用户名: 密码: 验证码:
层状场地中地铁隧道群对地震动的放大作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁作为当今城市轨道交通系统的重要组成部分,对于缓解大城市日益严峻的交通拥堵状况具有重要作用。地铁隧道通常由单个或多个洞室组成,根据工程波动理论,洞室对地震波的散射作用必将对隧道沿线地震动产生影响,并可能造成沿线既有地面建筑物抗震设防水平不足。我国是一个地震频发国家,有一半以上大中城市位于7度及以上的抗震设防区,因此研究隧道对其沿线地震动所造成的影响具有重要意义。
     将频域内间接边界元法与傅里叶时频变换法相结合,在时域内研究了天津地区典型线性场地中单洞室、双洞室对地表地震动的影响,典型场地包括干土场地和饱和场地,地震动运动方式包括平面内运动和平面外运动。研究表明,洞室的存在可显著改变洞室附近场地的地表地震动大小和频谱。对于所输入的Taft波和El Centro波,就双洞室来讲,地表PGA(加速度峰值)最高可被放大45.2%;此外,反应谱频谱特性也会发生变化。
     建立了一种新的有限元与间接边界元耦合算法,并将耦合方法与等效线性化方法结合,实现了对土层非线性的模拟,在此基础上进一步研究了天津地区典型非线性场地中单洞室、双洞室对平面内地震动的影响。研究表明,洞室对地表地震动具有显著的非线性放大作用。对于所输入的加速度峰值分别为0.1g和0.2g的Taft波和El Centro波,就双洞室来讲,地表PGA最高可被放大30.7%。
     研究表明,层状场地中地铁隧道对地震动具有显著的放大作用,建议在地铁隧道设计过程中考虑这一影响。
As an important ingredient of today’s urban railway transit system, subway playsa significant part in easing serious traffic congestion in large cities. Subway tunnelsare usually composed of one or more parallel cavities, according to engineering wavepropagation theory, the effect of scattering by cavities on seismic waves shallundoubtedly exert influence on seismic motion in the vicinity of tunnels, and makeaseismic capacity of the existing buildings nearby inadequate. China is an earthquakefrequent country, over half of its large cities are located at regions of seismic intensity7or higher degree, and consequently, study about the influence of tunnels on seismicmotion nearby will be of great significance.
     By combing indirect boundary element method (IBEM) in frequency domain andFourier time-frequency transform, and taking typical linear sites in Tianjin district asexamples, effects of single cavity and twin cavities in layered half space on surfaceground motion are studied, the sites include dry site and saturated poroelastic site, andthe vibration modes include anti-plane vibration and in-plane vibration. It is shownthat, existence of cavity remarkablely changes magnitude and spectrum of groundseismic moiton nearby. Under the excitation of Taft wave and El Centro wave, as fortwin cavities, the amplification of PGA can be up to45.2%. Besides, spectralcharacteristic of response spectrum will also be changed.
     A new algorithm coupling FEM and IBEM is established, and by introducingequivalent linear method into such algorithm, nonlinear characteristic of soil layer canbe taken into consideration, on this basis, by taking typical nonlinear site in Tianjindistrict as an example, effects of single cavity and twin cavities in layered half spaceon surface ground motion are further studied. It is shown that unlinear amplificationof surface ground motion by cavity is also obvious. Under the excitation of Taft waveand El Centro wave with PGAs of0.1g and0.2g, while as for twin cavities, theamplification of PGAcan be up to30.7%.
     Significant amplification of seismic motion by underground metro tuunels isrevealed in present study, such amplification should be better taken into account whendesigning subway tunnels.
