用户名: 密码: 验证码:
生物腐植酸资源化处理猪场废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效处理并资源化利用逐渐成为解决猪场废水问题的重要方向。本实验基地养猪场(存栏1200头)用生物腐植酸产品QS发酵猪场废水并采用“猪-微-鱼-植”养殖模式进行生产,有效利用猪场废水的同时也取得了较好的经济效益。本论文以QS的应用效果为基础,一方面考察QS处理桶装猪场废水的发酵效果,探讨其作用机理,另一方面监测“猪-微-鱼-植”养殖模式各阶段的水质,分析该资源化处理模式的效果,最后考查QS中微生物的种类和数量并对其中功能微生物进行鉴定。以期为QS及“猪-微-鱼-植”资源化养殖模式的推广应用提供理论依据。实验结果如下:
     1、以自然发酵(处理Ⅳ)为对照,分别用灭菌QS(处理Ⅰ)、QS(处理II)、活力菌(处理III)发酵桶装猪场废水。8天发酵期内的COD_(Cr)均呈下降趋势,去除率依次为39.21%、42.05%、33.09%、33.05%;NH_4~+-N浓度均呈上升趋势,增加率依次为16.5%、14.5%、13.7%、14.6%;各处理的PO43-/TP值的增加率依次为25.6%、31.3%、30.8%、27.7%;可培养微生物的数量均从107~108cfu/mL降至105cfu/mL;粪大肠菌群数均由108~109MPN/L降至106MPN/L。经统计分析,处理Ⅰ、II的COD_(Cr)去除率显著高于处理III、Ⅳ,其他参数值的变化各处理间无显著差异(α=0.05)。然而三批重复试验发现,处理II的COD_(Cr)去除率和PO43-/TP增加率始终最高。综合分析得出QS中的腐植酸成分和微生物均能在一定程度上促进废水有机质的降解。
     2、应用QS处理发酵池猪场废水,发酵8天后COD_(Cr)去除率为70%~75%,NH_4~+-N增加率约为18%,TP去除率约为28%,PO_4~(3-)增加率为35.5%,可培养微生物总数维持在105cfu/mL,粪大肠菌群由10~7 MPN /L降至1.67×10~5 MPN /L。废水经过发酵后有机质和粪大肠菌群能得到一定程度的减少,小分子有机颗粒和速效氮、磷增加,有利于鱼塘的消化利用。
     3、“猪-微-鱼”塘水的pH值为7.2~8.1;DO为4.6~6.6mg/L;可培养微生物总数约为104cfu/mL,粪大肠菌群为10000~25000MPN/L;NO_2--N浓度为0.1~0.3mg/L;NH_4~+-N浓度为0.9~1.3mg/L;TP浓度为0.6~0.9mg/L;COD_(Cr)浓度为70~90mg/L。“猪-鱼”塘水NH_4~+-N浓度为2.5~3.0mg/L; TP浓度为3.0~3.7 mg/L;COD_(Cr)浓度为130~150mg/L;粪大肠菌群数维持在105MPN/L。植物氧化沟水的COD_(Cr)浓度为10~40mg/L;NH_4~+-N浓度为0.9~1.3mg/L;NO_2~--N浓度为0.02~0.2mg/L;TP浓度为0.14~0.2mg/L;可培养微生物总数为103~104cfu/mL,粪大肠菌群为10~3~10~4MPN/L。
     “猪-微-鱼”塘水各参数值基本能维持在安全范围内;“猪-鱼”塘水各参数值均高于“猪-微-鱼”塘水及鱼塘水质安全浓度,其生产上存在安全隐患;植物氧化沟水质最好,说明其可以发挥生态塘的功能进一步改良鱼塘水质。经分析得出“猪-微-鱼-植”养殖模式基本能保证鱼塘的安全生产。4、QS中可培养微生物总数为108cfu/g,对分离菌株进行功能性筛选得到10种细菌具有亚硝化能力、乐斯苯(1%)降解能力、五氯硝基苯(0.1%)降解能力、溶无机磷能力和拮抗粪大肠菌群能力。经鉴定这10种细菌分别属于栗褐芽孢杆菌(Bacillus badius)、蜡状芽孢杆菌(Bacillus cereus)、地衣芽孢杆菌(Bacillus Licheniformis)、枯草芽孢杆菌(Bacillus subtilis)、短小芽孢杆菌(Bacillus pumilus)、巨大芽孢杆菌(Bacillus megaterium)和类芽孢杆菌属(Paenibacillus)。
The piggery wastewater has the characteristics of high ammonia, organism and suspending substances. How to treat them effectively and realize resource utilization have become important issues. The experimental base haogpen (amount of livestock:1200) used QS (a kind of biologic humic acids productions) to ferment piggery wastewater and obtained a great of economic benefits through“pig -fermention - fish - plant”ecological breeding model. According to the application effects of QS, this paper consists of the following three areas of study: 1. investigating the fermentation effects of QS on piggery wastewater 2. monitering the water quality of“pig-fermention-fish-plant”model and analyzing the effect of processing mode 3.investigating the types and quantities of microbes in QS and identifying of functional microbial to further explore the role of QS. The results are as follows:
     1. In the experiment, there are four treatments .Afeter 8-day fermention, the CODCr removal values were 39.21%(Ⅰ), 42.05%(II), 33.09%(III), 33.05%(Ⅳ); NH4+-N concentrations were by an increase of 16.5%(Ⅰ), 14.5%(II), 13.7%(III), 14.6%(Ⅳ); total phosphorus(TP) values had no significant changes, but PO43- values were on upward trend, with the increase percentage of PO43-/TP values followed by 25.6%(Ⅰ), 31.3%(II), 30.8%(III), 27.7%(Ⅳ); All the quantity of culturable microorganism decreased from 107~108 cfu / mL to 105 cfu / mL and all the quantities of fecal coliform bacteria decreased from 108~109 MPN / L to 106 MPN / L.
