用户名: 密码: 验证码:
七带石斑鱼繁育生物学与波纹唇鱼组织学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验一
     研究了不同盐度和温度下七带石斑鱼(Epinephelus septemfasciatus)精子的活力和低温保存下精子的寿命,以及七带石斑鱼精子的超低温保存。结果表明,七带石斑鱼精子活力最强时的最适盐度为30,最适温度为22.8℃,激烈运动时间最长为33.99 min;精子涡动时间和总活动时间与盐度和温度的关系均为二次函数关系;15以下的低盐度水和淡水对七带石斑鱼精子活力具有可逆的抑制作用。精子在4℃下低温保存1周以上能保持较强活力。超低温保存精子解冻后的存活率为10%以上,其最适激活盐度为25。
     试验二
     利用透射电子显微镜技术研究了七带石斑鱼(Epinephelus septemfasciatus)精子的超微结构,结果发现:七带石斑鱼精子由头部和尾部(鞭毛)两部分组成,没有明显的中片,头部前段无顶体,主要有高电子密度的球形细胞核,核中主要是致密的染色质,还分布有一些核泡,核外由核膜包围,将核与细胞质分隔开,核膜最前端紧贴质膜,核后端有植入窝,近端中心粒和中心粒间体位于其中。头部后端为袖套结构,由质膜包围的袖套结构延伸到后部,使整个头部呈椭球形,质膜后端沿鞭毛形成一个袖套腔,袖套结构中分布有中心粒复合体、线粒体以及囊泡等。精子细胞的细胞膜不光滑,呈现小的皱折。七带石斑鱼精子的尾部细长,紧接于头部细胞核,穿过袖套腔,通过基体与核紧密结合,中心粒复合体也位于此,且近端中心粒和远端中心粒呈钝角,鞭毛的轴丝由此形成,基体与鞭毛间的过渡区轴丝无中央微管,呈“9+0”型。尾部的主要结构为轴丝,其轴丝为典型的“9+2”结构,其起始端开始于前端基体,轴丝外仅有少许细胞质。
     试验三
     2009年7月-8月对七带石斑鱼人工繁殖和育苗过程的早期发育阶段的形态特征进行了观察、测量和描述。结果发现:初孵仔鱼全长为(1.3606±0.0091) mm,卵黄囊大、呈椭圆形,长径为(0.8602±0.0151) mm,短径为:(0.5814±0.0162) mm,油球为圆球形,直径为:(0.1258±0.0065) mm。在盐度为29-31,水温为23.0-26.5℃的条件下,4日龄时卵黄囊完全消失,并开始摄食;4-12 d仔鱼生长缓慢,主要是器官开始发育的阶段;12 d后生长明显加快,到21 d后快速生长。19日龄长出背棘第二棘和腹棘,背棘和腹棘的出现与收回是七带石斑鱼早期发育过程中的一个显著特征。全长、体长、体高、肛前长、眼径、体重与日龄呈明显的指数函数关系,体高与全长的比值开始略有波动,后趋于稳定。
     试验四
     对波纹唇鱼(Cheilinus undulates)的外周血细胞进行计数,并以Wright′s和Giemsa双重染色法对外周血细胞的形态进行了显微观察研究,测定了各类血细胞的大小及血液的生化指标。结果显示血浆中红细胞的浓度为(3.15±0.79)×10~(12)/L,白细胞为(1.42±0.71)×10~(10)/L,红细胞数远远多于白细胞。血涂片观察发现:波纹唇鱼的外周血细胞可分为红细胞、嗜中性粒细胞、单核细胞、淋巴细胞、血栓细胞等5种血细胞,未观察到嗜碱性粒细胞、嗜酸性粒细胞。在外周血液中还观察到核影、正在分裂的红细胞、幼稚红细胞和降解的红细胞。各类血细胞胞体由大到小的次序依次为:单核细胞、嗜中性粒细胞、红细胞、大淋巴细胞、血栓细胞、小淋巴细胞。发现其多项生化指标和其他硬骨鱼类相比基本相似。
     试验五
     应用光学显微镜、扫描电镜和透射电镜对波纹唇鱼(Cheilinus undulatus)鳃的组织结构、表面形态特征及鳃小片超微结构进行了观察。结果表明,波纹唇鱼有3对全鳃,1对半鳃和1对伪鳃,鳃丝呈梳状紧密排列在鳃弓上,鳃小片紧密地镶嵌排列在鳃丝两侧,入鳃动脉、出鳃动脉和鳃小片毛细血管网组成鳃的血液系统。鳃丝非呼吸区分布有沟、坑、孔等结构,呼吸区较为平滑。鳃丝表面多为上皮细胞,但形态有所差别,非呼吸区上皮细胞有较规则的指纹状微嵴;而呼吸区上皮细胞表面无微嵴,呈皱褶状;在呼吸区和非呼吸区之间的过渡区上皮细胞有不规则指纹状微嵴,融合现象明显。非呼吸区有氯细胞、黏液细胞游离端向外的开口。氯细胞主要分布在鳃小片基部,胞内有大量线粒体和排泄小泡。鳃小片由上皮细胞、基膜、内皮细胞和柱细胞构成,形成特殊的水/血屏障双层结构,内部为发达的毛细血管网,充满血液。本文还探讨了波纹唇鱼鳃的结构与其功能的密切关系。
     试验六
     通过形态解剖、组织切片和光镜技术对波纹唇鱼消化道的形态学和组织学进行了研究。结果发现,波纹唇鱼消化道分为口咽腔、食道、胃和肠。口咽腔较大,颌齿和咽骨齿均发达,具有多种类型齿;食道粗而短;鳃耙仅有3对半,较长、粗且稀少;“I”型胃,盲囊部不明显;无幽门盲囊;肠管粗短,可分为前肠、后肠和直肠三部分,肠道系数约为3.05。从食道开始整个消化道管腔有密集的绒毛,消化道管壁的组织结构由粘膜层、粘膜下层、肌肉层和浆膜层构成。消化道上皮为单层柱状细胞,其间分布有较多杯状细胞,杯状细胞有明显的开口。粘膜下层为疏松结缔组织。肌肉层致密,内层为环肌外层为纵肌,二者间分布有神经丛。浆膜层极薄,覆盖于整个消化道的外层。这些特征使波纹唇鱼具有典型的肉食性鱼类的特征和习性,便于咬破和磨碎食物坚硬的外壳,使食物在消化道中停留的时间较短、能够快速通过消化道,在肠道中迅速消化吸收,然后排出体外。
Experiment 1: Effects of environmental factors on the spermatozoa vitality of Epinephelus septemfasciatus
     The effects of salinities and temperatures on the spermatozoa vitality, and cryopreservation of the spermatozoa of Epinephelus septemfasciatus were investigated. The results showed that the spermatozoa vitality was highest under the condition of salinity 30 and water temperature of 22.8℃, with the longest eddying time of 33.99 min. Quadratic function correlations were found between eddying time of spermatozoa and both salinity and temperature, as well as between total active time and both that. The motility of spermatozoa were inhibited reversibly in low-salinity (<15 ppt) and freshwater. Strong vitality of spermatozoa was kept for longer than one week preserved in low temperature below 4℃. Survival rate of spermatozoa cryopreservation were over 10% with the optimal activated salinity of 25.