引文
[1]中国地铁在线,中国城市轨道交通成长,www.zgdtzx.com,2012-04-08
    [2]中国地铁在线,地铁建设明显升温中小城市向地下要空间,www.zgdtzx.com,2012-05-09
    [3]胡聿贤,地震工程学(第二版),北京:地震出版社,2006,69~70
    [4]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局,GB50011-2010,建筑抗震设计规范,北京:中国建筑工业出版社,2010-12-01
    [5]于翔,地铁建设中应充分考虑抗地震作用——阪神地震破坏的启示,铁道建筑技术,2000,6:32~35
    [6]庄海洋,程绍革,陈国兴,阪神地震中大开地铁车站震害机制数值仿真分析,岩土力学,2008,29(1):245~250
    [7]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局,GB XXXXX-2010,城市轨道交通结构抗震设计规范(征求意见稿),北京:中国XX出版社,2010
    [8]梁建文,张浩,V. W. Lee,地下洞室群对地面运动影响问题的级数解答——P波入射,地震学报,2004,26(3):269~280
    [9]梁建文,张浩,V. W. Lee,地下洞室群对地面运动的影响,土木工程学报,2005,38(2):106~113和125
    [10]梁建文,尤红兵,层状半空间中洞室对入射平面P波的放大作用,地震工程与工程振动,2005,25(2):16~24
    [11]梁建文,纪晓东,V. W. Lee,地下圆形衬砌隧道对沿线地震动的影响(Ⅰ):级数解,岩土力学,2005,26(4):520~524
    [12]梁建文,纪晓东,V. W. Lee,地下圆形衬砌隧道对沿线地震动的影响(Ⅱ):数值结果,岩土力学,2005,26(5):687~692
    [13]尤红兵,梁建文,层状半空间中洞室对入射平面SV波的散射,岩土力学,2006,27(3):383~388
    [14]梁建文,李艳恒,V. W. Lee,地下洞室群对地面运动影响问题的级数解答:SH波入射,岩土力学,2006,27(10):1663~1667和1672
    [15]J. Liang, Z. Liu, Diffraction of plane SV waves by a cavity in poroelastichalf-space, Earthquake Engineering and Engineering Vibration,2009,8(1):29~46
    [16]梁建文,李帆,刘中宪,地铁隧道群对地震动的放大作用,地震工程与工程振动,2011,31(2):32~39
    [17]梁建文,巴振宁,层状半空间中洞室对平面SH波的放大作用,地震工程与工程振动,2012,32(2):14~24
    [18]梁建文,陈健琦,巴振宁,弹性层状半空间中无限长洞室对斜入射平面SH波的三维散射(Ⅰ)——方法及验证,地震学报,2012,34(6):795~802
    [19]梁建文,陈健琦,巴振宁,弹性层状半空间中无限长洞室对斜入射平面SH波的三维散射(Ⅱ)——数值结果与分析,地震学报,2013,35(1)
    [20]V. W. Lee, On deformations near circular underground cavity subjected toincident plane SH-waves, Proceedings of the Application of Computer Methods inEngineering Conference,1977:951~962
    [21]V. W. Lee, M. D. Trifunac, Response of tunnels to incident SH-waves,Journal of Engineering Mechanics Division, ASCE,1979,105:643~659
    [22]T. Balendra, D. P. Thambiratnam, Chan Ghee Koh and etc., Dynamicresponse of twin circular tunnels due to incident SH-waves, Earthquake Engineeringand Structural Dynamics,1984,12:181~201
    [23]V. W. Lee, H. Cao, Diffraction of SV waves by circular canyons of variousdepths, Journal of Engineering Mechanics,1989,115(9):2035~2056
    [24]V. W. Lee, J. Karl, Diffraction of SV waves by underground circularcylindrical cavities, Soil Dynamics and Earthquake Engineering,1992,11:445~456
    [25]V. W. Lee, J. Karl, On deformations of near a circular underground cavitysubjected to incident plane P waves, European Journal of Earthquake Engineering,1993,1:29~36