     According to statistical analysis, the CODCr removal percentages of treatmentⅠandIIwere significantly higher than those of treatment III andⅣ, and other parameters of treatments showed no significant differences(α=0.05). However, it could be found that the CODCr removal percentages and PO43-/TP value increase percentages of treatment II were higher than other treatments in three batches of tests.
     2 Applying QS to piggery wastewater fermentation in field for 8 days, the changes of parameters were as follows: CODCr removal percentage, 70%~75%; NH4+-N increase percentage,18%;TP removal percentage,28 %; PO43-increase percentage ,35.5 %; the quantity of culturable microorganism ,105 cfu / mL,and the quantity of fecal coliform bacteria decreased from 107 MPN / L to 1.67×10~5 MPN / L.The organic matter in wastewater could be degraded effectively by fermentation,and the increase of available nitrogen and phosphorus was also beneficial to fishing.
     3.The monitoring results of the water quality of“pig-microbial-fish”pound were as follows: the pH value , 7.2~8.1; the DO value , 4.6~6.6 mg/L; the concentrations of NO2--N, NH4+-N, TP, CODCr were 0.1~0.3mg/L, 0.9~1.3mg/L, 0.6~0.9mg/Land 70~90 mg/L respectively;the quantities of culturable microorganism and fecal coliform bacteria were 104 cfu / mL and 10000~25000 MPN / L.
     The monitoring results of the water quality of“pig- fish”pound were as follows: the concentrations of NH4+-N, TP,CODCr were 2.5~3.0mg/L,3.0~3.7mg/L and 130~150mg/L respectively,and the quantity of fecal coliform bacteria was 105 MPN / L.
     The monitoring results of oxidation plant ditch were as follows: the concentrations of CODCr, NH4+-N, NO2--N, TP were 10~40mg/L,0.9~1.3mg/L, 0.02~0.2mg/L and 0.14~0.2mg/L respectively. The quantities of culturable microorganism and fecal coliform bacteria were 103~104 cfu / mL and 103~104 MPN / L.
     The monitoring results of“pig-microbial-fish”pound water meant that the parameter values were all in safe. All the datas of“pig- fish”pound water were much higher than those of“pig-microbial-fish”pound water and under fishing water safety standard.There were potential dangers of production existed in“pig- fish”pound. The ditch water was the best among the three pounds, and the oxidation ditch might play some ecological function to improve fish pound water quality. The“pig-microbial-fish-plant”ecological breeding model could guarantee the production safe basically.
     4. QS contained culturable microorganisms with a total of 108 cfu / g and ten kinds of bacteria were released from the repeated strains, which had the ability of nitration, Chlorpyrifos (1%) degradation, Quintozene (0.1%) degradation, inorganic phosphorus solution and resistance against fecal coliform bacteria. They belonged to Bacillus badius, Bacillus cereus, Bacillus Licheniformis, Bacillus subtilis, Bacillus pumilus, Bacillus megaterium and Paenibacillus.
引文
1. 薄芯,李京霞,何立千.生物腐植酸对免疫系统的影响初探.北京联合大学学报,1998,6(12):44~47.
    2. 边文骅.腐植酸形成的微生物学机理研究概况.腐植酸,2001,2:1~5.