     Experiment 2: Ultrastructure of spermatozoa in Epinephelus septemfasciatus
     Ultrastructure of spermatozoa of E. septemfasciatus was investigated using transmission electron microscopes. The spermatozoa consists of two parts: the head and the tail (flagellum), no mid-piece. The spermatozoa of E. septemfasciatus are acrosome less. A large spherical nucleus, covered with nuclear membrane, is located at the front part of the head and about its 1/3. The high electron density chromatin are the main components of nucleus, with several low electron density vesicles in it. There is little space between the plasma membrane and nuclear membrane at the front part of head. The implantation fossa is located in the posterior end of the nucleus. Proximal centriole and intercentriolar body are located in implantation fossa. The posterior end of the head is a large sleeve, which is about 2/3 of the head. The sleeve contains centriolar complex, several mitochondria and vesicles. At the mid-part of the sleeve, there is a sleeve carve, out of which the thin and long tail stretches. The tail with only a little cytoplasm is thin and long. The axoneme between the end of the base body and the head of the tail is“9+0”.The 9 doublet of the axoneme, the central structure of the tail, is connected to the 9 strips of the posterior end of the basal body. The flagellar tail is the conventional“9+2”axoneme.
     Experiment 3: Morphological development of larvae and juvenile Epinephelus septemfasciatus
     The morphological characteristics of early development of Epinephelus septemfascitus were observed, surveyed and described during July and August 2009. The results showed that the total length of newly hatched larvae was (1.3606±0.0091) mm. A large yolk sac of newly hatched larvae, located at the abdomen, was elliptic, and its major axis was (0.8602±0.0151) mm, minor axis (0.5814±0.0162) mm. The diameter of the spherical oil droplet was (0.1258±0.0065) mm. At the water salinity of 29-31 and temperature of 23.0-26.5℃, the yolk sac of the larvae was disappeared 4days after hatching, and the larvae began to eat. It was the time for beginning to the development of organs during 4-12 days after hatching, and at that time the larvae grew very slowly, the larvae grew fast obviously 21 days after hatching. The second spine of dorsal fin and the first spine of ventral fin appeared at 19 days after hatching. The growth and configuration of the second spine of dorsal fin and the first spine of ventral fin is the most remarkable characteristics during early development of E. septemfaciatus. Highly significant exponential function correlated between days after hatching and total length, body length, body height, pre-anal length, eye diameter, weight. The ratio of body length to height was undulated slightly, a few days latter after hatching the ratio kept stable.
