用户名: 密码: 验证码:
聚丙烯腈初生纤维成形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈(PAN)原丝质量不过关是制约我国炭纤维发展的瓶颈。由于PAN纺丝溶液在凝固浴中的凝固成纤过程是纤维制备的至关重要的环节,也是各种内外部缺陷形成的源头,这些缺陷会进一步“遗传”给后续的原丝乃至碳纤维从而极大的降低其性能,因此获得结构均匀致密、缺陷较少的初生纤维对制备优质原丝及炭纤维具有十分重要的意义。为此本文采用电子探针(EPMA)、扫描电镜(SEM)、透射电镜(TEM)、热分析(DSC)、X射线衍射(XRD)等分析表征手段,研究了PAN纺丝溶液挤出胀大效应的形成机理及其对初生纤维结构与性能的影响;运用扩散系数、凝固速率和传质速率差这三个参数深入研究了初生纤维的内在成形机理,讨论了它们的表征测试方法,以及随凝固条件的变化规律;研究了凝固条件对初生纤维结构缺陷和性能的影响,提出结构缺陷的形成机理与控制措施;研究了湿法纺丝干燥致密化过程加水浸润对丝条结构与性能的影响。
     由于PAN纺丝溶液为粘弹性流体,从喷丝口挤出时会产生挤出胀大效应,它对纺丝细流的连续稳定乃至初生纤维结构和性能都会产生一定影响,为此对挤出胀大效应的形成机理以及变化规律进行了研究,发现随着挤出胀大比的减小,初生纤维的孔隙率降低,凝固取向度增加,皮芯结构差异变小,初生纤维及原丝的断裂强度升高。为此可采用增大喷丝孔长径比或原液温度、降低原液固含量、剪切速率或凝固负牵伸率(本论文均指绝对值,以下同)的方法来减弱纺丝原液的挤出胀大效应,以获得性能优异的初生纤维。
     凝固过程中溶剂与凝固剂双扩散的核心问题是扩散系数计算。本文采用一维线性扩散模型,以Fick第二定律为基础,利用返滴定法测定不同凝固时间初生丝条中溶剂与凝固剂的含量进而计算各自的扩散系数,并讨论了各种凝固条件对溶剂和凝固剂扩散系数的影响,初步揭示了纤维凝固成纤过程的动力学变化规律,为选取适当的凝固条件以调控初生纤维结构进而控制其性能提供了理论依据,得出如下结论:随着原液固含量的降低、凝固负牵伸率的减小、或者凝固浴温度的升高,溶剂和凝固剂的扩散系数升高;随着凝固浴浓度的增加,溶剂和凝固剂的扩散系数逐渐下降并且在55wt%时出现最低值,之后又逐渐增大。
     运用边界移动模型讨论了凝固条件对凝固速率的影响规律,发现凝固剂自身特性决定凝固速率的大小,体积较小的凝固剂具有较大的凝固速率;凝固剂与溶剂之间的分子间亲和力决定凝固激活能的大小,而凝固剂分子体积不是主要因素;凝固速率的大小不仅取决于凝固剂的扩散系数,也取决于原液的固含量等。
     通过对聚合物原液圆柱状试样在凝固过程中重量变化规律的研究,引入溶剂与凝固剂之间传质速率差ΔK这一极其重要的参数。凝固条件对初生纤维结构与性能的影响通过影响ΔK进而影响表面凝固层的组成及厚度而实现。ΔK随凝固剂分子体积、凝固浴温度的增大而增大,随原液固含量和凝固浴浓度的增加而减小。
     系统研究了凝固条件对初生纤维结构与性能的影响,并阐述了其内外部缺陷的形成机理和控制措施,得出以下结论:
     随着凝固浴温度、浓度的增大,以及凝固负牵伸率的降低,初生纤维截面逐渐趋于规整,其断裂强度逐渐增大。随着原液固含量、凝固浴浓度的增大,或者凝固浴温度的降低,初生纤维皮芯结构减弱,孔隙率逐渐下降,内部结构变得致密。采用凝固浴温度60℃,凝固浴浓度65wt%,凝固负牵伸率—30%的最佳凝固工艺参数制得了截面规整且结构均匀致密的优质原丝,以及拉伸强度达3.76GPa的炭纤维。
     对初生纤维皮芯结构形成机理提出新的解释:初生纤维的皮层厚度与原液细流刚开始凝固时所形成的表面凝固层的硬度、组成和溶胀度等性质有关,而它们又受溶剂与凝固剂之间传质速率差的控制;纺丝原液挤出胀大效应所导致的原液细流外表层的“拉伸效应”也对皮芯结构的形成起着重要作用;皮层的取向度比芯层高。
     干燥致密化是湿法纺丝工艺过程的一个重要阶段,丝条的致密化程度主要由温度、时间、张力等因素所控制。在一定范围内提高致密化温度、延长致密化时间可以提高纤维的晶粒尺寸和结晶度,从而使纤维的密度和强度提高。在130℃下致密化64~96S可以得到综合性能较好的纤维。
     致密化过程对纤维进行润湿处理可实现纤维晶粒细化,同时在其X射线衍射图谱的20/10°附近出现了新的结晶衍射峰,表明形成新的晶面;使丝条内部空洞进一步融合,孔隙率持续下降;使最终原丝的密度和强度比未浸润时增大;使浸润后的原丝在预氧化过程中的张力下降,有利于预氧化反应均匀缓慢进行。
It is well-known that the poor quality of polyacrylonitrile (PAN) precursors is the "bottleneck" limiting the development of the carbon fibers in our country. As the coagulation process of the PAN spinning solution in the coagulation bath is a very critical step in fiber preparation and also the source of various defects, which will evolve and be inherited to the resultant precursors and carbon fibers and greatly lower the properties of them, thus it is very important to obtain the protofibers with compact and homogeneous microstructure and less defects.
     In this paper, various testing instruments such as the electron probe microanalysis (EPMA), scanning electron microscopy (SEM), transmit electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were applied. Firstly, the formation mechanism of the die-swell effect of the PAN spinning dope and its effect on the structure and properties of the protofibers was discussed; Secondly, the calculation methods of the diffusion coefficients, coagulation rate and mass transfer rate difference between solvent and coagulant, and effect of coagulation variables on them were studied; Thirdly, the effect of coagulation variables on the structure and properties of the protofibers and the formation mechanism and control methods of the interior and exterior defects was dealed with; At last, the effect of wetting during collapse process on the structure and properties of the precursors was discussed.
