用户名: 密码: 验证码:
桥梁抗震性能评价的静力非线性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对桥梁震害的认识逐渐深入和计算机技术的不断发展,对桥梁的分析和计算已经由线性分析向非线性分析方向发展。非线性时程分析方法被认为是桥梁结构弹塑性分析的最准确的方法,但是由于其技术复杂、计算工作量大、结果处理繁杂,而且结果的准确性很大程度上依赖于输入的地面运动情况,因此在实际工程中并没有得到广泛的应用。而Pushover分析方法概念简单,计算简便,并能有效地评估结构的抗震性能,近年来逐渐被应用到桥梁结构的抗震性能评估中。但是由于传统的Pushover方法皆基于固定的侧向荷载分布模式,不能考虑高阶振型的影响以及结构屈服后振动特性的改变,因此只适用于桥墩高度较低的梁式桥,不能对高阶振型影响显著的高架桥和斜拉桥进行抗震性能评价。为了克服这些局限性,本文提出了几种改进方法,并提出了适用于斜拉桥的Pushover分析方法,主要研究内容如下:
     1.在动力学理论的基础上,借鉴MPA法中对各阶振型完全解耦的思想,对ASPA法进行简化,提出了改进的适应谱Pushover方法(简称IASPA法)。并对典型地震动下改进的适应谱Pushover法、传统的Pushover分析方法、MPA法以及非线性时程分析方法进行对比研究。结果表明,由于改进的适应谱Pushover方法直接利用反应谱来定义加载特性,且考虑了高阶振型的影响以及结构屈服后振动特性的改变,因此比传统的Pushover方法和MPA法具有更高的精度;并且,由于改进的适应谱Pushover方法忽略了结构屈服后各振型之间的耦合作用,所以较ASPA法计算更加简便,更适用于工程实际。
     2.利用改进的适应谱Pushover方法,对三个不同高度的桥墩进行推覆分析,考查高阶振型的影响,并将计算所得到的结果与非线性时程分析的结果进行对比。结果表明,对于中低高度的桥墩,高阶振型的影响较小,可以将桥墩简化成单自由度体系,利用传统的Pushover方法进行静力弹塑性分析。但是随着桥墩高度的增加,高阶振型对桥墩抗震性能的影响越来越显著,对于高度超过40m的高墩,忽略桥墩自身的惯性力以及高阶振型的贡献将会导致较大的误差。
     3.传统的基于力的Pushover分析方法,侧向荷载分布模式的选取将直接影响到Pushover分析方法对结构整体抗震性能的评估结果,震害、实验和理论分析都表明,变形能力不足和耗能能力不足是结构在大震作用下倒塌的主要原因,结构构件在大震作用下的破坏程度与结构的位移响应和构件的变形能力有关,所以用位移控制结构在大震作用下的行为更为合理。本文利用直接基于位移的方法对一个6层框架进行推覆分析,并对结构在推覆过程中的振型参与系数及位移模式的变化进行分析研究,提出了基于位移的适应谱Pushover方法(简称DASPA法)。
     4.利用DASPA法分别对两个不同高度的梁式桥进行Pushover分析,并将分析结果与非线性时程分析以及传统Pushover方法分析的结果进行比较。结果表明,由于DASPA法直接基于非弹性位移反应谱来定义加载位移模式,且考虑了高阶振型的影响及结构屈服后振动特性的改变,因此在评价结构的抗震性能时有着很高的精度,不仅适用于受基本振型控制的中低高度的桥梁,同时也适用于高阶振型影响显著的高架桥梁;由于DASPA法直接用位移来控制结构的加载模式,其每一步计算得到的结果直接是结构的变形,省略了基于力的Pushover分析方法中将结构的内力转化为变形来评估结构的抗震性能的步骤,并且当结构破坏达到一定程度时采用固定的位移加载模式,因此使得计算过程大为简化。
     5.斜拉桥为复杂的多自由度结构体系,其在地震中的反应受高阶振型影响显著,等效地震力的分布模式非常复杂,传统的基于力的Pushover方法无法对斜拉桥进行静力弹塑性分析。而DASPA法直接基于位移来定义加载模式,且考虑了高阶振型的影响,因此可以用来对斜拉桥进行弹塑性分析。但是由于斜拉桥桥型的特殊性,使得DASPA法的计算结果依赖于侧向荷载的加载方向,这与实际不符。鉴于此,本文又提出了针对斜拉桥的修正的DASPA法,对斜拉桥屈服后的位移模式进行修正。将DASPA法和修正的DASPA法得到的计算结果分别与非线性时程分析得到的计算结果进行比较,结果表明,修正的DASPA法比DASPA法具有更高的精度,计算结果更接近结构的真实反应值。
With the deepening of understanding of seismic damage to bridges and the development of the computer technology, nonlinear analysis and calculation for bridges gradually replace linear analysis theory. Nonlinear time history analysis (RHA) is considered to be the most accurate method for bridges elasto-plastic analysis, but it isn't widely used because of its complex technology, complicated calculation and miscellaneous result processing, and the accuracy of RHA depends a great extent on the input ground motion. Recently, with the development of performance-based seismic design thought, pushover analysis procedure has been accepted and gradually used for estimating the seismic performance for bridges because of its simple concept and easy calculation. All the classic pushover analysis procedures are based on the invariant force distributions, but none of the invariant force distributions can account for the contributions of higher modes to response, or for a redistribution of inertia forces after structural yielding and the associated changes in the vibration properties of the structure. So the classic pushover analysis procedures are just suitable for the beam bridge with low piers, not for the beam bridge with high piers and not for cable-stayed bridge. To overcome these limitations, several improved pushover analysis procedures are proposed, and an improved pushover analysis procedure which is applicable to cable-stayed bridge is put forward. The main research work covers the following aspects:
     1. The adaptive spectra-based pushover analysis (ASPA) procedure has been proposed by Gupta which accounts for the effect of higher modes and overcomes the shortcomings of the classic pushover analysis procedures. While it provides better estimates of seismic demands, it is conceptually complicated and computationally demanding for routine application in structural engineering practice. In this paper, an improved adaptive spectra-based pushover analysis (IASPA) procedure is proposed by using the thought of neglecting the coupling of the N modes in modal pushover analysis procedure (MPA). And the seismic performance determined by IASPA is compared with pushover analysis using two force distributions in FEMA-274 and nonlinear RHA procedures. The results indicate that IASPA procedure provides more superior accuracy in estimating seismic performance on bridge structures because that it accounts for the effect of higher modes and for a redistribution of inertia forces after structural yielding. And because of its neglecting the coupling of the N modes, it is more convenient for structural engineering practice than ASPA method.
     2. Three piers in different height are investigated by the IASPA procedure and nonlinear RHA method. And the effects of higher modes to seismic performance of the piers in different height are studied. The results indicate that higher modes have little effects on medium or low piers but great effects on higher piers. The medium or low piers can be equivalent to single freedom systems and be estimated by the classic pushover analysis procedures. But neglecting the inertia force of pier body and the effects of higher modes will lead to big errors for piers higher than 40m.
     3. The results of the classic pushover analysis procedure based on force for estimating the seismic performance of the bridge depend on the selection of the lateral load pattern. Earthquake damage, experiment and theoretical analysis all indicate that the deficiency of transfiguration capacity and capacity of energy dissipation is the main reason of structure collapse. The degree of damage of the structures in large earthquake relates to their displacement responses and deformability. So it is more reasonable to control structural behavior by displacement. By studying the change of mode participation coefficient and displacement pattern of a six-story-frame in pushover process, in this paper, an adaptive displacement-spectra-based pushover analysis procedure (DASPA) is put forward which accounts for the effect of higher modes and for a redistribution of inertia forces because of structural yielding and the associated changes in the vibration properties of the structure.
     4. Pushover analysis is carried out for two bridges of different height by DASPA procedure and other two classic pushover methods. And the seismic performance determined by the three pushover analysis methods is compared with nonlinear RHA method. The results indicate that DASPA procedure provides more superior accuracy and reasonability than other two classic pushover methods. Because DASPA is based on displacement directly, and the behavior of the structure in the earthquake is controlled by displacement in the whole processing, it omits the process of transformation the internal force to deformation to estimate the seismic performance of the structure. So it has the simpler calculating process and computational attractiveness for routine application in structure engineering practice.