    [26]C. A. Davis, V. W. Lee, J. P. Bardet, Transverse response of undergroundcavities and pipes to incident SV waves, Earthquake Engineering and StructuralDynamics,2001,30:383~410
    [27]C. H. Lin, V. W. Lee, M. I. Todorovska and etc., Zero-stress, cylindricalwave functions around a circular underground tunnel in a flat, elastic half-space:incident P-waves, Soil Dynamics and Earthquake Engineering,2010,30:879~894
    [28]朱合华,陈清军,杨林德,边界元法及其在岩土工程中的应用,上海:同济大学出版社,1996,2~4
    [29]A. A. Stamos, D. E. Beskos,3-D seismic response analysis of long linedtunnels in half-space, Soil Dynamics and Earthquake Engineering,1996,15:111~118
    [30]J. Liang, H. You, Dynamic stiffness matrix of a poroelastic multi-layeredsite and its Green’s functions, Earthquake Engineering and Engineering Vibration,2004,3(2):273~282
    [31] J. Liang, H. You, Green's functions for uniformly distributed loads acting onan inclined line in a poroelastic layered site, Earthquake Engineering and EngineeringVibration,2005,4(2):233~241
    [32]尤红兵,层状饱和半空间中凹陷地形或隧洞对弹性波的散射,博士学位论文,天津大学,2005
    [33]巴振宁,层状半空间动力格林函数和局部场地对弹性波的散射,博士学位论文,天津大学,2008
    [34]F. J. Sanchez-Sesma, J. A. Esquivel, Ground motion on alluvial valleys underincident plane SH waves, Bulletin of the Seismological Society of America,1979,69:1107~1120
    [35]F. C. P. de Barros, J. E. Luco, Diffraction of obliquely incident waves by acylindrical cavity embedded in a layered viscoelastic halfspace, Soil Dynamics andEarthquake Engineering,1993,12:159~171
    [36] J. E. Luco, F. C. P. de Barros, Dynamic displacements and stresses in thevicinity of a cylindrical cavity embedded in a half-space, Earthquake Engineering andStructural Dynamics,1994,23:321~340
    [37]梁建文,刘中宪,柱面波在半空间中洞室周围的散射,地震工程与工程振动,2008,28(5):27~37
    [38]刘中宪,梁建文,张贺,弹性半空间中衬砌洞室对平面P波和SV波的散射(Ⅰ)——方法,自然灾害学报,2010,19(4):71~76
    [39]刘中宪,梁建文,张贺,弹性半空间中衬砌洞室对平面P波和SV波的散射(Ⅱ)——数值结果,自然灾害学报,2010,19(4):77~88
    [40]刘中宪,梁建文,张贺,弹性半空间中衬砌隧道对瑞利波的散射,岩石力学与工程学报,2011,30(8):1627~1637
    [41]何海健,刘维宁,王霆,地下铁道抗震研究的现状与探讨,中国安全科学学报,2005,15(8):4~7
    [42]王勖成,有限单元法,北京:清华大学出版社,2003,13~14
    [43]马行东,李海波,冯海鹏,动参数对三维洞室动态特性的影响分析,地下空间与工程学报,2006,2(1):83~86
    [44]李海波,马行东,李俊如等,地震荷载作用下地下岩体洞室位移特征的影响因素分析,岩土工程学报,2006,28(3):358~362
    [45]李海波,朱莅,吕涛等,考虑地震动空间非一致性的岩体地下洞室群地震反应分析,岩石力学与工程学报,2008,27(9):1757~1766
    [46]吕涛,李海波,杨建宏等,洛溪渡地下洞室群地震响应的二维及三维数值模型比较分析研究,岩土力学,2009,30(3):721~728
    [47]崔臻,盛谦,刘加进等,基于小波包的地下洞室群地震响应及其频谱特性研究,岩土力学,2010,31(12):3901~3906
    [48]崔臻,盛谦,冷先伦等,基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估,岩土力学,2012,31(4):703~712
    [49]徐荣桥,结构分析的有限元法与MATLAB程序设计,北京:人民交通出版社,2006,1~2