     Experiment 4: Microstructure of peripheral blood cells and biochemical indices of Cheilinus undulatus
     The peripheral blood cells of C. undulatus were morphologically described used the double dyed method of Wright’s and Giemsa. The serum biochemical indices of C. undulatus were also studied. The results shows that the erythrocyte and leucocyte concentration in the blood were (3.15±0.79)×10~(12)/L and (1.42±0.71)×10~(10)/L, respectively. The number of erythrocyte was much larger than the leucocyte in the blood. The sizes of the different type blood cells were also measured. On the stained smears, five major cell types were recognized: erythrocyte, neutrophil, monocyte, lymphocyte and thrombocyte. The eosinophilic granulocyte and basophilic granulocyte were not found in smears, instead, some nuclear shadow of erythrocytes, immature erythrocytes, direct dividing and dissolving erythrocytes were easily found. Among these cells, the size from large to small follows the order of monocyte, neutrophil, erythrocyte, large lymphocyte, thrombocyte and small lymphlcyte. The most of the indices were different from the normal ranges of human, but it’s recently the same as other teleosteans. Experiment 5: Light, Scanning and Transmission Electron Microscopical Observation of Gill Filaments of Cheilinus undulatus
     The histological, surface and internal fine structures of gill filaments of Cheilinus undulatus were investigated using light, scanning and transmission electron microscopy. The results showed that there were 3 pairs of holobranch,1 pair of hemibranch and 1 pair of pseudobranchia. The comb primary filaments lined on the gill arches closely. Many secondary gill lamellae arranged closely on two sides of each filament, and inlaid each other. The blood system of filament was consisted by afferent artery, efferent artery and capillary vessel nets. Various features such as indentations, micropits and crevices were present on non-respiratory surface of filaments. The respiratory surface of filaments were fold. The filaments were covered by epithelia cells, which had different surface features in different areas. It had regular fingerprint shape microridges in non-respiratory surface, no microridge but folded surface in respiratory area and irregular microredges in the transition region. There were many holes among the non-respiratory surface. Chloride cells and mucous cells were observed and many mitochondria and excretion vesicles distributed in chloride cells. Secondary filaments was consisted by epithelia cells, basement membranes, endothelial cells and pillar cells. These structures formed the water-blood barrier. The close relationship between the structure of fish gill and its function were discussed.
     Experiment 6: Morphology and histology of the digestive tract in Cheilinus undulatus
     The morphology and histology of the digestive tract of Cheilinus undulatus were investigated by the methods of anatomy, tissue sections and optical microscopy. The results showed that the digestive tract of C. undulatus was composed of buccal-pharynx cavity, esophagus, stomach and intestine. There were jaw teeth and pharyngeal teeth in the large buccal-pharynx cavity. The esophagus was very coarse and short. The stomach shaped as“I”and swelled. There was no pyloric caeca at the pyloric stomach. The intestine was very short, and it included anterior intestine, posterior intestine and rectum. The intestinal coefficient was about 3.05. It was full of microvilli in the cavity all over the digestive tract. The wall of the digestive divided into four layers: mucosa, submucosa, muscle layer and serosa. The epithelium of the digestive tract was composed of simple columnar cells, in which goblet cells were distributed. It was loose connective tissue in the submucosa. It was circular layers of striated muscle in the inner layer of muscle, the outer layer was longitudinal layers of striated muscle. The nerve plexuses distributed in the muscle layer between the circular layer and the longitudinal layer. The outer surface of the digestive tract was covered by a thin layer of serosa.
引文
[1]东海水产研究所《东海深水鱼类》编写组,东海深水鱼类[M].上海:学林出版社, 1988, 228-229.
    [2] Wakabayashi H. Imoprtation d’oeufs et de larves destinesa l'aquaculture au Japon[J].Rev Sic Tech Of Int Epiz, 1996, 15(2): 409-422.
    [3] Nilar S,Hisashi C,Toshihisa A, et al. Ovarian development and final oocyte maturation in cultured sevenband grouper Epinephelus septemfasciatus[J]. Fisheries Science, 2004, 70(3): 360-365.
    [4] Tanaka S, Kuriyama I, Nakai T, et al. Susceptibility of cultured juveniles of several marine fish to the sevenband grouper nervous necrosis virus[J]. Journal of Fish Diseases, 2003, 26(2): l09-l15.
    [5] Tanaka S, Takagi M, Miyazaki T. Histopathological studies on viral nervous necrosis of sevenband grouper, Epinephelus septemfasciatus Thunberg, at the grow-out stage[J]. Journal of Fish Diseases, 2004, 27(7): 385-399.
    [6] Iwamoto T, Okinaka Y, Mise K, et a1. Identification of Host-Specificity Determinants in Betanodaviruses by Using Reassortants between Striped Jack Nervous Necrosis Virus and Sevenband Grouper Nervous Necrosis Virus[J].Journal of Virology, 2004, 78(3): 1256-1262.
    [7] Nilar S, Takushima M, Nagae M, et a1. Molecular cloning of gonadotropin cDNA in sevenband grouper, Epinephelus septemfasciatus[J]. Fish Physiology and Biochemistry, 2003, 28(1): 107-108.
    [8]谢菁,区又君,李加儿,等.七带石斑鱼胚体和卵黄囊期仔鱼的发育[J].海洋通报, 2009, 28(2): 41-49.