     5. Cable-stayed bridge belongs to a typical multi-degree-of-freedom system which has complicated vibration characteristic. The seismic performance of the cable-stayed bridge can't be estimated by classic pushover analysis methods because of the great effects of higher modes on it. But DASPA procedure can be used to estimate the seismic performance for cable-stayed bridge because it considers the contributions of higher modes to response and the changes in the vibration properties of the structure after structural yielding. But seismic performance determined by DASPA for cable-stayed bridge depends on the loading direction because of the special bridge type for cable-stayed bridge. In this paper, a modified DASPA procedure (MDASPA) is put forward that the post-yield displacement pattern is modified to be close to practice. The seismic performance determined by DASPA and MDASPA is compared with nonlinear RHA procedure. The results indicate that the MDASPA procedure provides more superior accuracy in estimating seismic performance for structures compared with DASPA procedure.
引文
[1]范立础.桥梁抗震.上海:同济大学出版社,1997.
    [2]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992.
    [3]李国豪.工程结构抗震动力学.上海:上海科学技术出版社,1980.
    [4]胡聿贤.地震工程学.北京:地震出版社,1988.
    [5]范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001.
    [6]M.J.N.Priestley,,F.Seible,G.MacRae.The kobe earthquake of January 17,1955:Initial Impressions from a quick reconnaissance.Report No.SSRP-95/03.University of California,San Diego,1995.
    [7]M.J.N.普瑞斯特雷,F.塞勃勒,GM.卡尔维.桥梁抗震设计与加固.北京:人民交通出版社,1999.
    [8]柳春光,林皋,李宏男,周晶.生命线地震工程导论.大连:大连理工大学出版社,2005.
    [9]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用.北京:科学出版社,2004.
    [10]S.A.Freeman.Prediction of response of concrete buildings to severe earthquake motion.Publication SP-55,American Concrete Institute,Detroit,MI,1978:589-605.
    [11]S.A.Freeman,J.P.Nicoletti,J.V.Tyrell.Evaluations of existing buildings for seismic risk - A case study of Puget Sound Naval Shipyard,Bremerton,Washington.Proceedings of 1st US National Conference on Earthquake Engineering,EERI,Berkeley,1975:113-122.
    [12]杨溥,李东,李英民,赖明.抗震结构静力弹塑性分析(Push-over)方法的研究进展.重庆建筑大学学报.2000.22:87-92.
    [13]周云,安宇,梁兴文.基于性态的抗震设计理论和方法的研究与发展.世界地震工程.2001,17(2):1-7.
    [14]J.P.Moehle.Displacement-based design of RC structures subjected to earthquakes.Earthquake Spectra.1992,3:403-428.
    [15]K.R.Collins.Reliability-based design in the context of performance-based design.Proc of Structural Engineers World Congress(SEWC'98),USA,1998.
    [16]Y.K.Wen.Reliability and performance based design.Structural Safety.2001,23:407-428.
    [17]R.D.Bertero,V.Vertero.Performance-based seismic engineering:the need for a reliable conceptual comprehensive approach.Earthquake Engineering and Structural Dynamics.2002,31:627-652.
    [18]S.Ganzerli,C.P.Pantelides,L.D.Reaveley.Performance-based design using optimization design.Earthquake Engineering and Structural Dynamics.2000,29:1677-1690.
    [19]A.Ghobarah.Performance-based design in earthquake engineering:state of development.Engineering Structures.2001,23:878-884.
    [20]A.M.Chandler,N.T.K.Lam.Performance-based design in earthquake engineering:a multidisciplinary review.Engineering Structures.2001,23:1525-1543.
    [21]A.M.Chandler,P.A.Mendis.Performance of reiforced concrete frames using force and displacement based seismic assessment methods.Engineering Structures.2000,22:352-363.
    [22]C.P.Court.Performance based engineering of buildings-a displacement design approach.Proc of Structural Engineers World Congress(SEWC'98),USA,1998.
    [23]H.Krawinkler.Issues and challenges in performance based seismic design.Proc of Structural Engineers World Congress(SEWC'98),USA,1998.
    [24]B.J.Choi,J.H.Shen.The establishing of performance level thresholds for steel moment-resistant frame using an energy approach.The structural design of tall buildings.2001,10:53-67.
    [25]M.S.Medhekar,D.J.L.Kennedy.Displacement-based seismic design of buildings-application.Engineering Structures.2000,22:210-221.
