生物中蛋白质、肽类毒素的研究新进展.中国海洋药物,2000,15(2):45-50.
    26.徐幼芬,施玉樑. ω-芋螺毒素及其在Ca2+通道研究中的应用.生物化学与生物物理进展,1993,20(1):1-5.
    27.戴秋云,陈天弥. ω-芋螺毒素研究进展.军事医学科学院院刊,1997,21(3):223-227.
    28.魏开华,钟明鼐.芋螺毒素研究进展.中国海洋药物,1996,15(2):30-37.
    29.王建华,黄培堂,黄翠芬.芋螺毒素分子生物学研究进展.中国海洋药物,1997,16(4):30-33
    30. Kem W R, Pennington M W, Norton R S. Perspectives in drug discovery anddesign. Journal of Computer-aided Molecular Design,1999,15(16):111-l29.
    31. Diochot S, Schweitz H, Beress L, et al. Sea anemone peptides with a specificblocking activity against the fast inactivating potassium channel Kv3.4, J BiolChem,1998,273(12):6744-6749.
    32. Yeung S Y, Thompson D, Wang Z, et al. Modulation of Kv3subfamily potassiumcurrents by the sea anemone toxin BDS:significance for CNS and biophysicalstudies, J Neurosci,2005,25(38):8735-8745.
    33. Chagot B, Escoubas P, Diochot S, et al. Solution structure of APETx2, a specificpeptide inhibitor of ASIC3protongated channels. Protein Sci,2005,14(8):2003-2010.
    34.朱晓鹏,长孙东亭,罗素兰,海葵神经毒素研究进展.生物技术通报,2007,4:45-50.
    35.王维荣,黄维达,王京端,等.青岛海葵强心活性多肽的分离纯化与氨基酸组成分析.复旦学报(自然科学版),1996,35(6):656-660.
    36.孙伟,梁东升.海葵Radianthus macrodactylus:皮群海葵毒素的一种新来源.中国海洋药物,1998,17(4):52-53.
    37.宋杰军,毛庆武.海洋生物毒素.北京:海洋出版社,1996,74-79,267-268,343,454-460.
    38.覃公平.中国毒蛇学.第三版.南宁:广西科学技术出版社,1999.
    39. Poncet J. The dolastatins, a family of promising antineoplastic agents. Curr PharmDes,1999,5(3):139-162.
    40. Mohammad R M, Varterasian M L, Almatchy V P, Successful treatment of humanchronic lymphocytic leukemia xenografts with combination biological agentsauristatin PE and bryostatin1. Clin Cancer Res,1998,4:1337-1343
    41. Kobayashi M. Natsume T. Tamaoki S, et al. Antitumor activity of TZT-1027, anovel dolastatin10derivative. Jpn J Cancer Res,1997,88(3):316-327.
    42. Kenneth L R. Antitumor compounds from tunicates. Med. Res. Rev.,2000,20(1):1-27.
    43.傅余强,顾谦群,方玉春,等.海洋生物中蛋白质、肽类毒素的研究新进展.中国海洋药物,2000,15(2):45-50.
    44. Ciminiello P, Dell’aversano C, Lacovo D, et al. Stereostructure and biologicalactivity of42-Hydroxy-palytoxin: A new palytoxin analogue from HawaiianPalythoa subspecies. Chem Res Toxico1,2009,22(11):1851-1859.
    45. Louzao M C, Ares I R, Cagide E. Marine toxins and the cytoskeleton: a new viewof palytoxin toxicity. FEBS Journal,2008,275(24):6067-6074.
    46. Lehane L, Lewis R J. Ciguatera:recent advances but the risk remains. FoodMicrobiology,2000,61(223):91-125.
    47. Takahashi M, Ohizumi Y, Yasumoto T. Maitoxin, a calcium activator candidate. JBiol Chem,1982(257):7287-7289.
    48.李春媛,周玉,张磊,等.西加毒素的研究概况.上海海洋大学学报,2009,18(3):365-371.
    49. Hungerford J M. Committee on natural toxins and food allergens marine andfreshwater toxins. AOAC Int,2005,88(1):299-3l3.
    50. Paz B, Daranas A H, Norte M, et al. Yessotoxin, a group of marine polyethertoxins: an overview. Mar Drugs,2008,6(2):73-102.
    51.邢鸣鸾,陈加平,王晓峰,等.大田软海绵酸对人胚胎羊膜细胞FL凋亡的影响.水生生物学报,2007,31(4):607-609.