    [9]王新安,马爱军,陈超,等.七带石斑鱼(Epinephelus septemfasciatus)两个野生群体形态差异分析[J].海洋与湖沼,2008, 39(6): 655-660.
    [10]程波,陈超,王印庚,等.七带石斑鱼肌肉营养成分分析与品质评价[J].渔业科学进展, 2009, 30(5): 51-57.
    [11]钟声平,陈超,王军,等.七带石斑鱼染色体核型研究[J].中国水产科学, 2010, 17(1): 150-155.
    [12]陈超,程波,于宏,等.七带石斑鱼繁殖群体“突眼”症病原菌的分离与鉴定[J].渔业科学进展, 2010, 31(1): 25-33.
    [13]刘新富,庄志猛,孟振,等.七带石斑鱼人工繁育技术研究进展[J].中国水产科学, 2010, 17(5): 1128-1136.
    [14]区又君,李加儿.黑鲷Sparus macrocephalus(Basilewsky)精子在不同环境中的活力[J].中国水产科学研究院学报, 1991, 4(1): 18-27.
    [15]区又君,李加儿,江世贵.保存和激活对真鲷精子生理特性的影响[J].热带海洋, 1998, 17(3): 65-74.
    [16]江世贵,李加儿,区又君,等.四种鲷科鱼类的精子激活条件与其生态习性的关系[J].生态学报, 2000, 20(3): 459-473.
    [17]黄巧珠,区又君,喻达辉,等. pH对4种鲷科鱼精子活力的影响[J].湛江海洋大学学报, 1999, 19(3): 14-16.
    [18]徐革锋,李永发,王炳谦,等.不同pH人工精浆对性逆转金鳟雄鱼精子活力的影响[J].上海水产大学学报, 2008, 17(6): 647-654.
    [19]丁淑荃,万全,刘磊,等.不同温度下精子保存液对黄颡鱼精子活力的影响[J].水利渔业, 2007, 27(1): 10-12.
    [20]尤永隆,林丹军.黄颡鱼精子的超微结构[J].实验生物学报, 1996, 29(3): 235-245.
    [21]尤永隆,林丹军.大黄鱼精子的超微结构[J].动物学报, 1997, 12(3): 248-258.
    [22]尤永隆,林丹军.鲤鱼精子超微结构的研究[J].动物学研究, 1996, 17(4): 377-383.
    [23]刘利平,王武,赵雷蕾,等.江黄颡鱼精子的超微结构[J].上海水产大学学报, 2004, 13(3): 198-202.
    [24]刘雪珠,杨万喜.平鲷精子的超微结构[J].东海海洋, 2004, 22(1): 43-48.
    [25]舒琥,刘晓春,张勇,等.赤点石斑鱼精子发生和形成的超微结构研究[J].中山大学学报:自然科学版, 2005, 44(4): 103-106.
    [26]魏刚,戴大临,陈怀辉,等.长吻鮠精子超微结构的观察[J].四川动物, 1995, 14(2): 56-57.
    [27]张筱兰,姜明,姚斐,等.红鳍东方鲀精子形态的研究[J].青岛海洋大学学报, 1999, 29(2): 255-259.
    [28] Adel A, Basyouny SHAHIN.Spermatogenesis and spermatozoon ultrastructure in the Nile catfish Synodontis schall (Pisces: Actinopterygii:Synodontidae)in Egypt[J]. Acta Zoologica Sinica, 2007, 53(4): 689-699.
    [29]章龙珍,刘鹏,庄平,等.超低温冷冻对西伯利亚鲟精子形态结构损伤的观察[J].水产学报, 2008, 32(4): 558-565.
    [30]方展强.尼罗罗非鱼精子发生的超微结构研究[J].华南师范大学学报, 1993, 1: 67-74.
    [31]殷名称.鱼类早期生活史研究与研究进展[J].水产学报, 1991, 15(4): 348-358.
    [32]胡先成,曹双俊,周忠良,等.花鲈胚胎发育的研究[J].重庆师范学院学报:自然科学版, 1997, 14(2): 51-56.
    [33]许波涛,周宏团,李加儿,等.温度对赤点石斑鱼胚胎发育的影响[J].南海水产研究, 1991, 1(3): 38-45.
    [34]许鼎盛,王秋荣.黄鳍鲷胚胎及仔、稚、幼鱼发育观察[J].厦门水产学院学报, 1991, 13(2): 10-19.
    [35]齐振雄,杨干荣.沙塘鳢的早期阶段发育[J].淡水渔业, 1995, 25(2): 10-13.
    [36] Daoulas CH, Economou AN, Psarras Th. Reproductive strategies and early dev-elopment of three freshwater gobies[J]. Journal of Fish Biology, 1993, 42(5): 749-776.
    [37] Kovac V. Early development of Zingel streber[J]. Journal of Fish Biology, 2000, 57(6): 1381-1403.