    [26]A.H-S.Ang,J.C.Lee.Cost optimal design of RC buildings.Reliability Engineering and System Safety.2001,73:233-238.
    [27]H.Krawinkler.Challenges and progress in performance-based earthquake engineering.International seminar on seismic engineering for tomorrow-in honor of professor Hiroshi Akiyama,Tokyo,Japan,1999.
    [28]Eurocode-8.Design of structures for earthquake resistance.General rules,seismic actions and rules for buildings.London:British Standards Institution,2003.
    [29]中华人民共和国标准.建筑抗震设计规范(GB50011-2001).中国建筑工业出版社,2001.
    [30]SEAOC Vision 2000 Committee.Performance-Based Seismic Engineering of Building.Report Prepared by Structural Engineers Association of California,Sacramento,California,USA,1995.
    [31]FEMA-273.NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings.Federal Emergency management Agency,Washington D.C.,September,1996.
    [32]K.G.Smith.Innovation in earthquake resistant concrete design philosophies:A century of progress since hennebique's patent.Engineering Structures.2001,23:72-81.
    [33]邓崇任,柴俊甫,廖文羲,etal.耐震与性能设计规范研究(一).Report No.NCREE-04-015.台湾地震工程研究中心,2004.
    [34]A.K.Chopra,R.K.Goel.Capacity demand diagram methods for estimating seismic deformation of inelastic structures SDF system.Report No.PEER-1999/02.Pacific Earthquake Engineering Research Center,University of California,Berkeley,1999.
    [35]Applied Technology Council(ATC),Seismic evaluation and retrofit of concrete buildings.Report No.Report ATC 40,1996.
    [36]FEMA274.NEHRP Commentary on the guidelines for the rehabilitation of buildings.Report No.Federal Emergency Management Agency,Washington D C,September,1996.
    [37]FEMA273.NEHRP Commentary on the guidelines for the rehabilitation of buildings.Washington D C:Federal Emergency management Agency,September,1996.
    [38]王丰.基于性能的结构多维抗震设计方法研究.大连:大连理工大学,2007.
    [39]Y.Y.Lin,K.C.Chang,Y.L.Wang.Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns.Earthquake Engineering and Structural Dynamics.2004,33:35-48.
    [40]王菊,彭兴民.中高层框剪结构侧向力分布模式的研究.山西建筑.2007,(31):86-87.
    [41]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学.2001,(5):8-13.
    [42]郭杰强.侧向荷载分布方式对钢筋混凝土框架结构层间耗能分布的影响.中外建筑.2007,(2):77-79.
    [43]李刚,刘永.不同加载模式下不对称结构静力弹塑性分析.大连理工大学学报.2004,(3):350-355.
    [44]种迅,叶献国,等.Pushover分析中侧向力分布形式的影响.工程力学.2001,(A03):298-302.
    [45]侯爱波,汪梦甫,周锡元.Pushover分析方法中各种不同的侧向荷载分布方式的影响.世界地震工程.2007,(3):120-128.
    [46]叶献国,李康宁,等.Pushover方法与循环往复加载分析的研究.合肥工业大学学报:自然科学版.2001,(6):1019-1024.
    [47]孙景江,TetsuroOno,赵衍刚,王威.Lateral load pattern in pushover analysis.地震工程与工程振动:英文版.2003,(1):99-108.
    [48]Sun J,Tetsuro O,Zhao Y,Wang W.Lateral load pattern in pushover analysis.Earthquake Engineering and Engineering Vibration.2003,2(1):99-107.
    [49]Kalkan E,Kunnath SK.Lateral load distribution in nonlinear static procedures for seismic design.Nashville,TN,United States:American Society of Civil Engineers,Reston,United States,2004:707-716.
    [50]Krawinkler H,Seneviratna GDPK.Pros and cons of a pushover analysis of seismic performance evaluation.Engineering Structures.1998,20(4-6):452-464.
    [51]Eberhard MO,Sozen MA.Behavior-based method to determine design shear in earthquake-resistant walls.Journal of Structural Engineering.1993,119(2):619-640.
    [52]Fajfar P,Gaspersic P.N2 method for the seismic damage analysis of RC buildings.Earthquake Engineering & Structural Dynamics.1996,25(1):31-46.