    3. 陈宝江,谷子林.生物腐植酸在饲料中的应用.饲料博览,2001,10:16~17.
    4. 程文霞.猪粪废水处理中养分含量与能量流通变化规律研究.四川环境,1992(2):5~10.
    5. 查圣康.腐植酸生物活性的研究.中草药通讯,1976,12:23~26.
    6. 崔理华,朱夕珍,陈智营,庹艳.国内外规模化猪场废水处理组合工艺进展.农业环境护,2000,19(3):188~191.
    7. 陈宝江,谷子林.生物腐植酸在饲料中的应用.饲料博览,2001,(10):16~17.
    8. 陈凤兰,母瑞敏,杨小钰.利用栗褐芽孢杆菌除藻的试验研究.中国环境管理干部学院学报,2006,9(16):52~54.
    9. 邓良伟,郑平,陈子爱.Anarwia 工艺处理猪场废水的技术经济性研究.浙江大学学报(农业与生命科学版),2004,30(6):628~634.
    10. 邓良伟,陈铬铭.工艺处理猪场废水试验研究.中国沼气,2001,19(2):12~15.
    11. 付长营,姚丽贤,李国良,何兆桓.不同处理剂对猪场废水污染物去除效果比较研究.环境科学导刊,2007,26(4):41~44.
    12. 高增月,杨仁全,程存仁等.规模化养猪场粪污综合处理的试验研究.农业工程学报,2006,
    22(2):198~200.
    13. 谷子林,黄仁录,任文社.猪宝 2 号添加剂对育肥猪生产性能的影响.辽宁畜牧兽医,1995,6:22~24.
    14. 国家环境保护局.水和废水监测分析方法[M],第三版.北京:中国环境科学出版社,1989.
    15. 韩巍.规模化养猪场废水处理的试验研究[硕士学位论文].广州:华南农业大学,2006.
    16. 何立千.生物技术黄腐酸的研究和应用[M].北京:化学工业出版社,1999.
    17. 何立千.生物技术黄腐酸(BFA)的界定.腐植酸,1999,2:6~10.
    18. 何连生,朱迎波,席北斗,刘鸿亮.集约化猪场废水 SBR 法脱氮除磷的研究.中国环境科学,2004,24(2):224~228.
    19. 黄仁录.生物腐植酸蛋鸡 001 添加剂对蛋鸡生产性能的影响.河北畜牧兽医,1996,1:7~10.
    20. 金淮,常志州,朱述钧.畜禽粪便中人畜共患病原菌传播的公众健康风险.江苏农业科学,2005,3:103~105.
    21. 金家志,绍风君.沼液在农业上的综合利用.资源节约和综合利用,1991,2:36~38.
    22. 孔长青,董宜来,卜平.鱼-猪-沼生态养殖与普通肥水养鱼对比试验.中国水产,2007,9:39~40.
    23. 李淑兰.猪场废水厌氧消化及后处理技术研究[硕士学位论文].长沙:中南林学院,2003.
    24. 李顺鹏,沈标,顾向阳,樊庆笙.沼气发酵液防治甘薯软腐病的效果.中国沼气,1992,11(10):18~22.
    25. 李野,张小平,张克强,等.蜡质芽孢杆菌 DLSL-2 发酵条件探讨及培养基优化.微生物学通报,2005,32(2):45~49.
    26. 刘更令主编.中国有机肥料[M].北京:中国农业出版社,1991.
    27. 刘海林,王志琴.需要引起人们重视的农村土壤污染问题.环境教育,2007,7:12~15.
    28. 刘晶,潘伟斌,秦玉洁,丘炎伦,黄海伟.两株溶藻细菌的分离鉴定及其溶藻特性.环境科学与技术,2007,2(30):17~21.
    29. 刘士哲,林东教,等.猪场污水漂浮栽培植物修复系统的组成及净化效果研究.华南农业大学学报,2005,4(l):24~26.
    30. 刘陶.利用甜高粱秸秆汁发酵生物腐植酸复合生物液肥及其应用的研究[硕士学位论文].西安:西北大学,2005.
    31. 刘莹,孙荣丹,杨翔华,王丽.5 株芽孢杆菌的分离鉴定、拮抗性试验与抑菌效价测定.畜牧兽医科学,2006,5(22):32~34.
    32. 马振强.对大型畜牧场某些粪便处理方法的商榷.畜牧与兽医,!997,29.
    33. 闵航等编著,废水微生物学[M].杭州:浙江大学出版社,1993.
    34. 潘涌璋.高级综合稳定塘处理养猪场废水.环境工程,2004,22(5):12~13.