    [38]姜正炎,李胜忠,曹桂新,等.布伦托海梭鲈的胚胎发育[J].水利渔业, 1998, 5: 19-21.
    [39]李慧梅,张丹,施品华.中华乌塘鳢胚胎及仔、稚鱼发育的初步研究[J].海洋学报, 1987, 9(4): 481-494.
    [40]孙庆海,孙建璋,施维德.褐毛鲿仔稚幼鱼形态特征及其生态习性德初步观察[J].浙江海洋学院学报:自然科学版, 2005, 24(2): 106-114.
    [41]钟俊生,夏连军,陆建学.黄鲷仔鱼发育的形态特征[J].上海水产大学学报, 2005, 14(1): 24-29.
    [42]钟俊生,楼宝,袁锦丰.鮸鱼仔稚鱼早期发育的研究[J].上海水产大学学报, 2005, 14(3): 234-240.
    [43] Leis JM, Carson-Ewart BM. The larvae of Indo-Pacific coastal fishes[M]. Netherlands: Brill, 2000: 490-499.
    [44] Fukuhara O. Larval development and behavior in early life stages of black sea bream reared in the laboratory[J]. Nippon Suisan Gakkaishi, 1987, 53(3):371-379.
    [45] Kinoshita I. Postlarvae and juvenilesof silver sea bream,Sparus sarbaoccurring in the surf zonesofTosa Bay, Japan[J]. Japan J Ichthyol, 1986, 33(1): 7-12.
    [46]山田梅芳.东シナ海·黄海のさかな[M].长崎:水产厅西海区水产研究所, 1986, 232-242.
    [47]木下泉.砂浜海岸碎波带に出现するヘダイ亚科仔稚鱼の生态学的研究[J]. Bull Mar Sci Fish, 1993, 13: 21-99.
    [48]田中克.マダイの资源培养技术[M].东京:恒星社厚生阁, 1986, 59-74.
    [49]张仁斋,陆穗芬,赵传,等.中国近海鱼卵与仔鱼[M].上海:上海科学技术出版社, 1985: 105-110.
    [50]单保党,何大仁.黑鲷视觉发育与摄食的关系[J].台湾海峡, 1995, 14(2): 170-175.
    [51]张雅芝,陈而兴.春季生殖真鲷仔、稚、幼鱼的摄食和生长[J].海洋科学, 1996, (3): 57-62.
    [52]区又君,李加儿,丁彦文.人工培育条件下真鲷仔稚鱼的生物学特征[J].南海水产研究, 1991, 3: 22-32.
    [53]文兴豪,冯怀亮,李文武,等.草鱼早期胚胎发育观察[J].兽医大学学报, 1991, 11(1): 69-71.
    [54]王瑞霞.青鱼的原始器官原基的形成和消化系统呼吸系统的发生[J].水产学报, 1982, 6(1): 77-83.
    [55]胡傅林,等.草鱼及白鲢的胚胎与胚后发育[C].中国动物学会1978年学术会议材料.
    [56]曹长荪.红鳙鱼早期发育的研究[J].江西大学自然科学学报, 1984, 8(2): 60-66.
    [57]林光华,翁世聪.兴国红鲤的胚胎发育[J].江西大学学报:自然科学版, 1986, 10(3): 1-9.
    [58]赵鹤凌.胭脂鱼胚胎发育的观察[J].水利渔业. 2006, 26(1): 34-35.
    [59]张涛,庄平,章龙珍,等.胭脂鱼早期生活史行为发育[J].中国水产科学, 2002, 9(3): 215-219.
    [60] Anderson, WW. Early development,spawning growth, and occurrence of the silver mullet(Mugil curema) along the south atlantic coast of the United States[R]. Fishery Bulletin, 1957, 57(119): 397-494.
    [61] Anderson,WW. Larvae development,growth and spawing of striped mullet(Mugil cephalus) along the south atlantic coast of the united States[R]. Fish and Wildlife Service Fishery Bulletin, 1958, 58(144): 501-519.
    [62] Kuo CM, Shehadeh ZH, Milisen. A preliminary report on the development, growthand survival of laboratory reared larvae of the grey mullet(Mugil cephalus L)[J]. Journal of Fish Biology, 1973, 5(2): 459-470.
    [63] Yashouv A, Berner Samsonov E. Contribution to the knowledge of eggs and early larval stages of mullets along the israeli coast[J]. Bamidgeh, 1970, 22(3): 72-89.
    [64]区又君,李加儿.人工培育条件下鲻鱼早期发育的生理生态研究[J].热带海洋, 1998, 17(4): 29-39.
    [65]区又君,李加儿.鲻鱼胚胎和卵黄囊期仔鱼的发育与营养研究[J].海洋学报, 1997, 19(3): 102-110.
    [66]雷霁霖.梭鱼胚胎和仔、稚、幼鱼发育的研究[J].海洋学报, 1979, 1(1): 156-174.
    [67]颜开强,张其永.大弹涂鱼仔、稚、幼鱼消化系统的发育及其食性的研究[J].海洋学报, 1991, 13(2): 240-246.