     Being a viscoelastic fluid, the spinning dope will be accompanied with the die-swell effect as it is extruded from the orifice, which imposes great influence on the stability and continuity of the dope and the structure and properties of the protofibers. The die-swell effect of the spinning dope was discussed and it was found that with the decrease of the die-swell ratio the porosity of the proto fibers became lower, the spin orientation enhanced and the skin-core difference became small, and subsequently their tensile strength increased. Thus die-swell effect can be reduced by increasing the L/D of the capillary and the dope temperature, or lowering the jet stretch ratio, the shear rate or the solid content.
     The key aspect on the counter-diffusion during the coagulation process was the calculation of diffusion coefficients. Here the calculation formula of diffusion coefficients of solvent and coagulant was conducted by an one-dimensional linear diffusion model based on the Fick Second Law. The effect of coagulation variables on diffusion coefficients was discussed and the dynamic principle during the coagulation process was revealed preliminarily. It was found that the diffusion coefficients of solvent and coagulant both increased with the fall of the solid content or the jet stretch ratio, or the hoist of the bath temperature. It is interesting that the diffusion coefficients of solvent and coagulant first declined with the hoist of the bath concentration and achieved a minimum value as it was 55wt%, then the curve showed a trend upwards.
     The coagulation rate that reflects the progress of the coagulation process was introduced according to the moving-boundary model and effect of coagulation variables on it was discussed. It was found that the nature of coagulants determines the coagulation rate and the diffusion species possessing smaller molecular volume has a higher coagulation rate. It is the intermolecular affinity between coagulant and solvent that determines the coagulation activation energy, and the molecular volume of coagulants is not a dominant factor. Not only is the coagulation rate determined by the diffusion coefficient of coagulants, but also the composition of the dope such as the solid content.
     By observing the change of the weight loss of the cylinder samples during the coagulation process, the mass transfer rate difference between solvent and coagulant was introduced. The effect of coagulation variables on the structure and properties of the protofibers was achieved by influencing the mass transfer rate difference and further the composition and thickness of the coagulated surface layer. The mass transfer rate difference increased with the molecular volume of the coagulant or the bath temperature, but decreased with the solid content of the dope or the bath concentration.
     The effect of the coagulation condition on the structure and properties of the protofibers and the formation mechanism and corresponding control methods of the interior and exterior defects were systematically studied. It was found that with the increase of the coagulation bath temperature or the bath concentration, or the decrease of the jet stretch ratio, the cross-sectional shapes of the protofibers became circular and their mechanical properties were improved. With the increase of the solid content or the bath concentration, or with the decrease of the bath temperature, the skin-core difference was weakened and the porosity was lowered and the microstructure of the protofibers became compact and uniform. By adopting the optimal coagulation variables, the coagulation bath temperature 60℃, solvent content 65wt% and the jet stretch ratio—30%, the protofibers possessing circular cross-section and compact structure were gained and the carbon fibers with tensile strength of 3.76GPa were obtained.
     The new interpretation about the formation mechanism of the skin-core structure was introduced as follows. The thickness of the skin layer of protofibers was decided by the hardness, composition and swollen degree of the coagulated surface layer formed at the very beginning of the coagulation process, and which were controlled by the mass transfer rate difference between solvent and coagulant; The "stretching effect" of the surface layer of the dope stream caused by the die-swell effect has also great influence on the formation of the skin-core structure; The skin layer has a higher orientation degree than that of the core.
     Collapse process is a very critical step during the wet spinning. The denseness degree of the collapsed fibers is mainly controlled by the collapse temperature, time and tension. To increase the collapse temperature and time moderately can enhance the crystal size and crystallinity, improve the density and tensile strength of precursors. Drying the fibers 64~96S under 130℃can get precursors with excellent mechanical properties.
     Wetting the fibers during the collapse process has a lot of merits: It reduced the crystal size of the precursors, and a new crystal diffraction peak appeared around 2 θ/10° and new crystal surface was formed because of the soakage action of water molecules; It made the porosity decrease continually and thus improved the density and tensile strength of the resultant precursors; It lowered the tension of the precursors during stabilization process, which is prone to an even and slow stabilization reaction.