    52. Murata K, Legrand A M, Ishibashi Y, et al. Structures and configurations ofciguatoxin from the moray eel Gymnothorax javanicus and its likely precursorform the dinoflagellate Gambierdiscus toxicus. J Am Chem Soc,1990,112(11):8929-8931.
    53. Satake M, Murata M, Yasumoto T, et al. The structure of CTX3C, a ciguatoxincongener isolated from cultured Gambierdiscus toxicus. Tetrahedron Lett,1993,34(12):1975-1978.
    54. Satake M, Ishihashi Y, Legrand A M, et al. Isolation and structure ofciguatoxin-4A, a new ciguatoxin precursor from cultures of dinoflagellateGambierdiscus toxicus and parrotfish Scarus gibbus. Biosci Biotechnol Biochem,1996,60(12):2103-2105.
    55. Arena P, Levin B, Fleming L E, et al. Neuropsychologic effects in chronicciguatera fish poisoning. Harmful Algae,2004,3(1):51-60.
    56.周玉,王哲.作用于钠通道受体的海产源神经毒素研究概况.动物医学进展,2005,26(5):36-40.
    57. Dechraoui M B, Wacksman J J, Ramsdell J S, et al. Species selective resistance ofcardiacmuscle voltage gated sodium channels: characterization of brevetoxin andciguatoxin binding sites in rats and fish. Toxicon,2006,48(6):702-7l2.
    58.孙伟,梁东升.海葵Radianthus macrodactylus:皮群海葵毒素的一种新来源.中国海洋药物,1998,17(4):52-53.
    59.傅宏征,张礼和,林文翰.黄海葵的化学成分研究.中国海洋药物,1998:17(3):7-11.
    60. Murata K, Naoki H, Iwashita T, et al. Structure of maitotoxin. J Am Chem Soc,1993,115(5):2060-2062.
    61. Murata K, Naoki H, Iwashita T, et al. Structure and partial stereochemicalassignments for maitotoxin, the most toxic and largest natural non biopolymer. JAm Chem Soc,1994,116(16):7098-7107.
    62. Satake M, Ishita S, Yasumoto T, et al. Structure confirmation of maitotoxin basedon complete13C NMR assignments and the three-dimensional PFGNOESY-HMQC spectrum. J Am Chem Soc,1995,117(26):7091-7020.
    63. Zeng W, Demattei J A, wu J P, et al. Complete relative stereochemistry ofmaitotoxin. J Am Chem Soc,1996,1l8(34):7946-7968.
    64. Gusovsky F, Daly J W. Maitotoxin: a unique pharmacological tool for research oncalcium dependent mechanisms. Biochem Pharmacol,1990,39:1633-1639.
    65. Takahashi M, Ohizumi Y, Yasumoto T. Maitotoxin, a calcium ion channelactivator candidate. J. Biol. Chem.,1982,(257):7287-7289.
    66.蔡俊鹏,程露,吴冰,等.鱼腥藻毒素及其检测、去除方法研究进展.水利渔业,2006,26(3):3-6.
    67. Yua C F, Yua P H F, Chana P L, et al. Two novel species of tetrodotoxinproducing bacteria isolated from toxic marine puffer fishes. Toxicon,2004,44(6):641-647.
    68. Fayette J, Coquard I R, Alberti L. ET-743: A novel agent with activity in softtissue sarcomas. The Oncologist,2005,10(10):827-832.
    69. D’incalci M, Negri I M, Masa V I, et al. A review of trabectedin (ET-743): aunique mechanism of action. Molecular Cancer Therapeutics,2010,9(8):2157-2163.
    70. Song J, Miao Q. Toxicology of marine organism. Beijing: Beijing Science&Technology Press,1996
    71. Asakawa M, Toyoshima T, Shida Y, et al. Paralytic toxins in a ribbon wormCephalothrix species (Nemertean) adherent to cultured oysters in Hiroshima Bay,Hiroshima Prefecture, Japan. Toxicon,2000,38(6):763-773.
    72.邓尚贵,彭志英,杨萍,等.河豚毒素研究进展.海洋科学,2002,26(10):32-
    35.
    73. Susan E, Boehnke, Douglas D. Time course and effective spread of lidocaine andtetrodotoxin delivered via microdialysis: all electrophysiological study in cerebralcortex. Journal of Neuroscience Methods,2001,105(2):133-141.