    [68] Harumi Sakai. Larval development interval in Tribolodon hakonensis (Cyprini- dae)[J]. Japanese Journal of Ichthyolog, 1990, 37(1): 17-28.
    [69]区又君,齐旭东,李加儿.波纹唇鱼不同组织5种同工酶表达的差异[J].南方水产, 2009, 5(2): 51-55.
    [70]区又君,李加儿.野生波纹唇鱼Cheilinus undulates营养成分分析与评价[J].热带海洋学报, 2010, 29(3): 97-102.
    [71]霍蕊,张本,陈国华,等.波纹唇鱼染色体核型分析[J].海洋科学, 2009, 33(4): 94-97.
    [72] Choat JH, Davies CR, Ackerman JL, et al. Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes[J]. Marine Ecology Progress Series, 2006, 318: 237-246.
    [73] Randall JE, Head SM, Sanders APL. Food habits of the giant humphead wrasse Cheilinus undulatus(Labridae)[J]. Env Biol Fish, 1978, 3(2): 235-238.
    [74] Chateau O, Wantiez L. Site fidelity and activity patterns of a humphead wrasse, Cheilinus undulatus (Labridae), as determined by acoustic telemetry[J]. Environ Biol Fish, 2007, 80: 503-508.
    [75]农业部水生野生动植物保护办公室,广东省海洋与渔业局.水生野生保护动物识别手册.北京:科学出版社, 2004: 271.
    [76]陈刚,周晖,张建东,等.军曹鱼血液指标及血细胞发生的观察[J].水生生物学报, 2005, 29(5): 564-570.
    [77]许晓娟,李加儿,区又君,等.深水网箱养殖卵形鲳鲹血液指标[J].动物学杂志, 2008, 43(6): 109-116.
    [78]张海发,王云新,林蠡,等.斜带石斑鱼血液性状及生化指标的研究[J].华南师范大学学报:自然科学版, 2004(1): 102-107.
    [79]尾崎久雄.鱼类血液与循环生理[M].上海:上海科学技术出版社, 1982:74-83.
    [80]谢嘉华,陈朝阳.海鳗外周血细胞的显微结构[J].动物学杂志,2003, 38(6): 14-18.
    [81]刘小玲,严安生.黄颡鱼外周血细胞的组成及其显微与超微结构[J].华中农业大学学报, 2006, 26(6): 659-663.
    [82]林光华.成年草鱼外周血细胞的超微结构[J].动物学报, 1996, 42(2): 123-128.
    [83]苏友禄,徐力文,冯娟,等.军曹鱼稚鱼外周血细胞及其形态学观察[J].南方水产, 2007, 3(1): 48-53.
    [84]李长玲,曹伏君,刘楚吾,等.勒氏笛鲷外周血细胞显微结构的观察[J].湛江海洋大学学报, 2001, 21(3): 5-9.
    [85]黄思基,曹伏君,李长玲.青石斑外周血细胞显微结构的观察[J].海洋通报,2006, 25(6): 30-36.
    [86]胡玲玲,李加儿,区又君,等.条石鲷外周血细胞的显微结构[J].福建农林大学学报:自然科学版, 2009, 38(4): 384-387.
    [87]高泽霞,王卫民.鱼类外周血红细胞研究进展[J].水利渔业, 2008, 28(2): 1-3.
    [88]顾曙余,赵壁影,杨家新.暗纹东方鲀血细胞发生的观察[J].淡水渔业, 2007, 37(1): 13-18.
    [89]金丽,张耀光.长吻鮠血细胞发生的研究[J].水生生物学报, 2007, 31(6): 807-16.
    [90]周晖,陈刚,健东,等.斜带石斑鱼血细胞发生的观察[J].湛江海洋大学学报, 2006, 26(4): 3-7.
    [91]张健东,周晖,陈刚,等.卵形鲳鲹血细胞发生的观察[J].水生生物学报, 2007, 31(6): 780-787.
    [92]谢嘉华.海鳗血细胞的发生[J].南昌大学学报:理科版, 2004, 28(4):3 86-389.
    [93]顾曙余,杜寅.淡水石斑鱼血细胞发生的观察[J].水产科学, 2008, 27(4): 179-183.
    [94]赵凤岐,曹谨玲.硬骨鱼血细胞的研究进展及经济前景分析[J].中国渔业经济, 2007, (3): 30-33.
    [95] Reiss JA. DerB Bau der kiemenblatter bei den knochenfishchen[J]. Arch Naturgesch, 1881, 47(6): 518-550.
    [96]李加儿,区又君,刘匆.斑点叉尾鮰鳃结构的扫描电镜观察.南方水产[J], 2009, 5(5): 52-56.
    [97]方展强,邱玫,王春凤.剑尾鱼鳃结构的光镜、扫描和透射电镜观察[J].电子显微学报, 2004, 23(5): 553-559.
    [98]邢维贤,安利国,杨桂文,等.胡子鲶鳃扫描电镜的观察[J].水产学报,2000, 24(2): 101-103.