引文
1.聚丙烯腈基炭纤维综述.合成技术及应用,1998,14(2):20-22
    2.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1995
    3.孙酣经.炭纤维及其复合材料.化工新材料,1998,(4):41-42
    4.贺福,赵建国,王润娥.炭纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13
    5.罗益锋.新世纪初世界炭纤维透视.高科技纤维与应用,2000,25(1):1-7
    6.罗益锋.炭纤维的新形势与新技术.新型炭材料,1995,10(4):13-25
    7.赵稼祥.先进复合材料的发展与展望.材料工程,2000,10:40-44
    8.罗益锋.特种合成纤维的发展战略.材料导报,2000,14(2):5-7
    9.吴人杰.下世纪我国复合材料的发展机遇与挑战.复合材料学报,2000,17(1):1-4
    10.陈绍杰.先进复合材料的民用研究与发展.材料导报,2000,14(11):8-10
    11.赵稼祥,王曼霞.复合材料用高性能炭纤维的发展和应用.新型炭材料,2000,15(1):68-75
    12.赵稼祥.炭纤维的现状与新发展,材料工程,1997,(12):3-6
    13.王德诚.PAN基及沥青基炭纤维生产现状与展望.合成纤维工业,1998,21(2):45-48
    14. D.D.Edie. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362
    15.许登堡,吴叙健.聚丙烯腈基炭纤维原丝.广西化纤通讯,2000,(2):19-25
    16.吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基炭纤维的原丝.高科技纤维与应用,2001,26(6):6-10
    17. Ming-Chien Yang, Da-Cuanc Yu. Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 1996,59:1725-1731
    18.赵根祥,邱海鹏.聚酰亚胺基炭纤维的开发.合成纤维工业,2000,23(1):75-77
    19. James A. Newell, Dan D. Edie, E. Loren Fuller Jr. Kinetics of carbonization and graphitization of PBO fiber. Journal of Applied Polymer Science, 1996,60(6): 825-832
    20.张武最,罗益锋,杨维榕.合成树脂与塑料·合成纤维.北京:化学工业出版社,1999
    21. Dong Zhang, Qin Sun. Structure and properties development during the conversion of polyethylene precursors to carbon fibers. Journal of Applied Polymer Science, 1996, 62(2): 367-373
    22. C. Sudo, K. Shimizu. A new carbon fiber from lignin. Journal of Applied Polymer Science, 1992, 44(1): 127-134
    23. R.B. Mathur, V. Gupta, O.P. Bahl, A. Tressaud, S. Flandrois.Improvement in the mechanical properties of polyacrylonitrile/PAN -based carbon fibers after fluorination. Synthetic Metals, 2000,114:197-200
    24. Ming-Chien Yang, Da-Cuanc Yu. Influence of Precursor Structure on the Properties of Polyacrylonitrile-Based Activated Carbon Hollow Fiber. Journal of Applied Polymer Science, 1996, 59:1725-1731
    25.徐樑华,吴红枚.PAN/DMSO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6):163-166
    26.宋育梅,王刚.二甲基亚砜法炭纤维用聚丙烯腈原丝的技术进展.化工科技,2001,9(3):60-63
    27.乔福牛.二甲基亚砜—步法炭纤维用聚丙烯腈原丝生产工艺.合成纤维工业,1995,8(4):19-23
    28.张国萍,毛萍群,张林,杨明远.干-湿法纺PAN基炭纤维原丝工艺研究.上海纺织科技,1999,27(5):8-10
    29. D.R.Paul. Diffusion during the coagulation step of wet-spinning. Journal of Applied Polymer Science, 1968, 12(3): 383-402
    30.俞玉芳.NaSCN二步法腈纶含油率控制的探讨.金山油化纤,2002,4:16-18
    31.毛萍君,张国萍,张林,杨明远.以NaSCN水溶液为溶剂的PAN干湿法纺丝工艺研究.上海纺织科技,2001,29(3):8-10
    32. S.J.Law, S.K.Mukhopadhyay. Compositional changes during the wet spinning of acrylic fibers from aqueous sodium thiocyanate solvent. Journal of Applied Polymer Science, 1998, 69(7): 1459-1469
    33.王占平.丙烯腈-丙烯酸甲酯-衣康酸在氯化锌溶液中的聚合反应.合成纤维工业,1997,20(2):16-18
    34. Sea Cheon Oh, Young Soo Wang, Yeong-Koo Yeo. Molding and simulation of the coagulation process of poly(acrylonitrile) wet-spinning. Industrial Engineering Chemical Research, 1996, 35(12): 4796-4800
    35. Toru Morita, Ryu Taniguchi, Teruhiko Matsuo, Jinichiro Kato. Novel Aliphatic Polyketone Fiber by a Wet-Spinning Method Using Aqueous Composite Metal Salt Solutions. Joumal of Applied Polymer Science, 2004, 92:1183-1189
    36. J.C. Chen, I.R. Harrison. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon, 2002, 40:25-45
    37. S.J.Law, S.K.Mukhopadhyay. Investigation of wet-spun acrylic fiber morphology by Membrane Technology Techniques. Journal of Applied Polymer Science, 1996, 62(1): 33-47
    38. S.J.Law, S.K.Mukhopadhyay. The construction of a phase diagram for a ternary system used for the wet spinning of acrylic fibers based on a linerized cloudpoint curve correlation. Journal of Applied Polymer Science, 1997, 65(11): 2131-2139
    39. S.P.Hersh, T.D.Higgins, H.W.Krause. The influence of processing variables on the physical properties of a wet-spun modacrylic fibers. Journal of Applied Polymer Science, 1963, 7(2): 411-442
    40.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-44
    41.徐墚华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究,北京化工大学学报,1999,26(3):21-24
    42.徐墚华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用, 2001, 26(2): 21-24
    43. Baojun Qian, Ding Pan, Zhenqiou Wu. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers. Advances in Polymer Technology, 1986, 6(4): 509-529
    44.陈蕾,杨明远,毛萍君.聚丙烯腈纤维的熔融纺丝.合成技术及应用,1990,5(3):36-41
    45.樊淑芳.适于熔融纺丝的聚丙烯腈熔体物料的研究.石化技术与应用,2000,18(4):203-205
    46.何翼云,施祖培.聚丙烯腈熔融纺丝技术进展.合成纤维工业,1997,20(6):32-36
    47. G. Prasad. Wet spinning of acrylic fiber and effects of spinning variables onfiber formation. Synthetic Fibers, 1985, 1/3:6-15
    48. D.D. Edie, N. K. Fox, B. C. Barnett. Melt-spun non-circular carbon fibers.Carbon, 1986, 24:477-482
    49. V.A. Bhanu, P. Rangarajan, K. Wiles. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 2002, 43:4841-4850
    50.赵稼祥.东丽公司炭纤维及其复合材料的进展-国外炭纤维进展之一.高科技纤维与应用,2000,25(4):19-23