    74.黄军,严美姣,陈同宏.河豚毒素的起源及其研究进展.生物技术通讯,2006,6(17):998-1000.
    75. Jeffrey W G, Ronald E S. Dissociation of primary and secondary reward-relevantlimbic nuclei in an animal model of relapse. Neuropsychopharmacology,2000,22(5):473-479.
    76. Martinov V N, Nja A. A microcapsule technique for long-term conduction blockof the sciatic nerve by tetrodotoxin. Journal of Neuroscience Methods,2005,141(2):199-205.
    77.孟宪梅,卢士英,严东明,等.石房蛤毒素研究及应用进展.食品科技,2010,35(8):150-154.
    78. Jardieu F, Reymond M, Hamard P, et al. Spatial distributions of expansion ratecell distributions of expansion rate, cell division rate on cell size in maize leaves:a synthesis of the effects of soil water status, evaporative demand and temperature.J Exp Bot,2000,51(350):1505-1514.
    79.上村大辅,陈海生.江珧毒素A一冲绳双壳贝类多棘裂江珧中的有毒两性大环化合物.中国海洋药物,1995,14(4):49-51.
    80. Yu H, Xing R, Liu S, et al. Studies on the hemolytic activity of tentacle extracts ofjellyfish Rhopilema esculentum Kishinouye: Application of orthogonal test.International Journal of Biological Macromolecules.2007,40(3):276-280.
    81. Yu H, Li C, Li R, et al. Factors influencing hemolytic activity of venom from thejellyfish Rhopilema esculentum Kishinouye. Food and Chemical Toxicology.2007,45(7):1173-1178.
    82. Suput D. In vivo effects of cnidarian toxins and venoms. Toxicon.2009,54(8):1190-1200.
    83. Marino A, Morabito R, Pizzata T, et al. Effect of various factors on Pelagianoctiluca (Cnidaria, Scyphozoa) crude venom-induced haemolysis. ComparativeBiochemistry and Physiology-Part A: Molecular&Integrative Physiology.2008,151(1):144-149.
    84. Marino A, Morabito R, La Spada G. Factors altering the haemolytic power ofcrude venom from Aiptasia mutabilis (Anthozoa) nematocysts. ComparativeBiochemistry and Physiology-Part A: Molecular&Integrative Physiology.2009,152(3):418-222.
    85. Heike H. Selective toxin–lipid membrane interactions of natural, haemolyticScyphozoan toxins analyzed by surface plasmon resonance. Biochimica etBiophysica Acta (BBA)-Biomembranes.2010,1798(10):1944-1952.
    86. Gusmani L, Avian M, Galil B, et al. Biologically active polypeptides in the venomof the jellyfish Rhopilema nomadica. Toxicon.1997,35(5):637-648.
    87. Chung J J, Ratnapala L A, Cooke I M, et al. Partial purification andcharacterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdeaalata) venom. Toxicon.2001,39(7):981-990.
    88. Brinkman D L, Burnell J N. Biochemical and molecular characterisation ofcubozoan protein toxins. Toxicon.2009,54(8):1162-1173.
    89. Bailey P M, Bakker A J, Seymour J E, et al. A functional comparison of the venomof three Australian jellyfish--Chironex fleckeri, Chiropsalmus sp., and Carybdeaxaymacana--on cytosolic Ca2+, haemolysis and Artemia sp. lethality. Toxicon.2005,45(2):233-242.
    90. Sanchez-Rodriguez J, Torrens E, Segura-Puertas L. Partial purification andcharacterization of a novel neurotoxin and three cytolysins from box jellyfish(Carybdea marsupialis) nematocyst venom. Archives of Toxicology.2006,80(3):163-168.
    91. Rottini G, Gusmani L, Parovel E, et al. Purification and Properties of a CytolyticToxin in Venom of the Jellyfish Carybdea-Marsupialis. Toxicon.1995,33(3):315-326.
    92. Nagai H, Takuwa-Kuroda K, Nakao M, et al. A novel protein toxin from thedeadly box jellyfish (Sea Wasp, Habu-kurage) Chiropsalmus quadrigatus.Bioscience Biotechnology and Biochemistry.2002,66(1):97-102.
    93. Nagai H, Takuwa K, Nakao M, et al. Isolation and Characterization of a NovelProtein Toxin from the Hawaiian Box Jellyfish (Sea Wasp) Carybdea alata.Biochemical and Biophysical Research Communications.2000,275(2):589-594.