    [99]李加儿,徐晓娟,区又君,等.浅色黄姑鱼鳃结构及其呼吸面积的研究[J].南方水产, 2008, 4(1): 22-27.
    [100]郭淑华,王良臣.鲤鳃表面结构扫描电镜研究[J].水生生物学报, 1988, 12(1): 54-60.
    [101] Paterson JA, Chapman LJ, Schofield PJ. Intraspecific variation in gill morphology of juvenile Nile perch, Lates niloticus, in Lake Nabugabo, Uganda[J]. Environ Biol Fish, 2010, 88(2): 97-104.
    [102]谢嘉华,袁建军.海鳗消化道的显微结构[J].中国水产科学,2005, 12(1): 109-112.
    [103]喻子牛,孙晓瑜,孙世春.真鲷消化道的组织学和形态学研究[J].水产学报, 1997, 21(2): 113-119.
    [104]勾效伟,区又君,廖锐.平鲷消化系统形态学、组织学及组织化学研究[J].南方水产, 2008, 4(5): 28-36.
    [105] Morrison CM, Wright JR. A study of histology of the digestive tract of the Nile tilapia[J]. Journal of Fish Biology, 1999, 54: 597-606.
    [106]林浩然.五种不同食性鲤科鱼的消化道[J].中山大学学报:自然科学, 1962, (3): 65-78.
    [107]苏锦祥.鱼类学与海水鱼类养殖(第二版)[M].北京:中国农业出版社, 2005: 56-64.
    [108]楼允东.组织胚胎学(第二版)[M].北京:中国农业出版社, 1998: 95-114.
    [109]洪万树,张其永,周东晨.四种海产经济鱼类精子的生理特性和环境的关系[J].海洋科学, 1997, (3): 64-66.
    [110]李加儿,区又君,江世贵.环境因子变化对平鲷精子活力的影响[J].动物学杂志, 1996, 31(3): 6-9.
    [111]陈晓耘.不同pH值下宽口唇鱼精子活力的变化[J].西南民族大学学报:自然科学版, 2000, 26(1): 72-75.
    [112]朱冬发,成永旭,王春琳,等.环境因子对大黄鱼精子活力影响[J].水产科学, 2005, 24(12): 4-6.
    [113]苏天凤,艾红.鱼类精子活力及其超低温保存研究综述[J].上海水产大学学报, 2004, 13(4): 343-347.
    [114]江世贵,区又君,李加儿.不同温度保存对黑鲷精子生理特性的影响[J].热带海洋, 1999, 18(4): 81-85.
    [115] Kitajima C, Takaya M, Tsukahima Y, et al. Development of eggs, larvae and juveniles of the grouper, Epinephelus septemfasciatus, reared in the laboratory[J]. Japanese Journal of Ichthyology, 1991, 38(1): 47-55.
    [116]赵会宏,刘晓春,林浩然,等.斜带石斑鱼精子超微结构及盐度、温度、pH对精子活力及寿命的影响[J].中国水产科学, 2003, 10(4): 286-292.
    [117] Poirier GR, Nicholson N. Fine structure of the testicular spermatozoa from the channel catfish, Ictalurul punctatus[J]. J of Ultrastruct Res, 1980, 80(1): 104-110.
    [118]邹记兴,向文洲,胡超群,等.点带石斑鱼仔、稚、幼鱼的生长与发育[J].高技术通讯, 2003, 4: 77-84.
    [119]陈国华,张本.点带石斑鱼仔、稚、幼鱼的形态观察[J].海南大学学报:自然科学版, 2001, 19(2): 151-156.
    [120]秦志清,林越赳,张雅芝,等.漠斑牙鲆仔、稚、幼鱼的形态发育研究[J].台湾海峡, 2008, 27(4): 472-481.
    [121]区又君,李加儿.卵形鲳鲹的早期胚胎发育[J].中国水产科学, 2005, 12(6): 786-789.
    [122]何永亮,区又君,李加儿.卵形鲳鲹早期发育的研究[J].上海海洋大学学报, 2009, 18(4): 428-434.
    [123]刘冬娥,张雅芝,方琼珊,等.斜带石斑鱼仔、稚、幼鱼的形态发育研究[J].台湾海峡, 2008, 27(2): 180-189.
    [124]刘冬娥,张雅芝,王涵生.斜带石斑鱼仔、稚鱼的摄食与生长特征[J].台湾海峡, 2007, 26(1): 99-107.
    [125]王涵生,方琼珊,郑乐云.赤点石斑鱼仔稚幼鱼的形态发育和生长[J].上海水产大学学报, 2001, 10(4): 307-312.
    [126]许波涛,李加儿,周宏团.赤点石斑鱼的胚胎和仔鱼形态发育[J].水产学报,1985, (4): 369-374.
    [127]于海瑞,麦糠森,段青源,等.人工鱼苗条件下大黄鱼仔稚幼鱼的摄食与生长[J].中国水产科学, 2003, 10(6): 495-501.
    [128]柳学周,徐永江,王妍妍,等.条石鲷的早期生长发育特征[J].动物学报,2008, 54(2): 332-342.