    51.金离尘.世界腈纶及丙烯腈发展预测.合成纤维工业,1997,20(1):46-48
    52.罗益锋.新世纪初高科技纤维的新形势与展望.高科技纤维与应用,2001,26(1):1-10
    53.罗益锋.世界PAN基炭纤维发展透析及对我国的研发建议.材料导报,2000,14(11):11-13
    54.吴人洁.我国PAN基炭纤维发展的对策.材料导报,2000,14(11):1-2
    55.罗益锋.我国聚丙烯腈炭纤维发展的回顾与几点建议.材料导报,2000,14(4):1-3
    56.贺福,杨永岗.创新是发展我国炭纤维工业的必由之路.材料导报,2000,14(11):3-4
    57.徐仲榆.我国在生产炭纤维过程中应解决的一些问题.材料导报,2000,14(11):16-18
    58.贺福,杨永岗.攻坚炭纤维原丝瓶颈势在必行.化工新型材料,29(1):3-6
    59.贺福,杨永岗.突破炭纤维产业化的瓶颈原丝已是当务之急.第五届全国新型炭材料学术研讨会论文集,44-47
    60.贺福.优质原丝是制取高性能炭纤维的基础.化工新型材料,1993,21(2):9-14
    61.徐梁华,突破原丝瓶颈效应加速我国PAN炭纤维技术的发展.炭素科技,2001,11(3):3-5
    62.贺福,杨永岗,孙微.我国炭纤维工业驶入发展的快车道.新材料产业,2002,(1):30-32
    63.贺福,赵建国.世纪之交展望我国的炭纤维工业.化工新型材料,2000,28(3):3-7
    64.贺福编著.炭纤维及其应用技术.北京:化学工业出版社,2004
    65. M M Coleman, G T Sivy. Fourier Transform IR studies of the degradation of polyacrilonitrile copolymers-I. Carbon, 1981, 19(2): 123-126
    66. P. Bajaj, K. Sen, S. Hajir Bahrami. Solution polymerization of acrylonitrile with vinyl acids in dimthylformamide. Journal of Applied Polymer Science, 1996, 59(10): 1539-1550
    67. T A Belousova. IR spectroscopic characteristics of polyacrylonitrile copolymer fibers. Fibre Chemistry, 2002, 34(2): 146-150
    68. M.M. Iovleva, S. I. Banduryan, L. A. Zlatoustova, V. M. Radishevskii, A. T. Serkov, G. A. Budnitskii. Physical chemistry of fiber-forming polymers, morphology of the structure of polyacrylonitrile fibers. Fiber Chemistry, 1999, 31:140-142
    69. H Ogawa, K Saito. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon, 1995, 33(6): 783-788
    70. I Shimada, T Takahagi, M Fukuhara, K Morita, A Ishitani. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24(8): 1989-1995
    71. MengXian Shang,Hideto Matsuyama,Taisuke Maki,Masaaki Teramoto. Effect of crystallization and liquid-liquid phase separation on phase-separation kinetics in poly(ethylene-eo-vinyl aleohol)/glyeerol solution.Journal of Polymer Science:Part B:Polymer Physics, 2003, 41: 194-201
    72. M. Eseobedo, Ph. Laureneot, S. Misehler, B. Perthame. Gelation and mass conservation in coagulation-fragmentation models. Journal of Differential Equations, 2003, 195:143-174
    73. G.R. Fernandes, J. C. Pinto, R. Nobrega. Modeling and simulation of the phase-inversion process during membrane preparation. Journal of Applied Polymer Science, 2001, 82(12): 3036-3051
    74. In-Chul Kim, Hyung-Gu Yoon, Kew-Ho Lee. Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process. Journal of Applied Polymer Science, 2002, 84(6): 1300-1307
    75. Dar-Jong Lin, Konstantinos Beltsios, Cheng-Liang Chang, Liao-Ping Cheng. Fine structure and formation mechanism of particulate phase-inversion poly(vinylidene fluoride) membranes. Journal of Polymer Science: Part B: Polymer Physics, 2003, 41:1578-1588
    76. J.A.Asenjo, S.L.Mistry, B.A.Andrews, J.C.Merehuk. Phase separation rate of aqueous two-phase systems: Correlations with systems properties. Bioteehnology and Bioengineering, 2002, 79(2): 217-223
    77.A.Ziabicki著华东纺织学院化学纤维教研室译.纤维成型基本原理.上海:上海科学技术出版社,1983
    78.董纪震,赵耀明,陈雪英.合成纤维生产工艺学.北京:纺织工业出版社,1994
    79. C A Smolders, A J Reurers. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73:259-275
    80. P.H. Wang. Aspects on prestretching of PAN precursor: Shrinkage and thermal behavior. Journal of Applied Polymer Science, 1998, 67(7): 1185-1190
    81.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈原丝的制备.合成纤维,2000, 29(4): 23-27
    82. B.S. Gupta, Y. E. E1 Mogahzy. The effect of hot-wet draw ratio on the coefficient of friction of wet-spun acrylic yarns. Journal of Applied Polymer Science, 1989, 38(5): 899-905
    83.张韧坚,何玉莲,赵锡武.超细旦腈纶油剂的研制.精细石油化工进展,2003,4(2):32-34
    84.Eunkyoung Shim.A study 0n spin finish application on fibers[Doctorial Dissertation].Raleigh:North Carolina State University,2001
    85.陈厚.高性能聚丙烯腈原丝纺丝原液的制备及纤维成形机理研究[博士学位论文].济南:山东大学,2004
    86.西鹏,高晶,李文刚等编著.高技术纤维.化学工业出版社.2004
    87.唐春红,张旺玺,曹雄宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能研究.塑料工业,2004,32(3):54-57
    88. Y.H.Bang, S. Lee, H.H.Cho. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of Applied Polymer Science, 1998, 68(13): 2205-2213
    89. Stephen Dalton, Frank Heatley, Peter M.Budd. Thermal stabilization of polyacrylonitrile fibres. Polymer, 1999, 40:5531-5543
    90. A.I. Stoyanov. Influence of thermosetting and drying on shrinkage, tenacity, and elongation of acrylic fibers. Journal of Applied Polymer Science, 1979, 23(10): 3123-3127
    91.任富忠,吕春祥,梁晓怿,吴刚平,贺福,凌立成.氨化对湿纺PAN初生丝条结构的影响.新型炭材料,2004,19(4):268-274
    92. B.J. Qian, J. Qin, z. L. Zhou. Void formation in acrylic fibers. Textile Asia, 1989, (4): 40-57
    93. D.J. Thorne. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science, 1970, 14(1): 103-113
    94. P. Bajaj, D. K. Paliwal, A. K. Gupta. Influence of metal ions on structure and properties of acrylic fibers. Journal of Applied Polymer Science, 1998, 67(9): 1647-1659