    94. Nagai H, Takuwa K, Nakao M, et al. Novel proteinaceous toxins from the boxjellyfish (sea wasp) Carybdea rastoni. Biochemical and Biophysical ResearchCommunications.2000,275(2):582-588.
    95. Li R, Wright C E, Winkel K D, et al. The pharmacology of Malo maxima jellyfishvenom extract in isolated cardiovascular tissues: A probable cause of the Irukandjisyndrome in Western Australia. Toxicology Letters.2011,201(3):221-229.
    96. Lassen S, Helmholz H, Ruhnau C, et al. A novel proteinaceous cytotoxin from thenorthern Scyphozoa Cyanea capillata (L.) with structural homology to cubozoanhaemolysins. Toxicon.2011,57(5):721-729.
    97. Horibata Y, Okino N, Ichinose S, et al. Purification, characterization, and cDNAcloning of a novel acidic endoglycoceramidase from the jellyfish, Cyanea nozakii.Journal of Biological Chemistry.2000,275(40):31297-31304.
    98. Helmholz H, Ruhnau C, Schutt C, et al. Comparative study on the cell toxicity andenzymatic activity of two northern scyphozoan species Cyanea capillata (L.) andCyanea lamarckii (Peron&Leslieur). Toxicon.2007,50(1):53-64.
    99. Helmholz H, Naatz S, Lassen S, et al. Isolation of a cytotoxic glycoprotein fromthe Scyphozoa Cyanea lamarckii by lectin-affinity chromatography andcharacterization of molecule interactions by surface plasmon resonance. Journal ofChromatography B.2008,871(1):60-66.
    100. Ghosh T K, Gomes A, Chaudhuri A K N. Isolation of a Toxin from JellyfishAcromitus-Rabanchatu and Its Effect on Skeletal-Muscle. Toxicon.1993,31(7):873-880.
    101. Bloom D A, Radwan F F Y, Burnett J W. Toxinological and immunologicalstudies of capillary electrophoresis fractionated Chrysaora quinquecirrha (Desor)fishing tentacle and Chironex fleckeri Southcott nematocyst venoms. ComparativeBiochemistry and Physiology Part C: Toxicology&Pharmacology.2001,128(1):75-90.
    102. Bloom D A, Burnett J W, Alderslade P. Partial purification of box jellyfish(Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon.1998,36(8):1075-1085.
    103. Ramasamy S, Isbister G K, Seymour J E, et al. Pharmacologically distinctcardiovascular effects of box jellyfish (Chironex fleckeri) venom and atentacle-only extract in rats. Toxicology Letters.2005,155(2):219-226.
    104. Ramasamy S, Isbister G K, Seymour J E, et al. The in vivo cardiovascular effectsof an Australasian box jellyfish (Chiropsalmus sp.) venom in rats. Toxicon.2005,45(3):321-327.
    105. Ramasamy S, Isbister G K, Seymour J E, et al. The in vivo cardiovascular effectsof the Irukandji jellyfish (Carukia barnesi) nematocyst venom and a tentacleextract in rats. Toxicology Letters.2005,155(1):135-141.
    106. Ramasamy S, Isbister G K, Seymour J E, et al. The in vitro effects of twochirodropid (Chironex fleckeri and Chiropsalmus sp.) venoms: efficacy of boxjellyfish antivenom. Toxicon.2003,41(6):703-711.
    107. Yu H, Liu X, Xing R, et al. Radical scavenging activity of protein from tentaclesof jellyfish Rhopilema esculentum. Bioorganic&Medicinal Chemistry Letters.2005,15(10):2659-2664.
    108. Yu H, Liu X, Xing R, et al. In vitro determination of antioxidant activity ofproteins from jellyfish Rhopilema esculentum. Food Chemistry.2006,95(1):123-130.
    109. Feng J, Yu H, Xing R, et al. Partial characterization of the hemolytic activity ofthe nematocyst venom from the jellyfish Cyanea nozakii Kishinouye. Toxicologyin Vitro.2010,24(6):1750-1756.
    110. Feng J, Yu H, Li C, et al. Isolation and characterization of lethal proteins innematocyst venom of the jellyfish Cyanea nozakii Kishinouye. Toxicon.2010,55(1):118-125.
    111. Li C, Yu H, Liu S, et al. Factors affecting the protease activity of venom fromjellyfish Rhopilema esculentum Kishinouye. Bioorganic&Medicinal ChemistryLetters.2005,15(24):5370-5374.