    [53]Gupta B,Kunnath SK.Adaptive spectra-based pushover procedure for seismic evaluation of structures.Earthquake Spectra.2000,16(2):367-391.
    [54]Chopra AK,Goel RK.A modal pushover analysis procedure for estimating seismic demands for buildings.Earthquake Engineering and Structural Dynamics.2002,31(3):561-582.
    [55]陈跃进,王树和.直接基于位移的抗震设计方法及应用.科学技术与工程.2005,(17):1274-1276.
    [56]易伟建,蒋蝶.一种基于滞回耗能的改进pushover分析方法.自然灾害学报.2007,(3):104-108.
    [57]龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法.地震工程与工程振动.2005,(3):18-23.
    [58]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用.地震工程与工程振动.2004,(1):30-38.
    [59]王东升,李宏男,王国新.双向地震动作用弹塑性反应谱研究.大连理工大学学报.2005,45(2):248-254.
    [60]小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展.建筑结构.2000,6:3-9.
    [61]胡双平.浅谈Pushover分析中侧向加载模式的选取.山西建筑.2007,(34):88-89.
    [62]刁现伟,董冰.平面不对称结构的Pushover分析及抗震性能评估.华东交通大学学报.2005,(5):9-11.
    [63]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析.建筑科学与工程学报.2005,(2):47-50.
    [64]张克纯,李丕宁,陆洲导,秦荣.抗震结构静力弹塑性分析的Pushover-QR法.沈阳建筑大学学报:自然科学版.2006,(2):232-236.
    [65]王力,李红玲.静力弹塑性设计方法(pushover)的原理和改进.山西建筑.2003,(17):8-9.
    [66]肖明葵,马占杰.结构抗震性能评估的改进模态能力谱法.重庆大学学报:自然科学版.2007,(2):115-119.
    [67]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.工程力学.2003,20(4):45-49.
    [68]尹华伟,易伟建.结构地震反应Pushover位移形状向量的选取.湖南大学学报:自然科学版.2004,(5):88-93.
    [69]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动.2004,(3):89-97.
    [70]王丰,李宏男.基于等效单自由度体系的结构滞回耗能估计.大连理工大学学报.2007,(1):85-89.
    [71]李刚.基于Pushover分析的钢框架整体刚度和屈服强度的概率统计特性.应用力学学报.2004,(2):101-105.
    [72]陈锡平,丁建国,张勇.高阶振型对结构Pushover分析的影响.山西建筑.2007,(4):62-63.
    [73]夏心红,沈蒲生,龚胡广,方辉.高层建筑模态抗震设计中的多模态静力推覆分析.湖南大学学报:自然科学版.2007,(4):10-14.
    [74]Lin J-L,Tsai K-C.Simplified seismic analysis of asymmetric building systems.Earthquake Engineering and Structural Dynamics.2007,36(4):459-479.
    [75]Goel RK,Chopra AK.Role of higher-"mode" pushover analyses in seismic analysis of buildings.Earthquake Spectra.2005,21(4):1027-1041.
    [76]李峻,叶燎原.Push-over分析方法及其与非线性动力分析法的对比.世界地震工程.1999,15(2):34-39.
    [77]Zhang K-C,Li P-N,Lu Z-D,Qin R.Pushover-QR method for static elasto-plastic analysis of aseismic structures.Shenyang Jianzhu Daxue Xuebao(Ziran Kexue Ban)/Journal of Shenyang Jianzhu University(Natural Science).2006,22(2):232-236.
    [78]Barros RC,Almeida R.Pushover analysis of asymmetric three-dimensional building frames.Journal of Civil Engineering and Management.2005,11(1):3-12.
    [79]Li G,Liu Y.Pushover analysis of 3D eccentric structures.Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics.2005,22(5):529-533.
    [80]Chopra AK,Goel RK.A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings.Earthquake Engineering and Structural Dynamics.2004,33(8):903-927.
    [81]Chopra AK,Goel RK.A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation.Report No.PEER-2001/03.Pacific Earthquake Engineering Research Center,University of California,Berkeley,2001.
    [82]Goel RK,Chopra AK.Modal pushover analysis for unsymmetric buildings.New York,NY,United States:American Society of Civil Engineers,Reston,VA 20191-4400,United States,2005:1847-1855.