    95. Rachel J. Hobson, Alan H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26:6903-6907
    96.徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    97. Z.Bashir, R.Tipping, S.P.Church. Orientation studies in polyacrylonitrile films uniaxially drawn in the solid state. Polymer international, 1994, 33:9-17
    98. P.H. Hermans, D. Vermaas. Density of cellulose fibers. Journal of Polymer Science, 1946, 1:149-155
    99. W.C.Brinegar, M.E.Epstein. Mechanical analysis of wet-spinning process. Applied Polymer Symposia, 1967, 6:99-105
    100. C.D.Han,L. Segal.A study of fiber extrusion in wet spinning.I.Experimental determination of elongational viscosity. Journal of Applied Polymer Science, 1970, 14(12): 2973-2998
    101. C.D.Han, L.Segal. A study of fiber extrusion in wet spinning. Ⅱ.Effects of spinning conditions on fiber formation. Journal of Applied Polymer Science, 1970, 14(12): 2999-3019
    102. A.Ziabicki. Fundamentals of fiber formation. New York: Wiley, 1976
    103. A.Hancock,J.L.White,J.E.Spruiell. Wet spinning of aliphatic and aromatic polyamides. Journal of Applied Polymer Science, 1977, 21(5): 1227-1247
    104. R.G.Griskey, Min H.Choi,Nandor Siskovic.Heat transfer to flowing thermally softened polymers. Polymer Engineering & Science, 1973, 13(4): 287-294
    105. Y.Fok,R.G.Griskey. Mass transfer during dry spinning of fibers. Journal of Applied Polymer Science, 1967, 11(12): 2417-2426
    106. Ohzawa,Y. Nagano,T. Matsuo. Studies on dry spinning.I. Fundamental equations. Journal of Applied Polymer Science, 1969, 13(2): 257-283
    107. James L.White, Tonya Hancock. Fundamental analysis of the dynamics, mass transfer, and coagulation in wet spinning of fibers. Journal of Applied Polymer Science, 1981, 26(9): 3157-3170
    108. A. Rende. A new approach to coagulation phenomena in wet-spinning. Journal of Applied Polymer Science, 1972, 16(3): 585-594
    109. Q.Jean, L.Zhaofeng, P. Ding. Diffusion and microvoid structure in blend acrylic fibers during wet spinning process. Journal of China Textile University, 1986, (2): 15-31
    110. James C. Masson著,陈国康译.腈纶生产工艺及应用.北京:中国纺织出版社,2004
    111. Cohen, G.Tanny, S.Prager. Diffusion controlled formation of porous structures in ternary polymer systems.Journal of Polymer Science: Polymer Physical Edition, 1979, 17:477-489
    112. Cahn. Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics, 1965, 42:93-99
    113. K.Kawanishi,M.Komatsu,T.Inoue. Thermodynamic considerations of the solgel transition in polymer solutions. Polymer, 1987, 28:980-984
    114. G.Caneba, D. Soong. Polymer membrane formation through the thermal inversion process. Ⅰ: experimental study of membrane structure formation. Macromolecules, 1985, 18:2538-2544
    115. G.Caneba, D. Soong. Polymer membrane formation through the thermal inversion process. Ⅱ: mathematical modeling of membrane structure formation. Macromolecules, 1985, 18:2545-2550
    116. M.Komatsu, T.Inoue, K.Miyasaka. Light scattering studies on the sol-gel transition in aqueous solutions of polyvinyl alcohol. Journal of Polymer Science, Polymer Physics Edition, 1986, 24:303-311
    117. 沈新元主编.高分子材料加工原理.北京:中国纺织出版社,2000
    118. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86(3): 773-787
    119.吕永根,杨常玲,翟磊.用称重法研究聚丙烯腈树脂的凝固过程.新型炭材料,2004,19(1):16-20
    120.王延相,王成国,朱波.聚丙烯腈湿法纺丝中纤维结构的形成研究.材料导 报,2005,19(7):111-114
    121.钱水林.对凝固浴槽内浴液平衡浓度的探讨.金山油化纤,1997,(4):34-36
    122. Zhenyu Ryu, Jingtang Zheng, Maozhang Wang. Porous structure of pan-based activited carbon fibers. Carbon, 1998, 36(4): 427-432
    123. Zhenyu Ryu, Jingtang Zheng, Maozhang Wang. Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon, 1999, 37: 1257-1264
    124. A.T.Serkov, G.A.Budnitskii,M.B.Radishevskii,V.A.Medvedev, L.A.Zlatoustova. Improving carbon fiber production technology. Fibre Chemistry, 2003, 35(2): 117-121
    125. G.N.Dalimova, M.Yu.Yunusov.Capillary—Pore structure of hydrolyzed lignin derivatives. Chemistry of Natural Compounds, 2001, 37(2): 188-189
    126. N Tarafdar, S M Chatterijee. New class of cellulose fiber spun of cellulose by wet spinning method. Textile Trend, 1988, 31: 35-40
    127. S.H. Bahrami, P. Bajaj, K. Sen. Effect of coagulation conditions on properties of poly(acrylonitrile-carboxylic acid) fibers. Journal of Applied Polymer Science, 2003, 89(7): 1825-1837
    128. Qiang Wang, Yan-xiang Wang, Bo Zhu, Yu-jun Bai. The effect of coagulation and stretch on the structure and properties of PAN precursor by wet Spinning. Synthetic Fiber in China, 2005, 34(5): 24-29
    129. Hou Chen, Rong-jun Qu, Ying Liang. Kinetics of diffusion in polyacrylonitrile fiber formation. Journal of Applied Polymer Science, 2005, 96(3): 1529-1533