    35. 彭军,吴分苗,唐耀武.组合式稳定塘工艺处理猪场废水设计.工业用水与废水,2003,6(34):44~46.
    36. 彭武厚.厌氧消化法处理畜禽粪的研究.工业微生物,1997(4):1~4.
    37. 潘学峰,傅泽田,Burton CH.,发达国家畜禽养殖废物处理技术与方法.农业工程学报,1995,11(3):108~113.
    38. 全炳昭.畜禽养殖场排放物对环境的污染及其治理.江西畜牧兽医杂志,2005,2:12~13.
    39. 秦麟源编著,废水生物处理[M].上海:同济大学出版社,1989.
    40. 任南琪.水污染控制物生物学[M].哈尔滨:黑龙江科技大学出版社,1993.
    41. 山西农业大学等主编.养猪学 [M].北京:农业出版社,1982.
    42. 沈玉英.畜禽粪便污染及加快资源化利用探讨.土壤,2004,36(2):164~167.
    43. 史家梁,朱核光.粪便污水的光合细菌液肥化及其应用研究.应用与环境生物学报,1995,1(2):188~195.
    44. 司小明.发酵黄腐酸的分离提取及其对植物生理的影响[硕士学位论文].西安:西北大学,2005.
    45. 申立贤.高浓度有机废水的厌氧处理技术[M].北京:中国环境科学出版社,1999.
    46. 尚琪.太湖水中氮、磷主要来源分析及其控制策略.国际技术经济研究,2007,9.
    47. 孙炳彦,等.关于小城镇环保工作的若干思考.环境保护,2000,4,31~34.
    48. 田宁宁,李宝林,王凯军,杨丽萍.畜禽养殖业废弃物的环境问题及其治理方法.环境保护,2000(12):10~13.
    49. 汪永辉.猪场废水 IC 厌氧-三沟式氧化沟工艺技术研究[硕士学位论文].上海:东华大学,2003.
    50. 王树功.藻类污染生态学研究进展.环境科学进展,1984,16(8):1~6.
    51. 温书斋.我国城郊畜牧业带来的环境压力与面临的抉择.畜牧与兽医,1997,29.
    52. 王春铭,雷恒毅,王国慧,陈桂珠.城市污泥模拟堆肥过程中高温菌群的筛选、鉴定及降解效果.环境科学学报,2007,27(6):979~986.
    53. 王新兰,等.畜禽业实现清洁生产的途径.辽宁城乡环境科技,2002,22(1):47~51.
    54. 吴淑杭,史家梁,徐亚同.猪场粪便微生物处理技术研究.上海环境科学,2002,10(21):593~597.
    55. 王聪亮,等.水解-好氧系统处理生活污水的特性研究.环境科学与技术,2001,2:28~31.
    56. 王新兰,刘文革,李精超.畜禽业实现清洁生产的途径.辽宁城乡环境科技,2002,22(1):47~51.
    57. 王宁堂.沼液浸种的技术要点及注意事项.河北农业科技,2002,6(8).
    58. 王继军,黄士忠.沼液对农药的增效作用.农业环境保护,1998,17(4):190~191.
    59. 王天立,王书齐.关于黄腐酸界定条件的讨论.腐殖酸,1996,2004:6~7.
    60. 王德昌,李万荣,徐君华.沼气化是规模猪场治污的有效途径.浙江畜牧兽医,2005,2:40.
    61. 王为民,孙明强,姜剑平.牛粪氧化降解制取氨基-黄腐酸的研究.腐植酸,2006,6:31~37.
    62. 徐卫佳.用厌氧发酵技术处理农村养殖场畜禽粪便.可再生能源,2004,1:57
    63. 徐伟朴,陈同斌.规模化畜禽养殖对环境的污染及防治策略.环境科学,2004,6(25):105~108.
    64. 许恩光.腐植酸类绿色环保农药[M].北京:化学工业出版社,2007.
    65. 杨晓玲,朱京涛,张建文.生物腐植酸的提取及其理化性质的研究.吉林农业大学学报,2003,25(1):18~23.
    66. 严力蛟,朱顺富.农业可持续发展概论[M].北京:中国环境科学出版社,2001.
    67. 余俊任,林聪,张晓军,郑菊.水生植物净化规模化猪场厌氧发酵水的试验研究.可再生能源,2007,4(25):52~55.
    68. 杨朝晖,曾光明,陈信常,等.规模化养猪场废水处理工艺的研究.环境工程,2002,20(6):19~21.