    [50]陈健云,胡志强,林皋,超大型地下洞室群的三维地震响应分析,岩土工程学报,2001,23(4):494~498
    [51]陈健云,胡志强,林皋,超大型地下洞室群的随机地震响应分析,水力学报,2002,1:71~75
    [52]陈健云,胡志强,林皋,大型地下结构三维地震响应特点研究,大连理工大学学报,2003,43(3):344~348
    [53]王如宾,徐卫亚,石崇等,高地震烈度区岩体地下洞室动力响应分析,岩石力学与工程学报,2009,28(3):568~575
    [54]李小军,卢滔,水电站地下厂房洞室群地震反应显示有限元分析,水利发电学报,2009,28(5):41~46
    [55]赵宝友,马震岳,丁秀丽,不同地震动输入方向下的大型地下岩体洞室群地震反应分析,岩石力学与工程学报,2010,29(增1):3395~3402
    [56]赵宝友,马震岳,梁冰等,考虑地震动行波效应的大型岩体地下洞室动力非线性反应分析,岩石力学与工程学报,2010,29(增1):3370~3377
    [57]张志国,肖明,陈俊涛,大型地下洞室地震灾变过程三维动力有限元模拟,岩石力学与工程学报,2011,30(3):509~523
    [58]毕继红,张鸿,邓芃,基于耦合分析法的地铁隧道抗震研究,岩土力学,2003,24(5):800~803
    [59]张鸿,毕继红,张伟,地铁隧道地震反应非线性分析,地震工程与工程振动,2004,24(6):146~153
    [60]林利民,陈健云,软土中浅埋地铁车站结构的抗震性能分析,防灾减灾工程学报,2006,26(3):268~273
    [61]陈国兴,庄海洋,程绍革等,土-地铁隧道动力相互作用的大型振动台试验:试验方案设计,地震工程与工程振动,2006,26(6):178~183
    [62]陈国兴,左熹,庄海洋等,地铁车站结构大型振动台试验与数值模拟的比较研究,地震工程与工程振动,2008,28(1):157~164
    [63]庄海洋,陈国兴,软弱地基浅埋地铁区间隧洞的地震反应分析,岩石力学与工程学报,2005,24(14):2506~2512
    [64]庄海洋,陈国兴,胡晓明,两层双柱岛式地铁车站结构水平向非线性地震反应分析,岩石力学与工程学报,2006,25(增1):3074~3079
    [65]庄海洋,陈国兴,双洞单轨地铁区间隧道非线性地震反应分析,地震工程与工程振动,2006,26(2):131~137
    [66]庄海洋,宰金珉,陈国兴,土-地下结构的非线性动力相互作用——理论及应用,自然灾害学报,2006,15(6):174~181
    [67]陈磊,陈国兴,毛昆明,框架式地铁车站结构大地震近场地震反应特性的三维精细化非线性分析,岩土工程学报,2012,34(3):490~497
    [68]陈国兴,庄海洋,徐烨,软弱地基浅埋隧洞对场地设计地震动的影响,岩土工程学报,2004,26(6):740~744
    [69]杨书燕,姜忻良,李新国,隧道对临近建筑物的地震反应影响分析,四川大学学报(工程科学版),2007,39(3):41~46
    [70]何伟,陈健云,于品清,地下结构开发对场地地表反应谱影响研究,地下空间与工程学报,2009,5(6):1098~1102和1114
    [71]朱小乔,楼梦麟,孔祥海,地下结构对工程场地地震动场的影响,震灾防御技术,2011,6(1):49~58
    [72]李帆,地铁隧道群对地震动的影响,博士学位论文,天津大学,2008
    [73]何伟,陈健云,地表建筑对地下车站结构地震响应的影响,振动与冲击,2012,31(9):53~58
    [74]陈建民,项彦勇,两个水平密贴地下结构的地震响应分析,隧道建设,2012,32(4):506~513
    [75]O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, Fifth Edition,Oxford: Butterworth Heinemann,2000
    [76]大崎顺彦,地震动的谱分析入门(第2版,田琪译),北京:地震出版社,2008
    [77]J. P. Wolf, Dynamic Soil-Structure Interaction, Englewood Cliffs:Prentice-Hall, INC.,1985
    [78]梁建文,巴振宁,三维层状场地精确动力刚度矩阵及格林函数,地震工程与工程振动,2007,27(5):7~17
    [79]梁建文,巴振宁,三维层状场地中斜面均布荷载动力格林函数,地震工程与工程振动,2007,27(5):18~26
    [80]M. A. Biot, General theory of three-dimensional consolidation, Journal ofApplied Physics,1941,12(2):155~164
    [81]M. A. Biot, Mechanics of deformation and acoustic propagation in porousmedia, Journal ofApplied Physics,1962,33(4):1482~1498
    [82]I. M. Idriss, H. B. Seed, Seismic response of horizontal soil layers, SoilMechanics and Foundations Division, Proceedings ofASCE,1968,94(4):1003~1031
    [83]齐文浩,薄景山,土层地震反应等效线性化方法综述,世界地震工程,2007,23(4):221~226