    [83]Chopra AK,Goel RK,Chintanapakdee C.Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands.Earthquake Spectra.2004,20(3):757-778.
    [84]Turker K,Irtem E.An effective multi-modal and adaptive pushover procedure for buildings.ARI Bulletin of the Istanbul Technical University.2007,54(5):34-45.
    [85]王跃方,谷滨,李海江.框架结构地震反应push-over研究.大连理工大学学报.2002,42(6).
    [86]王理,王亚勇,程绍革.空间结构非线性静力分析的工程应用.建筑结构学报.2000,21(1):57-62.
    [87]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例.世界地震工程.2004,(1):45-53.
    [88]方德平,王全凤.基于改进能力谱法的砼框架Pushover分析.工程力学.2008,25(1):150-154.
    [89]欧进萍,侯钢领,等.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报.2001,(6):81-86.
    [90]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用.工程力学.2006,(8):69-73.
    [91]熊学玉,李春祥,耿耀明,黄鼎业.大跨预应力混凝土框架结构的静力弹塑性(pushover)分析.地震工程与工程振动.2004,(1):68-75.
    [92]冷谦,于建华.Push-over方法在隔震结构中的应用.四川大学学报(工程科学版).2002,34(3):34-37.
    [93]Fang D-P,Wang Q-F.Pushover analysis of concrete frame using improved capacity spectrum method.Gongcheng Lixue/Engineering Mechanics.2008,25(1):150-154.
    [94]秦家长,罗奇峰.Mpa方法在地震工程中的应用.四川建筑.2007,(3):147-149.
    [95]Goel RK.Evaluation of modal and FEMA pushover procedures using strong-motion records of buildings.Earthquake Spectra.2005,21(3):653-684.
    [96]Goel RK.Evaluation of modal and FEMA pushover analysis procedures using recorded motions of two steel buildings.Nashville,TN,United States:American Society of Civil Engineers,Reston,United States,2004:697-706.
    [97]Chopra AK,Chintanapakdee C.Evaluation of Modal and FEMA Pushover Analyses:Vertically "Regular" and Irregular Generic Frames.Earthquake Spectra.2004,20(1):255-271.
    [98]Goel RK,Chopra AK.Evaluation of Modal and FEMA Pushover Analyses:SAC Buildings.Earthquake Spectra.2004,20(1):225-254.
    [99]Jia H,Yan G.Application of pushover method to seismic resistant performance evaluation of double column bridge pier.Beijing Jiaotong Daxue Xuebao/Journal of Beijing Jiaotong University.2008,32(1):74-78.
    [100]Gupta B,Kunnath S,Islam S.Application of nonlinear analysis in seismic evaluation of an existing nonductile concrete building.Portland,OR,USA:ASCE,New York,NY,USA,1997:1022-1026.
    [101]Lu Z,Ge H,Usami T.Applicability of pushover analysis-based seismic performance evaluation procedure for steel arch bridges.Engineering Structures.2004,26(13):1957-1977.
    [102]S.A.Freeman.Development and use of capacity spectrum method.Proceedings of 6th US National Conference on Earthquake Engineering,Seattle,CD-ROM,EERI,Oakland,1998.
    [103]Saiidi M,Sozen MA.Simple nolinear seismic analysis of R/C structures.1981,107(5):937-952.
    [104]Bracci JM,Kunnath SK,Reinhorn AM.Seismic performance and retrofit evaluation of reinforced concrete structures.Journal of Structural Engineering.1997,123(1):3-10.
    [105]Chintanapakdee C,Chopra AK.Evaluation of modal pushover analysis using generic frames.Earthquake Engineering and Structural Dynamics.2003,32(3):417-442.
    [106]魏巍.几种push-over分析方法对比研究.哈尔滨:中国地震局工程力学研究所,2001.
    [107]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具.建筑结构.2000,30(6):23-26.
    [108]王东升,李宏男,赵颖华,等.Ay-Dy格式地震需求谱及其在结构性能抗震设计中的应用.建筑结构学报.2006,27(1):60-65.
    [109]李刚,刘永.三维偏心结构的Pushover分析.计算力学学报.2005,(5):529-533.
    [110]毛建猛,谢礼立,翟长海.模态pushover分析方法的研究和改进.地震工程与工程振动.2006,(6):50-55.