    69. 于金莲,等.畜禽养殖废水处理方法探讨.给水排水,2000,26(9):44~47.
    70. 杨健,等.厌氧水解-高负荷生物滤池处理城镇污水的中试研究.城市环境与城市生态,2000,13(6):26~28.
    71. 杨毅,刘敏,许在远,等.上海城市周边地区主要环境问题及其对策.长江流域资源与环境,2002,11(2):155~159.
    72. 姚晓慧,刘秀花,梁峰.土壤中磷细菌的筛选和鉴定.河南农业科学,2002,7:28~31.
    73. 姚燕.利用畜禽粪便为原料生产优质厌氧发酵液工艺条件的研究[硕士学位论文].河南农业大学,2003.
    74. 姚传付.养鱼慎防亚硝酸盐.北京水产,2006,2:44.
    75. 赵军.规模化养猪场粪污处理实例.可再生能源,2003(4):39~40.
    76. 张杰,刘亚纳,胡张宝,等.IC 反应器处理猪粪水的启动特性研究.农业环境科学学报,2004,23(4):777~781.
    77. 张景略,徐本生.土壤肥料学[M] .郑州:河南科学技术出版社,1990.
    78. 郑耀通.高效菌藻系统资源化处理畜牧养殖废水.武夷科学,2004,12(20):86~72.
    79. 郑平.煤炭腐殖酸的生产和应用[M].北京:化学工业出版社,1991.
    80. 张志功,徐学军,刘权.BFA-生物腐植酸添加剂饲喂罗非鱼的效果.内陆水产,1999,3:13.
    81. 赵杰,谷子林,崔青曼.生物腐植酸对中国对虾生长发育及部分免疫机能的影响.饲料研究,2001,12:23~24.
    82. 张希衡.废水生物处理工程[M].北京:中国环境科学出版社,1996.
    83. 周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986.
    84. 郑元景等,污水厌氧生物处理[M].北京:中国建筑工业出版社,1988.
    85. 朱文亭,等.污水的水解(酸化)-好氧生物处理工艺工艺.城市环境与城市生态,2000,13(5):43~48.
    86. Bortone G,Gemelli S,Rambaldi A,Nitrification,denitrification and biological phosphate removal in sequencing batch reactors treating piggery wastewater.Wat.Sci.Tech.,1992,26(5):977~985.
    87. DENG Liang-wei,CAI Chang-da,CHEN Ge-min,et al. Study and applicantion of technology for post-treatment of anaerobically digested Effluent of piggery waterwate.Transaction of Agricultural Engineering,2002,18(3): 92~94.
    88. DENG Liang-wei . New technology for anaerobic effluent treatment China patent.031179223.2003-05-23.
    89. Edgerton B D,McNevin D,Wong C H,Menoud P,Barford J P,Mitchell C A.Strategies for dealing with piggery effluent in Australia : the sequencing batch reactor as a solution.Wat.Sci.Tech.,1999,41(1):123~126.
    90. Evans M R,Deans E A,et al.The effect of temperature and residence time on aerobic treatment of pig slurry.Agricultural wastes,1983,5:25~36.
    91. Fernandes L,Mckyes E,et al.Treatment of liquid swine manure in the sequencing batch reactor under aerobic and anoxic condition.Can. Agri.Engng.,1991,33:373~379.
    92. GITTE S, YVONN A,BENT H S,et al.Bacterial resistance levels in danish farmland as a result of treatment with piggery slurry .Environment International,2003,28 (7) :587~595.
    93. Kameoka Total,Methane.fermention system for swine wastewater treatment.Japanese Journal of ZooTechnical Science,1988,6(12):38~41.
    94. Leland M.Yates,Ray von Wandruszka.Functional group analysis of Suwannee River fulvic acid with reactive fluorescent probes.F resenius J Anal Chem,1999,364:746~748.
    95. Lo K V,Liao P H,Van Kleek R J.A full-scale sequencing batch reactor treatment of dilute swine wastewater.Can.Agri.Engng.,1991,33:193~195.
    96. M P Bryant,et al.Animal Science.1979,48(1):193~201.
    97. Pierre Gerard-Marchant,M Todd Walter,Tammo S,Steenhuis.Simple Models for Phosphorus Loss from Manure during Rainfall.Environ Qual,2005,34:872~876.
    98. Robert L,et al.Constucted wetlands for livestock wastewater management.Ecological Engineering,2000,15:41~55.
    99. Su Jung-Jeng,Kung Cheng-Ming,et al.Utilization of sequencing batch reactor for piggery wastewater treatment.J.Environ.Sci.Health.A,1997,32:391~405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700