    [84]J. Lysme, T. Udaka, C-F Tsai, H. B. Seed, FLUSH: a computer program forapproximate3-D analysis of soil-structure interaction problems. EERC75~105,Earthquake Engineering Research Center, University of California, Berkeley
    [85]O. C. Zienkiewicz, D. W. Kelly, P. Bettess, The coupling of the finiteelement method and boundary solution procedures, International Journal forNumerical Methods in Engineering,1976,11:355~375
    [86]C. A. Brebbia, P. Georgiou P, Combination of boundary and finite elementsin elastostatics, Appl. Math. Model,1979,3:212~220
    [87]O. Tullberg, L. Bolteus, A critical study of different boundary elementstiffness matrices, Boundary element methods in engineering,1982:621~635
    [88]H. B. Li, G. M. Han, H. A. Mang, P. Torzicky, A new method for thecoupling of finite element and boundary element discretized subdomains of elasticbodies, Computer Methods in Applied Mechanics and Engineering,1986,54:161~85
    [89]Y. T. Feng, D. R. J. Owen, Iterative solution of coupled FE/BEdiscretization for plate-foundation interaction problems,Interational Journal forNumerical Methods in Engineering,1996,39:1889~1901
    [90]C. C. Lin, E. C. Lawton, J. A. Caliendo, L. R. Anderson, An iterative finiteelement-boundary element algorithm, Computers&Structures,1996,39(5):899~909
    [91]N. Kamiya, H. Iwase, E. Kita, Parallel computing for the combinationmethod of BEM and FEM, Engineering Analysis with Boundary Elements,1996,18:223~229
    [92]N. Kamiya, H. Iwase, E. Kita, Parallel implementation of boundary elementmethod with domain decomposition. Engineering Analysis with Boundary Elements,1996,18:209~216
    [93]N. Kamiya, H. Iwase, E. Kita, BEM and FEM combination parallel analysisusing conjugate gradient and condensation, Engineering Analysis with BoundaryElements,1997,20:319~326
    [94]W. M. Elleithy, H. J. Al-Gahtani, An overlapping domain decompositionapproach for coupling the finite and boundary element methods, Engineering Analysiswith Boundary Elements,2000,24:391~398
    [95]W. M. Elleithy, H. J. Al-Gahtani, M. Gebeily, Iterative coupling of BE andFE methods in elastostatics, Engineering Analysis with Boundary Elements,2001,25:685~695
    [96]M. Gebeily, W. M. Elleithy, H. J. Al-Gahtani, Convergence of the domaindecomposition finite element-boundary element coupling methods, ComputerMethods in Applied Mechanics and Engineering,2002,191:4851~4867
    [97]W. M. Elleithy, M. Tanaka, Interface relaxation algorithms for BEM-BEMcoupling and FEM-BEM coupling, Computer Methods in Applied Mechanics andEngineering,2003,192:2977~2992