    [111]Hu Z,Jian W.Study on supervisory control of retaining pile displacement based on pushover analysis method.Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering.2007,26(SUPPL 1):3148-3154.
    [112]Medhekar M.S.,Kennedy D.J.L.Displacement-based seismic design of buildings-application.Engineering Structures.2000,22:210-221.
    [113]Siachos G.,Dritsos S.Displacement based seismic assessment for retrofitting R.C.structures.Ancona,Italy:WIT Press,Southampton,SO40 7AA,United Kingdom,2004:631-641.
    [114]汪梦甫,王锐.基于位移的结构静力弹塑性分析方法的研究.地震工程与工程振动.2006,(5):73-80.
    [115]Imbsen R.A.,Penzien J.Evaluation of energy absorbing characteristics of highway bridges under seismic conditions.Report No.UBC/EERC-84-17.University of California,Berkeley,1984.
    [116]常岭.桥梁的抗震变形能力.工程抗震与加固改造.1987,3(4):20-26.
    [117]Zheng Y,Usami T,Ge H.Seismic response predictions of muti-span steel bridges through pushover analysis.Earthquake Engineering and Structural Dynamics.2003,32(8):1259-1274.
    [118]Lu Z,Usami T,Ge H.Seismic performance evaluation of steel arch bridges against major earthquakes.Part 2:Simplified verification procedure.Earthquake Engineering and Structural Dynamics.2004,33(14):1355-1372.
    [119]Castro JC,Maxwell JS.Seismic evaluation of the macy street bridge,Los Angeles,California using 3D nonlinear pushover methodologies.Washington,DC,USA:Publ by ASCE,New York,NY,USA,1994:1099-1105.
    [120]Pan L,Sun LM,Fan LC.Seismic damage assessment model and method based on pushover analysis for bridges.Tongji Daxue Xuebao/Journal of Tongji University.2001,29(1):10-14.
    [121]Abeysinghe RS,Gavaise E,Rosignoli M,Tzaveas T.Pushover analysis of inelastic seismic behavior of greveniotikos bridge.Journal of Bridge Engineering.2002,7(2):115-126.
    [122]Chen X-Y,Liu W-H,Tang X-S.Pushover analysis for continuous rigid frame bridge.Zhongnan Daxue Xuebao(Ziran Kexue Ban)/Journal of Central South University(Science and Technology).2008,39(1):202-208.
    [123]Isakovic T,Fischinger M.Higher modes in simplified inelastic seismic analysis of single column bent viaducts.Earthquake Engineering and Structural Dynamics.2006,35(1):95-114.
    [124]Paraskeva TS,Kappos AJ,Sextos AG.Extension of modal pushover analysis to seismic assessment of bridges.Earthquake Engineering and Structural Dynamics.2006,35(10):1269-1293.
    [125]Daniels J,Hughes D,Ramey GE,Hughes ML.Effects of bridge pile bent geometry and levels of scour and P loads on bent pushover loads in extreme flood/scour events.Practice Periodical on Structural Design and Construction.2007,12(2):122-134.
    [126]Memari AM,Harris HG,Hamid AA,Scanlon A.Ductility evaluation for typical existing R/C bridge columns in the eastern USA.Engineering Structures.2005,27(2):203-212.
    [127]Ghobarah A,Abou-Elfath H,Biddah A.Response-based damage assessment of structures.Earthquake Engineering & Structural Dynamics.1999,28(1):79-104.
    [128]潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法.同济大学学报.2001,29(1):10-15.
    [129]王东升,翟桐,郭明珠.利用Push-over方法评价桥梁的抗震安全性.世界地震工程.2000,16(2):47-51.
    [130]柳春光,林皋.桥梁结构Pushover方法抗震性能研究.大连理工大学学报.2005,45(3):395-400.
    [131]潘龙,张妍,孙利民,范立础.钢筋混凝土桥墩非线性Pushover分析方法.第十四届全国桥梁学术会议,南京,2000:797-803.
    [132]骆剑峰.框架结构静力与动力弹塑性抗震分析对比研究.上海:同济大学,2007.
    [133]Priestley M.J.N.,Seible F.,Calvi G.M.Seismic design and retrofit of bridges.Report No.John Wiley & Sons,New York,1998.