    130. Baojun Qian, Zongquan Wu, Panpan Hu. Studies of macromolecular entanglements. I. Melting behavior of swelling polymers with macromolecular entanglements. Journal of Applied Polymer Science, 1991, 42(4): 1155-1166
    131. Yoshikazu Takahashi, Gregory L. Fenves. Software framework for distributed experimental-computational simulation of structural systems. Earthquake Engineering & Structural Dynamics, 2006, 35(3): 267-291
    132. R.J.Smiley, W.N.Delgass. AFM, SEM and XPS characterization of PAN-based carbon fibers etched in oxygen plasmas. Journal of Material Science, 1993, 28: 3601-3611
    133.李青山,沈新元.腈纶生产工学.北京:中国纺织出版社,2000
    134.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    1.陈希,黄象安.化学纤维实验教程.北京:纺织工业出版社,1988
    2.绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001
    3.高家武,张复盛,张秋禹,伍必兴.高分子材料近代测试技术.北京:北京航空航天大学出版社,1994
    4.华东化工学院分析化学教研组编.分析化学(第三版).北京:高等教育出版社,1989
    5.GB3362—82,炭纤维复丝拉伸性能检验方法
    6.GB/T6505-1986,合成纤维长丝及变形丝沸水收缩率试验方法
    1. Andrej Ziabicki. Fundamentals of fiber formation. New York: Wiley, 1976
    2. Keshav V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, (4): 11-19
    3. P. Hersh, T. D. Higgins, H. W. Krause. The influence of processing variables on the physical properties of a wet-spun modacrylic fiber. Journal of Applied Polymer Science, 1963, 7(2): 411-442
    4.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    5.陈德峻,赵琪,何启瑞,蔡一艾.聚丙烯腈亚砜纺丝溶液在不同长径比的模口中的流动与挤出胀大.合成纤维工业,1982,5(1):3-9
    6.何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1991
    7.韩C D.聚合物加工流变学.北京:科学出版社,1985
    8.金日光.高聚物流变学及其在加工中的应用.成都:四川化工出版社,1990
    9. D.R.Paul. Spin orientation during acrylic fiber formation by wet-spinning. Journal of Applied Polymer Science, 1969, 13(5): 817-826
    10. Huang Shu-xin, Lu Chuan-jin. Numerical investigation on extrudate swell for viscoelastic fluid: Using Maxwell Model. Journal of Hydrodynamics, Ser.B, 2004, 16(4): 393-402
    11. Song Daoynn, Song Xingfu,Jiang Tiqian. Study of rheological characterization of Fenugreek Gum with Modified Maxwell Model. Chinese Journal of Chemical Engineering, 2000, 8(1): 85-88
    12.宋名实,杨志洪.高分子熔体和浓溶液流变性能的研究.化学物理学报, 2000,13(6):669-720
    13.黄村新,江体乾.积分型Maxwell流体挤出胀大的数值模拟.力学与实践,2001,23(6):18-21
    14.张幼维,赵炯心,张斌.硫氰酸钠法腈纶纺丝溶液流变性能的研究.合成纤维工业,2000,23(3):15-19
    15.张幼维,赵炯心,张斌.添加填料的腈纶纺丝溶液流变性能的研究.合成纤维工业,2000,23(6):11-14
    16.曾小梅,张莹,赵炯心.聚丙烯腈.二甲基亚砜溶液挤出胀大的研究.合成技术及应用,2004,19(3):9-12
    17.钱保功,许观藩,余赋生.高聚物的转变与松弛.北京:科学出版社,1987
    18.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    1. D. R. Paul. Diffusion during the coagulation step of wet-spinning. Journal of Applied Polymer Science, 1968, 12(3): 383-402
    2. D. R. Paul. Spin orientation during acrylic fiber formation by wet-spinning. Journal of Applied Polymer Science, 1969, 13(5): 817-826
    3. Chang Dae Han, Leon Segal. A study of fiber extrusion in wet spinning. Ⅱ. Effects of spinning conditions on fiber formation. Journal of Applied Polymer Science, 1970, 14(12): 2999-3019
    4. H.L.Doppert, G.J.Harmsen. The Influence of the stretch ratio on the rate of diffusion in a wet-spinning process. Journal of Applied Polymer Science, 1973, 17(3): 893-903
    5. Andrej Ziabicki. Fundamentals of fiber formation. New York: Wiley, 1976
    6. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86(3): 773-787
    7. S.H.Bahrami, P.Bajaj, K.Sen. Effect of coagulation conditions on properties of poly(acrylonitrile/carboxylic acid) fibers. Journal of Applied Polymer Science, 2003, 89(7): 1825-1837
    8. S.J.Law, S.K.Mukhopadhyay. Investigation of wet-spun acrylic fiber morphology by membrane technology techniques. Journal of Applied Polymer Science, 1996, 62(1): 33-47
    9. S.J.Law, S.K.Mukhopadhyay. Compositional changes during the wet spinning of acrylic fibers from aqueous sodium thiocyanate solvent. Journal of Applied Polymer Science, 1998,69(7): 1459-1469
    10. Sea Cheon Oh, Young Soo Wang, Yeong.Koo Yeo. Molding and simulation of the coagulation process of poly(acrylonitrile) wet-spinning. Industrial Engineering Chemical Research, 1996, 35(12): 4796-4800
    11.王爱荣,王跃,唱桂荣.Maxwell-Stefan方程在多元相间传质方面的应用.山东理工大学学报(自然科学版),2003,17(4):80-83
    12.王维德.多组分物系传质过程扩散系数及其计算.华侨大学学报(自然科学版),2002,23(2):180-183
    13. Qing-Lin Liu, Hao-Qi Gao. Prediction of mutual diffusion-coefficients in polymer solvent systems using a simple activity coefficient model. Journal of Membrane Science, 2003, 214:131-142
    14. J. S. Vrentas,C. M. Vrentas. Predictive Methods for self-diffusion and mutual diffusion coefficients in polymer solvent systems. European Polymer Journal, 1998, 34(5/6): 797-803
    15. Hou Chen, Rong-jun Qu, Ying Liang. Kinetics of diffusion in polyacrylonitrile fiber formation. Journal of Applied Polymer Science, 2005, 96(3): 1529-1533
    16. Baojun Qian, Ding Pan, Zhenqiou Wu. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers[J]. Advances in Polymer Technology, 1986, 6(4): 509-529