    112. Radwan F F Y, Burnett J W, Bloom D A, et al. A comparison of the toxinologicalcharacteristics of two Cassiopea and Aurelia species. Toxicon.2001,39(2-3):245-257.
    113.李子顺,孙学军,阎虎生,等.蜂毒肽及其类似物的抗菌活性、溶血活性几磷脂膜的作用.高等学校化学学报,2005,26(1):73-77.
    114.孙黔云,王婉瑜,熊郁良.眼镜蛇毒高活性抗补体因子的体外溶血活性研究.中国药理学通报,2003,19(8):909-913.
    115.冯金华,于华华,李荣锋,等.霞水母刺丝囊毒素溶血活性的稳定性研究.海洋科学,2009,33(9):49-56.
    116. Iida T, Honda T. Hemolysins produced by vibrios.Toxin Reviews,1997,16(4):215-227.
    117. Kreger A S, Bemheimer A W, Etkin L A, et a1. Phospholipose D activity ofvibrio damsela cytolysin and its interaction with sheep erythrocytes. Infect Immun,1987,55(12):3209-3212.
    118. Endean R, Monks S A, Cameron A M. Toxins from the box jellyfish Chironexfleckeri. Toxicon,1993(31):397-410.
    119.张弈强,许实波.水母的化学和药理学研究概况.中国海洋药物,1999,18(1):43-48.
    120. Walker M J A, Maritinez T T, Godin D V. Investigations into the cardiotoxicityof a toxin from the nematocysts of the jellyfish, cyanea capillata. Toxicon,1977(15):339-346.
    121. Lin W W, Lee C Y, Burnett J W. Effect on sea nettle (Chrysaora quinquesirrha)venom on isolated rat aorta. Toxicon,1998,26(12):1209-1212.
    122. Ramasamy S, Isbister G K, Seymour J E, et al. The in vivo cardiovascular effectsof box jellyfish Chironex fleckeri venom in rats: efficacy of pre-treatment withantivenom, verapamil and magnesium sulphate. Toxicon.2004,43(6):685-690.
    123. Xiao L, He Q, Guo Y, et al. Cyanea capillata tentacle-only extract as a potentialalternative of nematocyst venom: Its cardiovascular toxicity and tolerance toisolation and purification procedures. Toxicon.2009,53(1):146-152.
    124. Eldefrawi C M E, Elldefrawi A T, Burnett J W, et al. Toxicity of sea nettle toxinto human hepatocytes and the protective effects of phosphorylating and alkylatingagents.Toxicon,1998,36(2):269-281.
    125. Houck H E, Lipsky M M, Marzella L, et al. Toxicity of sea nelttle (Chrysaoraquinquecirrha) fishing tentacle nematocyst venom in cultured rat hepatocytes.Toxicon,1996,34(7):771-778.
    126. Ozaki H, Karaki H, Nagase H, et al. Contractile effects of jellyfish toxinextracted from Carybdea rasronii on isolated rabbit aorta. Japan. J. Pharmacol,1986,42(3):425-430.
    127. Othman I, Burnett J W. Techniques applicable for purifying chironex fleckeri(box-jellyfish) venom. Toxicon,1990,28(7):821-835
    128.张弈强,许实波.水母的化学和药理学研究概况.中国海洋药物,1999,18(1):43-48.
    129.李翠萍,于华华,陈晓琳,等.白色霞水母蛋白抗氧化活性的初步研究.海洋科学,2008,32(7):65-70.
    130. Yu H, Liu X, Dong X, et al. Insecticidal activity of proteinous venom fromtentacle of jellyfish Rhopilema esculentum Kishinouye. Bioorganic&MedicinalChemistry Letters.2005,15(22):4949-4952.
    131. Brinkman D, Burnell J. Identification, cloning and sequencing of two majorvenom proteins from the box jellyfish, Chironex fleckeri. Toxicon.2007,50(6):850-860.
    132. Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    133. Laemmli U K, Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature,1970,227(5259):680-685.
    134. Sevrice R F. High speed biologists search for gold in proteins. Science,2001,294(5549):2074-2077.
    135. Dove A. Proteomics: translating genomics into products? Nat Biotechnol,1999,17(3):233-236.
    136. Peng J, Gygi S P. Proteomics: the move to mixutres. J Mass Spectrom,2001,36(10):1083-1091.
    137. Link A J, Eng J, Schieltz D M, etal. Direct analysis of protein complexes usingmasss spectrometry. Nautre Biotechnology,1999,17(7):676-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700