    [129]杨瑞斌,谢从新,樊启学.仔稚鱼发育敏感期研究[J].华中农业大学学报, 2008,27(1):161-165.
    [130] Fukuhara O. Effects of temperature on yolk utilization initial growth, and behavior of unfed marine fish larvae[J]. Marine Biology, 1990, 106: 169-174.
    [131]张仁斋,陆穗芬.短尾大眼鲷卵及仔、稚鱼的发育[J].水产学报, 1982, 6(3): 243-251.
    [132]孙庆海,施维德,孙建璋.鮸鱼早期发育的形态学初步研究[J].南方水产, 2005, 1(6): 8-17.
    [133]薄治礼,周婉霞,辛俭,等.青石斑鱼Epinephelus awoara仔、稚、幼鱼日龄和形态、生长发育的研究[J].浙江水产学院学报, 1993, 12(3): 165-173.
    [134]刘凯,陆宏达.中华绒螯蟹血细胞体外吞噬能力的研究[J].南方水产, 2007, 3(6): 47-51.
    [135]林光华,张风旺,翁氏骢.草鱼血液的研究[J].动物学报, 1985, 31(4):336-343.
    [136] Watson LJ, Shechmeister IL, Jackson LL. The hematology of goldfish, Carassius auratus[J]. Cytologia, 1962, 28(2): 118- 130.
    [137]舒琥,赵会宏,卢宝仙,等.黄鳍东方鲀外周血细胞显微结构及血液学指标研究[J].水产科学, 2007, 26(4): 200-203.
    [138]郑卫东,李大鹏.中华鲟幼鱼的血液生化特性[J].华中农业大学学报, 2007, 26(1): 95-97.
    [139] Sadovy Y, Kulbicki M, Labrosse P, et al. The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef fish[J]. Reviews in Fish Biology and Fisheries, 2004, 13(3): 327-364.
    [140]何永亮,区又君,蔡文超,等.驼背鲈鳃丝的光镜、扫描和透射电镜观察[J].华南农业大学学报, 2009, 30(2): 86-89.
    [141]李加儿,区又君,刘匆.红笛鲷和卵形鲳鲹鳃的扫描电镜观察与功能探讨[J].海洋水产研究, 2007, 28(6): 45-50.
    [142]李加儿,刘匆,区又君,等.鲻和鲮鳃丝的扫描电镜比较观察[J].动物学杂志, 2005, 40(4): 74-78.
    [143]孙京田,王爱芹.斑鳢鳃表面亚微形态结构特征的扫描电镜研究[J].山东师范大学学报:自然科学版, 2006, 21(1): 130-132.
    [144]王艳,胡先成.不同盐度下鲈鱼稚鱼鳃的显微结构观察[J].海洋科学, 2009,33(12): 138-142.
    [145] Hughes GM, Wright DE. A comparative study of the ultrastructure of the water/blood pathway in the secondary lamellae of teleost and elasmobranch fishes-benthic forms[J]. Z Zellforsch, 1970, 104(4): 478-493.
    [146] Vogel WOP. Arteriovenous anastomoses in the afferent region of Trout gill filaments (Salmo gairdneri Richardson, Teleostei)[J]. Zoomorphologie, 1978, 90(3): 205-212.
    [147] Vogel W, Vogel V, Pfautsch M. Arterio-venous anastomoses in Rainbow Trout gill filaments[J]. Cell and Tissue Research, 1976, 167(3): 373-385.
    [148] Palzenberger M, Pohla H. Gill surface area of water-breathing freshwater fish[J]. Reviews in Fish Biology an Fisheries, 1992, 2(3): 187-216.
    [149] Bartels H, Potter IC. Communicating (gap) junctions between chloride cells in the gill epithelium of the lamprey, Geotria australis[J]. Cell and Tissue Research, 1990, 259(2): 393-395.
    [150]关海红,匡友谊,徐伟,等.哲罗鱼消化系统形态学和组织学观察[J].中国水产科学, 2008, 15(5): 873-879.
    [151]王建鑫,石戈,李鹏,等.条石鲷消化道的形态学和组织学[J].水产学报, 2006, 30(5): 618-626.
    [152] Albrecht MP, Ferreira MFN, Caramaschi EP. Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae)[J]. Journal of Fish Biology, 2001, 58(2): 419-430.
    [153]孙婴宁,马飞,邵淑娟,等.日本七鳃鳗消化系统显微与超微结构[J].动物学杂志, 2006, 41(6): 14-22.
    [154]吴金英,林浩然.斜带石斑鱼消化系统胚后发育的组织学研究[J].水产学报, 2003, 27(2): 7-12.
    [155]施志仪,陈晓武,顾一峰.牙鲆消化道组织学观察及内分泌细胞分布[J].中国水产科学, 2006, 13(5): 851-855.
    [156]王永波,陈国华,骆剑,等.波纹唇鱼消化系统的形态解剖与肠道上皮的扫描电镜观察[J].海洋通报, 2010, 29(2): 199-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700