    [134]邢燕.钢筋混凝土高架桥地震反应分析及抗震设计方法研究.大连:大连理工大学,2000.
    [135]崔高航.桥梁结构PUSH-OVER方法研究.哈尔滨:中国地震局工程力学研究所,2003.
    [136]谢旭.桥梁结构地震响应分析与抗震设计.北京:人民交通出版社,2006.
    [137]叶列平.混凝土结构.北京:清华大学出版社,2002.
    [138]程海根,董明,李睿.约束混凝土压弯构件曲率延性分析.昆明理工大学学报.2001,26(6):89-93.
    [139]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,2002.
    [140]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社出版发行,1994.
    [141]张向东.选煤厂结构-设备复合体系抗震研究.哈尔滨:中国地震局工程力学研究所,2004.
    [142]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社,2003.
    [143]Park R,Chapman H E,Cormack L G,North P J.New Zealand contributions to the international workshop on the seismic design and retrofitting of reinforced concrete bridges.Report No.,Bormio,Italy,1991.
    [144]Eurocode 8.Design provisions for earthquake resistance of structures-part 2:Bridges.Brussels:Comite European de Normalization(CEN),1994.
    [145]日本道路协会.道路桥示方书(耐震设计编).日本丸善出版,2002.
    [146]王丽,阎贵平,方有亮.隔震桥梁非线性地震反应分析.北方交通大学学报.2002,26(1):80-84.
    [147]李 黎,廖 萍,龙晓鸿,等.薄壁高墩大跨度连续刚构桥的非线性稳定分析.工程力学.2006,23(5):119-124.
    [148]R.克拉夫,J.彭津.结构动力学.北京:高等教育出版社,2006.
    [149]柴田明德.最新耐震構造解析.森北出版会社,1981.
    [150]柳春光,包峰.基于公路工程规范地震需求谱研究.世界地震工程.2006,22(3):21-26.
    [151]Vidic T.,P.F,M.F.Cosistent inelastic design spectra:strengh and displacement.Earthquake Engineering and Structural Dynamics.1994,23(5):507-521.
    [152]交通部公路规划设计院.公路工程抗震设计规范(JTJ 004-89).北京:人民交通出版社,1992.
    [153]中国工程建设标准化协会.建筑工程抗震性态设计通则(试用).北京:中国计划出版社,2004.
    [154]梁智垚.桥梁高墩位移延性能力计算方法研究.工程抗震与加固改造.2005,(5):57-62.
    [155]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨.地震工程与工程振动.2005,25(1):43-48.
    [156]王建民,朱晞.地震作用下高架桥结构的脆弱性.中国公路学报.2007,20(1):68-72.
    [157]陈跃进,王树和.直接基于位移的抗震设计方法及应用.科学技术与工程.2005,5(17):1274-1276.
    [158]钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构.2001,4.
    [159]袁波,郭子雄.基于位移的抗震性能评估方法评述.工业建筑.2004,34(9):66-69.
    [160]Siachos G,Dritsos S.Displacement based seismic assessment for retrofitting R.C.structures.Ancona,Italy:WIT Press,Southampton,SO40 7AA,United Kingdom,2004:631-641.
    [161]Chopra Anil K.Dynamics of Structures:Theory and Applications to Earthquake Engineering.北京:清华大学出版社,2005.
    [162]大连理工大学桥梁工程研究所.大连市快速轨道交通三号线延伸线工程.大连:大连理工大学,2003.
    [163]陈光明,王丹华,陈志军,邓戈.某斜拉桥的弹塑性抗震性能研究.武汉理工大学学报.2004,26(4):56-70.
    [164]陈星烨,邵旭东,等.大跨度斜拉桥地震动线性与非线性响应分析.湖南大学学报.2002,29(2):106-111.
    [165]HNTB.Mary Avenue Bicycle Corridor.City of Cupertino,California,2004.
    [166]朱宏平,唐家祥.斜拉桥动力分析的三维有限单元模型.振动工程学报.1998,11(1):121-126.
    [167]朱伯龙,张琨联.建筑结构抗震设计原理.上海:同济大学出版社,1994.
    [168]布占宇,谢旭.不同阻尼计算模式对斜拉桥地震响应分析的影响.中国铁道科学.2006,27(2):46-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700