    17.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    18. Jonathan Z. Knaul, Katherine A. M. Creber. Coagulation rate studies of spinnable chitosan solutions. Journal of Applied Polymer Science, 1997., 66(1): 117-127
    19. Cheng-Kung Liu, John A. Cuculo. Fiber formation via solution spinning of the cellulose/ammonia/ammonium thiocyanate system. Journal of Polymer Science: Part B: Polymer Physics, 1991, 29:181-196
    20. Cheng-Kung Liu, John A. Cuculo, Brent Smith. Coagulation studies for cellulose in the ammonia/ammonium thiocyanate direct solvent system. Journal of Polymer Science: Part B: Polymer Physics, 1989, 27:2493-2511
    21. A. Rende. A new approach to coagulation phenomena in wet-spinning. Journal of Applied Polymer Science, 1972, 16(3): 585-594
    22. Keshav V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, (4): 11-19
    23. G. Prasad. Wet spinning of acrylic fiber and effects of spinning variables on fiber formation. Synthetic Fibers, 1985, (1): 6-16
    24. P.Hersh, T. D. Higgins, H. W. Krause. The influence of processing variables on the physical properties of a wet-spun modacrylic fiber. Journal of Applied Polymer Science, 1963, 7(2): 411-442
    25. D.R.Paul, A.L.McPeters. Effect of spin orientation on drawing of wet-spun fibers. Journal of Applied Polymer Science, 1977, 21(6): 1699-1713
    26. Chen Hou,Cheng-Guo Wang,Liang Ying,Hua-Su Cai. Affect of dope additives on finishing behavior of carbon fiber precursors. Journal of Applied Polymer Science, 2003, 90: 2752-275527.James L.White, Tonya.Hancock. Fundamental analysis of the dynamics, mass transfer, and coagulation in wet spinning of fibers. Journal of Applied Polymer Science, 1981, 26:3157-3170
    28.吕永根,杨常玲,翟磊.用称重法研究聚丙烯腈树脂的凝固过程.新型炭材料,2004,19(1):16-20
    29.沈新元主编.高分子材料加工原理.北京:中国纺织出版社,2000
    30. D.R.Paul. A study of spinnability in the wet-spinning of acrylic fibers. Journal of Applied Polymer Science, 1968, 12(10): 2273-2298
    31. Booth J.R. Diffusion-limited coagulation of wet-spun single filaments[J]. Applied Polymer Symposia, 1967, 6:89-98
    32. R.J.Borg, G.J.Dienes. An introduction to solid state diffusion. Academic Press Inc., San Diego, 1988
    33. Cheng-Kung Liu, John A. Cuculo, Brent Smith. Diffusion competition between solvent and nonsolvent during the coagulation process of cellulose/ammonia/ ammonium thiocynate fiber spinning system. Journal of Polymer Science Part B: Polymer Physics, 1990, 28(4): 449-465
    34. Baojun Qian, Jian Qin, Zhenlong Zhou. Void formation in acrylic fibers. Textile Asia, 1989,(4):40-57
    35. D.J.Thorne. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science, 1970, 14(1): 103-113
    36. W.C.Brinegar, M.E.Epstein. Mechanical analysis of wet-spinning process. Applied Polymer Symposia, 1967, (6): 99-105
    37. C.D.Han, L.Segal. A Study of fiber extrusion in wet spinning.I.Experimental determination of elongational viscosity. Journal of Applied Polymer Science, 1970, 14(12): 2973-2998
    38.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-44
    39. Zhenyu Ryu, Jingtang Zheng, Maozhang Wang. Porous structure of pan-based activited carbon fibers. Carbon, 1998, 36(4): 427-432
    40. Zhenyu Ryu, Jingtang Zheng, Maozhang Wang. Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon, 1999, 37: 1257-1264
    41.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备.合成纤维,2000,29(4):23-26
    42. Baojun Qian,Zongquan Wu,Panpan Hu. Studies of macromolecular entanglements. Ⅰ. Melting behavior of swelling polymers with macromolecular entanglements.Journal of Applied Polymer Science, 1991, 42(4): 1155-1166
    43. A. I. Stoyanov. Influence of the content of polymer with different molecular weights in spinning solutions on properties of acrylic fibers. Journal of Applied Polymer Science, 1982, 27(1): 235-238
    1.贺福.炭纤维及其应用技术.北京:化学工业出版社,2004
    2.时东霞,刘宁,杨海强.聚丙烯腈基炭纤维的扫描隧道显微镜研究.材料研究 学报,1997,11(3):305-308
    3.时东霞,刘宁,杨海强.聚丙烯腈基炭纤维的表面结构研究.电子显微学报,1997,16(3):733-735
    4.侯震伟,陈立新,王庆瑞.湿法纺丝时纺丝原液凝固成形机理的探讨.中国纺织大学学报,1996,22(1):68-72
    5. N Tarafdar, S M Chatterijee. New Class of Cellulose Fiber Spun of Cellulose by Wet Spinning Method. Text Trend, 1988, 31:35-40
    6. D.R.Paul. Diffusion during the Coagulation Step of Wet-Spinning. Journal of Applied Polymer Science, 1968, 12:383-402
    7. J.W.Johnson. Factors affecting the tensile strength of carbon-graphite fibers. Applied polymer symposia, 1969, (9): 229-243
    8. Liu, W. Ruland. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules, 1993, 26:3030-3036
    9. Rachel J. Hobson, Alan H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26:6903-6907
    10.徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    11.唐春红,张旺玺.不同牵伸倍数的原丝结构性能研究.塑料工业,2004,32(3):54-57
    12.刘岳新,徐梁华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系.合成纤维工业,2005,28(1):5-8
    13.沈新元主编.高分子材料加工原理.北京:中国纺织出版社,2000