    [98]O. V. Estorff, C. Hagen, Iterative coupling of FEM and BEM in3D transientelastodynamics, Engineering Analysis with Boundary Elements,2006,30:611~622
    [99]T. K. Mossessian, M. Dravinski, Application of a Hybrid Method forScattering of P, SV and Rayleigh Waves by Near-surface Irregularities, Bulletin of theSeismological Society ofAmerica,1987,77(5):1784~1803
    [100]K. R. Khair, S. K. Datta, A. H. Shah, Amplification of Obliquely IncidentSeismic Waves by Cylindrical Alluvial Valleys of Arbitrary Cross-sectional Shape.Part I. Incident P and SV Waves, Bulletin of the Seismological Society of America,1989,79(3):610~630
    [101]K. R. Khair, S. K. Datta, A. H. Shah, Amplification of Obliquely IncidentSeismic Waves by Cylindrical Alluvial Valleys of Arbitrary Cross-sectional Shape.Part II. Incident SH and Rayleigh Waves, Bulletin of the Seismological Society ofAmerica,1989,81(2):346~357
    [102]H. Takemiya, T. Tomono, M. Ono, K. Suda,2-D Irregular Site ResponseCharacteristics by FEM-FEM Hybrid Analysis, Structure Eng/Earthquake Eng JSCE1992,9(2):141s~50s
    [103]廖振鹏,工程波动理论导论(第二版),北京:科学出版社,2002,190~200
    [104]H. Lamb, On the propagation of tremors over the surface of an elastic solid,Phil. Trans. R. Soc. Lond. A.,1904,203:1~42
    [105]杜修力,赵密,王进廷,近场波动模拟的人工应力边界条件,力学学报,2006,38(1):49~56
    [106]严细水,弹性地基中三维动力问题的耦合粘性边界,岩土工程学报,2006,28(8):937~939
    [107]谷音,刘晶波,杜玉欣,三维一致粘弹性人工边界及等效粘弹性边界单元,工程力学,2007,24(12):31~37
    [108]M. Dravinski, T. K. Mossessian, Scattering of Plane Harmonic P, SV, andRayleigh Waves by Dipping Layers or Arbitrary Shape, Bulletin of the SeismologicalSociety ofAmerica,1987,77(1):212~235
    [109]巴振宁,梁建文,平面SV波在层状半空间中沉积谷地周围的散射,地震工程与工程振动,2011,31(3):18~26
    [110]郑颖人,岩土塑性力学基础(第1版),北京:中国建筑工业出版社,1989,181~222
    [111]陈国兴,岩土地震工程学,北京:科学出版社,2007,130~148
    [112]廖振鹏,李小军,地表土层地震反应的等效线性化解法,地震小区化——理论与实践,北京:地震出版社,1989
    [113]孙静,袁晓铭,陶夏新,竖向地震动对地表最大剪应变的影响,哈尔滨工业大学学报,2007,39(8):1216~1219
    [114]孙静,袁晓铭,陶夏新,考虑竖向地震动下模量比和阻尼比简化公式,哈尔滨工业大学学报,2008,40(2):174~177
    [115]尤红兵,赵凤新,荣棉水,地震波斜入射时水平层状场地的非线性地震反应,岩土工程学报,2009,31(2):234~240
    [116]尤红兵,梁建文,赵凤新,含饱和土的层状场地的动力响应,岩土力学,2008,29(3):679~684
    [117]J. P. Bardet, K. Ichii, C. H. Lin, EERA: Acomputer program for equivalentlinear earthquake site response analyses of layered soil deposits, University ofSouthern California,2000
    [118]史丙新,张力方,吕悦军等,天津滨海场地土动力学参数研究,震灾防御技术,2010,5(3):287~298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700