    14. A. I. Stoyanov. Influence of the content of polymer with different molecular weights in spinning solutions on properties of acrylic fibers. Journal of Applied Polymer Science, 1982, 27:235-238
    15. Jin-Shy Tsai, Chung-Hua Lin. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42: 3045-3050
    16.徐梁华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究. 北京化工大学学报,1999,26(3):21-24
    17. Cheng-Kung Liu, John A. Cuculo. Fiber formation via solution spinning of the cellulose/ammonia/ammonium thiocyanate system.Journal of Polymer Science: Part B: Polymer Physics, 1991, 29(2): 181-196
    18. Cheng-Kung Liu,John A. Cuculo,Brent Smith. Coagulation studies for cellulose in the ammonia/ammonium thiocyanate direct solvent system. Journal of Polymer Science: Part B: Polymer Physics, 1989, 27(12): 2493-2511
    19. R. Moreton, W. Watt. The spinning of polyacrylonitrile fibers in clean room conditions for the production of carbon fibers. Carbon, 1974, 12(4): 543-554
    20.李青山,沈新元.腈纶生产工学.北京:中国纺织出版社,2000
    1.贺福,杨永岗.提高炭纤维强度的理论基础及其技术途径.高科技纤维与应用,2001,26(2):7-11
    2.贺福,王淑芳,杨永岗.用韦氏理论评价炭纤维抗拉强度的分散性.高科技纤维与应用,2001,26(2):29-31
    3.齐志军,林树波,于振环.影响炭纤维强度的因素分析.高科技纤维与应用,2003,28(4):30-35
    4.贺福.炭纤维及其应用技术.北京:化学工业出版社,2004
    5.贺福.优质原丝是制取高性能炭纤维的基础.化工新型材料,1993,21(2):9
    6.贺福.缺陷对炭纤维强度的影响.航空材料,1989,9(1):23-30
    7.贺福.炭纤维的强度理论.碳素,1981,(4):1-4
    8.张建春,施楣梧.Lyocell纤维皮芯结构的研究.纺织学报,2000,21(1):7-10
    9.王华平,余晓莳,朱建民.熔纺中空纤维皮芯结构的形成原理及动力学模拟.合成纤维工业,1999,22(5):1-4
    10.任富忠,吕春祥,梁晓怿,吴刚平,贺福,凌立成.氨化对湿纺PAN初生丝条结构的影响.新型炭材料,2004,19(4):268-274
    11. R.J.Smiley, W.N.Delgass. AFM, SEM and XPS characterization of PAN-based carbon fibers etched in oxygen plasmas.Journal of Material Science, 1993, 28: 3601-3611
    12. C. E. Moss, M. F. Butler, M. Muller, R. E. Cameron. Microfocus Small-Angle X-ray Scattering Investigation of the Skin-Core Microstructure of Lyocell Cellulose Fibers. Journal of Applied Polymer Science, 2002, 83: 2799-2816
    13.徐墚华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2):21-24
    14.王延相,何东新.聚丙烯腈纤维结构缺陷的形成和控制.金山油化纤,2004,(4):11-14
    15.贺福,杨永岗,王润娥.用SEM研究PAN原丝的表面缺陷.高科技纤维与应用,2002,27(5):28-32
    16.纪箴,张崇方,钱律.国产与英国聚丙烯腈原丝的结构和性能分析.北京科技大学学报,1997,19(3):277-278
    17.吕永根,杨常玲,翟磊.用称重法研究聚丙烯腈树脂的凝固过程.新型碳材料,2004,19(1):16-20
    18.王艳芝,朱波,聚丙烯腈基炭纤维的制备.新型碳材料,2001,16(4):12-17
    19. Cheng-Kung Liu,John A. Cuculo, Brent Smith.Coagulation studies for cellulose in the ammonia/ammonium thiocyanate direct solvent system.Journal of Polymer Science: Part B: Polymer Physics, 1989, 27(12): 2493-2511
    20. G.Caneba, D. Soong. Polymer membrane formation through the thermal inversion process. Ⅰ:experimental study of membrane structure formation. Macromolecules, 1985, 18:2538-2540
    21. G.Caneba, D. Soong.Polymer membrane formation through the thermal inversion process. Ⅱ: mathematical modeling of membrane structure formation. Macromolecules, 1985, 18:2545-2547
    22.沈新元主编.高分子材料加工原理.北京:中国纺织出版社,2000
    23. Qian Baojun, Qin Jian, Zhou Zhenlong. Void formation in acrylic fibers. Textile Asia, 1989, (4): 40-57
    24. D. J. Thorne. Distribution of internal flaws in acrylic fibers[J]. Journal of Applied Polymer Science, 1970, 14:103-113
    25.王茂章,贺福.炭纤维的制造、性质及其应用.北京:科学出版社,1984
    26. P. Bajaj, D. K. Paliwal, A. K. Gupta. Influence of metal ions on structure and properties of acrylic fibers.Journal of Applied Polymer Science, 1998, 67: 1647-1659
    27.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈原丝的制备.合成纤维,2000,29(4):23-27
    28.李常清,徐梁华,王晓玲,刘淑金,曹维宇,陈宏卓.残余溶剂DMS0对PAN纤维结构及热性能的影响.高分子材料科学与工程,2003,19(4):89-91
    29. Rachel J. Hobson, Alan H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26:6903-6907
    30.徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    31.Stephen Dalton,Frank Heatley,Peter M.Budd. Thermal stabilization of polyacrylonitrile fibres. Polymer, 1999, 40: 5531-5543
    1.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    2.李青山,沈新元主编.腈纶生产工学.北京:中国纺织出版社,2000
    3.金日光,华幼卿.高分子物理.北京:化学工业出版社,1991
    4.贺福编著,碳纤维及其应用技术.北京:化学工业出版社,2004
    5.韩曙鹏,徐梁华,曹维宇,姚红.PAN纤维致密化过程对纤维晶态结构的影响.合成纤维工业,2004,27(6):17-19
    6. A.I. Stoyanov. Influence of thermosetting and drying on shrinkage, tenacity, and elongation of acrylic fibers. Journal of Applied Polymer Science, 1979, 23: 3123-3127
    7.三菱粘胶公司.聚丙烯腈原丝制法.特开平-5-339813,1993-12-21
    8.三菱粘胶公司.聚丙烯腈原丝制造方法.特开平-4-257313,1992-09-11
    9.日本东丽公司.聚丙烯腈原丝束.特开昭-58-214518,1983-12-13
    10.乔福牛.二甲基一步法碳纤维用聚丙烯腈原丝生产工艺.合成纤维工业,1995,18(4):19-23
    11.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技纤维与应用,2001,26(5):17-20
    12.西鹏,高晶,李文刚编著.高技术纤维.北京:化学工业出版社,2004
    13.于淑娟,姜立军,沙中瑛,张明耀.碳纤维用聚丙烯腈原丝制备技术的研究进展.高科技纤维与应用,2003,28(6):15-18
    14.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈原丝的制备.合成纤维,2000,29(4):23-27
    15.贺福,杨永岗.提高碳纤维强度的理论基础及其技术途径.高科技纤维与应用,2001,26(2):7-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700